Skip to main content
Log in

Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Epigenetic models for tumor formation assume that oncogenic transformation results from changes in the activity of otherwise normal genes. Since gene activity can be inhibited by DNA methylation, and inactivation of tumor suppressor genes is a fundamental process in oncogenesis, we investigated the methylation status of the retinoblastoma suppressor gene (RB gene) on chromosome 13, in blood and tumor cells from 21 retinoblastoma patients. Using methylation-sensitive restriction enzymes and a cloned DNA probe for the unmethylated CpG island at the 5′ end of RB gene, we obtained evidence of hypermethylation of this gene in a sporadic unilateral retinoblastoma tumor. The closely linked esterase D gene and a CpG-rich island on chromosome 15 were not affected. We suggest that changes in the methylation pattern of the RB gene play a role in the development and spontaneous regression of some retinoblastoma tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benedict WF, Murphree AL, Banerjee A, Spina CA, Sparkes MC, Sparkes R (1983) Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science 219: 973–975

    Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321: 209–213

    Google Scholar 

  • Bird AP, Southern EM (1978) Use of restriction enzymes to study eukaryotic DNA methylation. I. The methylation pattern in ribosomal DNA from Xenopus laevis. J Mol Biol 118: 27–47

    Google Scholar 

  • Bookstein R, Lee EYHP, To H, Young LJ, Sery TW, Hayes RC, Friedmann T, Lee WH (1988) Human retinoblastoma susceptibility gene: genomic organisation and analysis of heterozygous intragenic deletion mutants. Proc Natl Acad Sci USA 85: 2210–2214

    Google Scholar 

  • Buiting K, Passarge E, Horsthemke B (1988) Construction of a chromosome 15-specific linking library and identification of potential gene sequences. Genomics 3: 143–149

    Google Scholar 

  • Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–784

    Google Scholar 

  • Chandler LA, Ghazi H, Jones PA, Boukamp P, Fusenig NE (1987) Allele-specific methylation of the human c-Ha-ras-1 gene. Cell 50: 711–717

    Google Scholar 

  • De Bustros A, Nelkin BD, Silvermann A, Ehrlich G, Poiesz B, Baylin SB (1988) The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc Natl Acad Sci USA 85: 5693–5697

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301: 89–92

    Google Scholar 

  • Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TA (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646

    Google Scholar 

  • Fung YKT, Murphree AL, T'Ang A, Quian J, Hinrichs SH, Benedict WF (1987) Structural evidence for the authenticity of the human retinoblastoma gene. Science 236: 1657–1661

    Google Scholar 

  • Gartler SM, Dyer KA, Graves JAM, Rocchi M (1985) A two step model for mammalian X-chromosome inactivation. In: Cantoni GL, Razin A (eds) Biochemistry and biology of DNA methylation. Liss, New York, pp 223–238

    Google Scholar 

  • Goelz SE, Vogelstein B, Hamilton B, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228: 187–190

    Google Scholar 

  • Holliday R (1987) The inheritance of epigenetic defects. Science 238: 163–170

    Google Scholar 

  • Horsthemke B, Greger V, Barnert HJ, Höpping W, Passarge E (1987) Detection of submicroscopic deletions and a DNA polymorphism at the retinoblastoma locus. Hum Genet 76: 257–261

    Google Scholar 

  • Human Gene Mapping 9 (1987) 9th International Workshop on Human Gene Mapping. Cytogenet Cell Genet 46: 1–762

  • Jahner D, Jaenisch R (1984) DNA methylation in early mammalian development. In: Razin A, Cedar H, Riggs AD (eds) DNA methylation, biochemistry and biological significance. Springer, Berlin Heidelberg New York, pp 189–219

    Google Scholar 

  • Jones PA (1985) Altering gene expression with 5-azacytidine. Cell 40: 485–486

    Google Scholar 

  • Kautainien TL, Jones PA (1986) DNA methyltransferase levels in tumorigenic and nontumorigenic cells in culture. J Biol Chem 261: 1594–1598

    Google Scholar 

  • Klein G (1987) The approaching era of the tumor suppressor genes. Science 238: 1539–1545

    Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823

    Google Scholar 

  • Kunkel LM, Smith KD, Boyer SH, Borgaonkor DS, Wachtel SS, Miller OJ, Breg WR, Jones HW, Rary JM (1977) Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc Natl Acad Sci USA 74: 1245–1249

    Google Scholar 

  • Lee WH, Brookstein R, Hong F, Young LJ, Shew JY, Lee EYHP (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235: 1394–1399

    Google Scholar 

  • Lyon MF (1988) X-chromosome inactivation and the location and expression of X-linked genes. Am J Hum Genet 42: 8–16

    Google Scholar 

  • Reik W, Surani MA (1989) Genomic imprinting and embryonal tumours. Nature 338: 112–113

    Google Scholar 

  • Shmookler-Reis RJ, Goldstein S (1982) Interclonal varation in methylation patterns for expressed and non-expressed genes. Nucleic Acids Res 10: 4293–4304

    Google Scholar 

  • Silva AJ, White R (1988) Inheritance of allelic blueprints for methylation patterns. Cell 54: 145–152

    Google Scholar 

  • Sparkes RS, Sparkes MC, Wilson MG, Towner JW, Benedict WF, Murphree AL, Yunis JJ (1980) Regional assignment of esterase D and retinoblastoma to chromosome band 13q14. Science 208: 1042–1044

    Google Scholar 

  • Squire J, Dryja TP, Dunn J, Goddard A, Hofmann T, Musarella M, Willard HF, Becker AJ, Gallie BL, Phillips RA (1986) Cloning of the esterase D gene: a polymorphic gene probe closely linked to the retinoblastoma locus on chromosome 13. Proc Natl Acad Sci USA 83: 6573–6577

    Google Scholar 

  • Toguchida J, Ishizaki K, Sasaki MS, Nakamura Y, Ikenaga M, Kato M, Sugimot M, Kotoura Y, Yamamuro T (1989) Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature 338: 156–158

    Google Scholar 

  • Young LJS, Lee EYHP, To H, Bookstein R, Shew JY, Donoso LA, Sery T, Giblin M, Shields JA, Lee WH (1988) Human esterase D gene: complete cDNA sequence, genomic structure, and application in the genetic diagnosis of human retinoblastoma. Hum Genet 79: 137–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greger, V., Passarge, E., Höpping, W. et al. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83, 155–158 (1989). https://doi.org/10.1007/BF00286709

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286709

Keywords

Navigation