Skip to main content

Emerging Technologies for CTC Detection Based on Depletion of Normal Cells

  • Chapter
  • First Online:
Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 195))

Abstract

Properly conducted, an enrichment step can improve selectivity, sensitivity, yield, and most importantly, significantly reduce the time needed to isolate rare circulating tumor cells (CTCs). The enrichment process can be broadly categorized as positive selection versus negative depletion, or in some cases, a combination of both. We have developed a negative depletion CTC enrichment strategy that relies on the removal of normal cells using immunomagnetic separation in the blood of cancer patients. This method is based on the combination of magnetic and fluid forces in an axial, laminar flow in long cylinders placed in quadrupole magnets. Using this technology, we have successfully isolated CTCs from patients with breast carcinoma and squamous cell carcinoma of the head and neck. In contrast to a positive selection methodology, this approach provides an unbiased characterization of these cells, including markers associated with epithelial mesenchymal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engell HC (1955) Cancer cells in the circulating blood; a clinical study on the occurrence of cancer cells in the peripheral blood and in venous blood draining the tumour area at operation. Acta Chir Scand Suppl 201:1–70

    PubMed  CAS  Google Scholar 

  2. Goldblatt SA, Nadel EM (1965) Cancer cells in the circulating blood: a critical review ii. Acta Cytol 9:6–20

    PubMed  CAS  Google Scholar 

  3. Herbeuval R, Duheille J, Goedert-Herbeuval C (1965) Diagnosis of unusual blood cells by immunofluorescence. Acta Cytol 9:73–82

    PubMed  CAS  Google Scholar 

  4. Kiseleva NS, Magamadov YC (1972) Hematogenous dissemination of tumour cells and metastases formation in Ehrlich ascites tumour. Neoplasma 19:257–275

    PubMed  CAS  Google Scholar 

  5. Stevenson JL, Von Haam E (1966) The application of immunofluorescence techniques to the cytodiagnosis of cancer. Acta Cytol 10:15–20

    PubMed  CAS  Google Scholar 

  6. Budd GT, Cristofanilli M, Ellis MJ et al (2006) Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin Cancer Res 12:6403–6409

    Article  PubMed  CAS  Google Scholar 

  7. Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791

    Article  PubMed  CAS  Google Scholar 

  8. Riethdorf S, Fritsche H, Muller V et al (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res 13:920–928

    Article  PubMed  CAS  Google Scholar 

  9. Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8:329–340

    Article  PubMed  CAS  Google Scholar 

  10. McKenzie S (1996) Textbook of Hematology. Williams and Wilkens, Inc., Maryland

    Google Scholar 

  11. Braun S, Pantel K, Muller P et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  PubMed  CAS  Google Scholar 

  12. Gross HJ, Verwer B, Houck D et al (1995) Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(-7). Proc Natl Acad Sci U S A 92:537–541

    Article  PubMed  CAS  Google Scholar 

  13. Iinuma H, Okinaga K, Adachi M et al (2000) Detection of tumor cells in blood using CD45 magnetic cell separation followed by nested mutant allele-specific amplification of p53 and K-ras genes in patients with colorectal cancer. Int J Cancer 89:337–344

    Article  PubMed  CAS  Google Scholar 

  14. Bilkenroth U, Taubert H, Riemann D et al (2001) Detection and enrichment of disseminated renal carcinoma cells from peripheral blood by immunomagnetic cell separation. Int J Cancer 92:577–582

    Article  PubMed  CAS  Google Scholar 

  15. Brakenhoff RH, Stroomer JG, ten Brink C et al (1999) Sensitive detection of squamous cells in bone marrow and blood of head and neck cancer patients by E48 reverse transcriptase-polymerase chain reaction. Clin Cancer Res 5:725–732

    PubMed  CAS  Google Scholar 

  16. Partridge M, Brakenhoff R, Phillips E et al (2003) Detection of rare disseminated tumor cells identifies head and neck cancer patients at risk of treatment failure. Clin Cancer Res 9:5287–5294

    PubMed  CAS  Google Scholar 

  17. Tkaczuk KH, Goloubeva O, Tait NS et al (2008) The significance of circulating epithelial cells in Breast Cancer patients by a novel negative selection method. Breast Cancer Res Treat 111:355–364

    Article  PubMed  Google Scholar 

  18. Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239

    Article  PubMed  CAS  Google Scholar 

  19. Went PT, Lugli A, Meier S et al (2004) Frequent EpCam protein expression in human carcinomas. Hum Pathol 35:122–128

    Article  PubMed  CAS  Google Scholar 

  20. Fehm T, Sagalowsky A, Clifford E et al (2002) Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res 8:2073–2084

    PubMed  CAS  Google Scholar 

  21. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V et al (2005) Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11:8006–8014

