Skip to main content
Log in

Nitric oxide and NAD-dependent protein modification

  • Part VI: Derivation of Proteins with ADP-ribose, NAD and their Analogues
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) has been suggested to act as a regulator of endogenous intracellular ADP-ribosylation, based on radiolabelling of proteins in tissue homogenates incubated with [32P]NAD and No. After the NO-stimulated modification was replicated in a defined system containing only the purified acceptor protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the hypothesis of NO-stimulation of an endogenous ADP-ribosyltransferase became moot. The NO-stimulated, NAD-dependent modification of GAPDH was recently characterized as covalent binding of the whole NAD molecule to the enzyme, not ADP-ribosylation. With this result, along with the knowledge that GAPDH is stoichiometrically S-nitrosylated, the role of NO in protein modification with NAD may be viewed as the conferring of an unexpected chemical reactivity upon GAPDH, possibly due to nitrosylation of a cysteine in the enzyme active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nathan C: Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064, 1992

    PubMed  Google Scholar 

  2. Lowenstein CJ, Snyder SH: Nitric oxide, a novel biologic messenger, Cell 70: 705–707, 1992

    PubMed  Google Scholar 

  3. Bredt DS, Snyder SH: Nitric oxide, a novel neuronal messenger. Neuron 8: 3–11, 1992

    PubMed  Google Scholar 

  4. Stamler JS, Singel DJ, Loscalzo J: Biochemistry of nitric oxide and its redox-activated forms. Science 258: 1898–1902, 1992

    PubMed  Google Scholar 

  5. Wink DA, Osawa Y, Darbyshire JF, Jones CR, Eshenaur SC, Nims RW: Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys 300: 115–123, 1993

    PubMed  Google Scholar 

  6. Rogers NE, Ignarro LJ: Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Commun 189: 242–249, 1992

    PubMed  Google Scholar 

  7. Assreuy J, Cunha FQ, Liew FY, Moncada S: Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol 108: 833–837, 1993

    PubMed  Google Scholar 

  8. Girard P, Potier P: NO, thiols and disulfides. FEBS Lett 320: 7–8,1993

    PubMed  Google Scholar 

  9. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J: S-Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89: 444–448, 1992

    PubMed  Google Scholar 

  10. Molina y Vedia L, McDonald B, Reep B, Brüne B, Di Silvio M, Billiar TR, Lapetina EG: Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267: 24929–24932, 1992

    PubMed  Google Scholar 

  11. Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA: Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex, Neuron 8: 1087–1099, 1992

    PubMed  Google Scholar 

  12. Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J: Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89: 7674–7677, 1992

    PubMed  Google Scholar 

  13. Keaney JF Jr, Simon DI, Stamler JS, Jaraki O, Scharfstein J, Vita JA, Loscalzo J: NO forms an adduct with serum albumin that has endotheliumderived relaxing factor-like properties. J Clin Invest 91: 1582–1589, 1993

    PubMed  Google Scholar 

  14. Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, Mullins M, Singel D, Loscalzo J: S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci USA 89: 8087–8091, 1992

    PubMed  Google Scholar 

  15. Myers PR, Minor RL Jr., Guerra R Jr., Bates JN, Harrison DG: Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide, Nature 345: 161–163, 1990

    PubMed  Google Scholar 

  16. Moss J, Vaughan M: ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymol 61: 303–379, 1988

    PubMed  Google Scholar 

  17. Williamson K, Moss J: Mono-ADP-ribosyltransferases and ADP-ribosylarginine hydrolases: a mono-ADP-ribosylation cycle in animal cells. In: J. Moss and M. Vaughan (eds). ADP-ribosylating Toxins and G Proteins: Insights into Signal Transduction. American Society for Microbiology, Washington DC 1990, pp 493–510

    Google Scholar 

  18. Brüne B, Lapetina EG: Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. J Biol Chem 264: 8455–8458, 1989

    PubMed  Google Scholar 

  19. Dimmeler S, Brüne B: L-Arginine stimulates an endogenous ADP-ribosyltransferase. Biochem Biophys Res Commun 178: 848–855, 1991

    PubMed  Google Scholar 

  20. Duman RS, Terwilliger RZ, Nestler EJ: Endogenous ADP-ribosyltion in brain: initial characterization of substrate proteins. J Neurochem 57: 2124–2132, 1991

    PubMed  Google Scholar 

  21. Williams MB, Li X, Gu X, Jope RS: Modulation of endogenous ADP-ribosylation in rat brain. Brain Res 592: 49–56, 1992

    PubMed  Google Scholar 

  22. Zhang J, Snyder SH: Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 89: 9382–9385, 1992

    PubMed  Google Scholar 

  23. Hauschildt S, Scheipers P, Bessler WG, Mülsch A: Induction of nitric oxide synthase in L929 cells by tumour-necrosis factor α is prevented by inhibitors of poly(ADP-ribose) polymerase. Biochem J 288: 255–260, 1992

    PubMed  Google Scholar 

  24. Kots AYa, Skurat AV, Sergienko EA, Bulargina TV, Severin ES: Nitroprusside stimulates the cysteine-specific mono (ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett 300: 9–12 1992

    PubMed  Google Scholar 

  25. Tao Y, Howlett A, Klein C: Nitric oxide stimulates the ADP-ribosylation of a 41-kDa cytosolic protein inDictyostelium discoideum. Proc Natl Acad Sci USA 89: 5902–5906, 1992

    PubMed  Google Scholar 

  26. Clancy RM, Leszczynska-Piziak J, Abramson SB: Nitric oxide stimulates ADP-ribosylation of actin in human neutrophils. Biochem Biophys Res Commun 191: 847–852, 1993

    PubMed  Google Scholar 

  27. Dimmeler S, Ankarcrona M, Nicotera P, Brüne B: Exogenous Nitric Oxide (NO) generation or IL-1β-induced intracellular NO production stimulates inhibitory auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase in RINm5F cells. J Immunol 150: 2964–2971, 1993

    PubMed  Google Scholar 

  28. Pozdnyakov N, Lloyd A, Reddy VN, Sitaramayya A: Nitric oxide-regulated endogenous ADP-ribosylation of rod outer segment proteins. Biochem Biophys Res Commun 192: 610–615, 1993

    PubMed  Google Scholar 

  29. Meyer T, Koch R, Fanick W, Hilz H: ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions. Biol Chem Hoppe-Seyler 369: 579–583, 1988

    PubMed  Google Scholar 

  30. McDonald LJ, Moss J: Nitric oxide-independent, thiol-associated ADP-ribosylation inactivates aldehyde dehydrogenase. J Biol Chem 268: 17878–17882 1993

    PubMed  Google Scholar 

  31. Brüne B, Lapetina EG: Properties of a novel nitric oxide-stimulated ADP-ribosyltransferase. Arch Biochem Biophys 279: 286–290, 1990

    PubMed  Google Scholar 

  32. Brüne B, Dimmeler S, Lapetina EG: NADPH: A stimulatory cofactor for nitric oxide-induced ADP-ribosylation reaction. Biochem Biophys Res Commun 182: 1166–1171, 1992

    PubMed  Google Scholar 

  33. Ehret-Hilberer S, Nullans G, Aunis D, Vimaux N: Mono ADP-ribosylation of transducin catalyzed by rod outer segment extract. FEBS Lett 309: 394–398, 1992

    PubMed  Google Scholar 

  34. Dimmeler S, Lottspeich F, Brüne B: Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 267: 16771–16774, 1992

    PubMed  Google Scholar 

  35. Dimmeler S, Brüne B: Characterization of a nitric-oxide-catalysed ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 210: 305–310, 1992

    PubMed  Google Scholar 

  36. McDonald LJ, Moss J: Stimulation by nitric oxide of a novel linkage of NAD to glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 90: 6238–6241, 1993

    PubMed  Google Scholar 

  37. De Vijlder JJM, Slater EC: The reaction between NAD+ and rabbit-muscle glyceraldephosphate dehydrogenase. Biochim Biophys Acta 167: 23–34, 1968

    PubMed  Google Scholar 

  38. Bloch W, MacQuarrie RA, Bernhard SA: The nucleotide and acyl group content of native rabbit muscle glyceralehyde 3-phosphate dehydrogenase, J Biol Chem 246: 780–790, 1971

    PubMed  Google Scholar 

  39. Dimmeler S, Brüne B: Nitric oxide preferentially stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase compared to aleohol or lactate dehydrogenase. FEBS Lett 315: 21–24, 1993

    PubMed  Google Scholar 

  40. Cleaver JE, Morgan WF: Poly(ADP-ribose)polymerase: a perplexing participant in cellular responses to DNA breakage. Mutation Res 257: 1–8, 1991

    PubMed  Google Scholar 

  41. Rice WG, Hillyer CD, Harten B, Schaeffer CA, Dorminy M, Lackey DA III, Kirsten E, Mendeleyev J, Buki KG, Hakam A, Kun E: Induction of endonuclease-mediated apoptosis in tumor cells by C-nitroso-substituted ligands of poly(ADP-ribose) polymerase. Proc Natl Acad Sci USA 89: 7703–7707, 1992

    PubMed  Google Scholar 

  42. Hauschildt S, Scheipers P, Bessler WG: Inhibitors of poly(ADP-ribose) polymerase suppress lipopolysaccharide-induced nitrite formation in macrophages. Biochem Biophys Res Commun 179: 865–871, 1991

    PubMed  Google Scholar 

  43. Kallmann B, Vurkat V, Kröncke K-D, Kolb-Bachofen V, Kolb H: Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide. Life Sci 51: 671–678, 1992

    PubMed  Google Scholar 

  44. McDonald LJ, Moss J: Pleiotropic effects of nitric oxide on ADP-ribosylation, covalent binding of NAD, and catalytic activity of GAPDH and aldehyde dehydrogenase. Trans Assoc Amer Phys 106: 155–161, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, L.J., Moss, J. Nitric oxide and NAD-dependent protein modification. Mol Cell Biochem 138, 201–206 (1994). https://doi.org/10.1007/BF00928462

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00928462

Key words

Navigation