RT Journal Article SR Electronic T1 Critical protein GAPDH and its regulatory mechanisms in cancer cells JF Cancer Biology and Medicine JO Cancer Biol Med FD China Anti-Cancer Association SP 10 OP 22 DO 10.7497/j.issn.2095-3941.2014.0019 VO 12 IS 1 A1 Jin-Ying Zhang A1 Fan Zhang A1 Chao-Qun Hong A1 Armando E. Giuliano A1 Xiao-Jiang Cui A1 Guang-Ji Zhou A1 Guo-Jun Zhang A1 Yu-Kun Cui YR 2015 UL http://www.cancerbiomed.org/content/12/1/10.abstract AB Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described.