    Article  PubMed  CAS  Google Scholar 

  22. Sieuwerts AM, Kraan J, Bolt J et al (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101:61–66

    PubMed  CAS  Google Scholar 

  23. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  24. Tong X, Yang L, Lang JC et al (2007) Application of immunomagnetic cell enrichment in combination with RT-PCR for the detection of rare circulating head and neck tumor cells in human peripheral blood. Cytometry B Clin Cytom 72:310–323

    PubMed  Google Scholar 

  25. Allan AL, Vantyghem SA, Tuck AB et al (2005) Detection and quantification of circulating tumor cells in mouse models of human breast cancer using immunomagnetic enrichment and multiparameter flow cytometry. Cytometry A 65:4–14

    PubMed  Google Scholar 

  26. Hsieh HB, Marrinucci D, Bethel K et al (2006) High speed detection of circulating tumor cells. Biosens Bioelectron 21:1893–1899

    Article  PubMed  CAS  Google Scholar 

  27. Krivacic RT, Ladanyi A, Curry DN et al (2004) A rare-cell detector for cancer. Proc Natl Acad Sci U S A 101:10501–10504

    Article  PubMed  CAS  Google Scholar 

  28. Braun S, Hepp F, Sommer HL et al (1999) Tumor-antigen heterogeneity of disseminated breast cancer cells: implications for immunotherapy of minimal residual disease. Int J Cancer 84:1–5

    Article  PubMed  CAS  Google Scholar 

  29. Kasimir-Bauer S, Otterbach F, Oberhoff C et al (2003) Rare expression of target antigens for immunotherapy on disseminated tumor cells in breast cancer patients without overt metastases. Int J Mol Med 12:969–975

    PubMed  CAS  Google Scholar 

  30. Thurm H, Ebel S, Kentenich C et al (2003) Rare expression of epithelial cell adhesion molecule on residual micrometastatic breast cancer cells after adjuvant chemotherapy. Clin Cancer Res 9:2598–2604

    PubMed  CAS  Google Scholar 

  31. EasySep (last accessed October 2009). In: StemCell Technologies. www.stemcell.com/product_catalog/easysep.aspx

  32. LD Columns (last accessed October 2009). In: Miltenyi Biotec GmbH. www.miltenyibiotec.com/en/PG_115_167_LD_Columns.aspx

  33. Lara O, Tong X, Zborowski M et al (2004) Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol 32:891–904

    Article  PubMed  Google Scholar 

  34. Yang L, Lang JC, Balasubramanian P et al (2009) Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells. Biotechnol Bioeng 102:521–534

    Article  PubMed  CAS  Google Scholar 

  35. Chalmers JJ, Zborowski M, Sun L et al (1998) Flow through, immunomagnetic cell separation. Biotechnol Prog 14:141–148

    Article  PubMed  CAS  Google Scholar 

  36. Hoyos M, McCloskey K, Moore L et al (2002) Pulse-injection studies of blood progenitor cells in a quadrupole magnetic flow sorter. Sep Sci Technol 37:1–23

    Article  Google Scholar 

  37. Jin X, Zhao Y, Richardson A et al (2008) Differences in magnetically induced motion of diamagnetic, paramagnetic, and superparamagnetic microparticles detected by cell tracking velocimetry. Analyst 133:1767–1775

    Article  PubMed  CAS  Google Scholar 

  38. Jing Y, Moore LR, Schneider T et al (2007) Negative selection of hematopoietic progenitor cells by continuous magnetophoresis. Exp Hematol 35:662–672

    Article  PubMed  Google Scholar 

  39. McCloskey KE, Moore LR, Hoyos M et al (2003) Magnetophoretic cell sorting is a function of antibody binding capacity. Biotechnol Prog 19:899–907

    Article  PubMed  CAS  Google Scholar 

  40. Moore LR, Rodriguez AR, Williams PS et al (2001) Progenitor cell isolation with a high-capacity quadrupole magnetic flow sorter. J Magn Magn Mater 225:277–284

    Article  CAS  Google Scholar 

  41. Nakamura M, Decker K, Chosy J et al (2001) Separation of a breast cancer cell line from human blood using a quadrupole magnetic flow sorter. Biotechnol Prog 17:1145–1155

    Article  PubMed  CAS  Google Scholar 

  42. Tong X, Xiong Y, Zborowski M et al (2007) A novel high throughput immunomagnetic cell sorting system for potential clinical scale depletion of T cells for allogeneic stem cell transplantation. Exp Hematol 35:1613–1622

    Article  PubMed  CAS  Google Scholar 

  43. Williams PS, Zborowski M, Chalmers JJ (1999) Flow rate optimization for the quadrupole magnetic cell sorter. Anal Chem 71:3799–3807

    Article  PubMed  CAS  Google Scholar 

  44. Zborowski M, Chalmers JJ (2008) Magnetic cell separation. Elsevier Science, Amsterdam, p 464

    Google Scholar 

  45. Zborowski M, Moore LR, Williams PS et al (2002) Separations based on magnetophoretic mobility. Sep Sci Technol 37:3611–3633

    Article  CAS  Google Scholar 

  46. Zborowski M, Williams PS, Sun L et al (1997) Cylindrical SPLITT and quadrupole magnetic field in application to continuous-flow magnetic cell sorting. J Liq Chromatogr Relat Tech 20:2887–2905

    Article  CAS  Google Scholar 

  47. Lustberg MB, Balasubramanian P, Lang JC, Ruppertt AS, Carothers S, Berger MJ, Mrozek E, Ramaswamy B, Layman RC, Chalmers J, Shapiro CLS (2010) Mesenchymal markers are present on circulating tumor cells in breast cancer AACR special conference on EMT and cancer progression and treatment, Poster presentation taking place Arlington, 28 Feb–2 Mar 2010

    Google Scholar 

  48. Lustberg MB, Balasubramanian P, Lang JC, Ruppertt AS, Carothers S, Berger MJ, Mrozek E, Ramaswamy B, Layman RC, Chalmers J, Shapiro CLS (2010) Isolation of circulating tumor cells (CTCs) with mesenchymal and stem cell markers in localized and metastatic breast cancer using a novel negative selection enrichment AACR National Meeting (Abstract # 5105)

    Google Scholar 

  49. Pantel K, Alix-Panabieres C, Riethdorf S (2009) Cancer micrometastases. Nat Rev Clin Oncol 6:339–351

    Article  PubMed  CAS  Google Scholar 

  50. Hristozova T, Konschak R, Stromberger C et al (2011) The presence of circulating tumor cells (CTCs) correlates with lymph node metastasis in nonresectable squamous cell carcinoma of the head and neck region (SCCHN). Ann Oncol 22(8):1878–1885

    Article  PubMed  CAS  Google Scholar 

  51. Jatana KR, Balasubramanian P, Lang JC et al (2010) Significance of circulating tumor cells in patients with squamous cell carcinoma of the head and neck: initial results. Arch. Otolaryngol. Head Neck Surg. 136:1274–1279

    Google Scholar 

  52. Paterlini-Brechot P, Benali NL (2007) Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253:180–204

    Article  PubMed  CAS  Google Scholar 

  53. Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326

    Article  PubMed  CAS  Google Scholar 

  54. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Natl Rev Mol Cell Biol 7:131–142

    Article  CAS  Google Scholar 

  55. Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66:4549–4552

    Article  PubMed  CAS  Google Scholar 

  56. Blick T, Widodo E, Hugo H et al (2008) Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 25:629–642

    Article  PubMed  CAS  Google Scholar 

  57. Sarrio D, Rodriguez-Pinilla SM, Hardisson D et al (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997

    Article  PubMed  CAS  Google Scholar 

  58. Mani S, Guo W, Liao MJ et al (2008) The epithelial mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  59. Morel A, Lievre M, Thomas C et al (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3:e2888 (2008)

    Google Scholar 

  60. Galie M, Konstantinidou G, Peroni D et al (2008) Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene 27:2542–2551

    Article  PubMed  CAS  Google Scholar 

  61. Santisteban M, Reiman JM, Asiedu MK et al (2009) Immune-Induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res 69:2887–2895

    Article  PubMed  CAS  Google Scholar 

  62. Kokkinos MI, Wafai R, Wong MK et al (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer–observations in vitro and in vivo. Cells Tissues Organs 185:191–203

    Article  PubMed  CAS  Google Scholar 

  63. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456

    Article  PubMed  CAS  Google Scholar 

  64. Pantel K, Alix-Panabieres C (2007) The clinical significance of circulating tumor cells. Nat Clin Pract Oncol 4:62–63

    Article  PubMed  Google Scholar 

  65. Sommers CL, Heckford SE, Skerker JM et al (1992) Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 52:5190–5197

    PubMed  CAS  Google Scholar 

  66. Thompson EW, Paik S, Brunner N et al (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150:534–544

    Article  PubMed  CAS  Google Scholar 

  67. Theodoropoulos PA, Polioudaki H, Agelaki S et al (2009) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288(1):99–106

    Article  PubMed  Google Scholar 

  68. Aktas B, Tewes M, Fehm T et al (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11:R46

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Chalmers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lustberg, M., Jatana, K.R., Zborowski, M., Chalmers, J.J. (2012). Emerging Technologies for CTC Detection Based on Depletion of Normal Cells. In: Ignatiadis, M., Sotiriou, C., Pantel, K. (eds) Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer. Recent Results in Cancer Research, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28160-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28160-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28159-4

  • Online ISBN: 978-3-642-28160-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics