PT - JOURNAL ARTICLE AU - Sha Li AU - Jinyi Liu AU - Xiangjin Zheng AU - Liwen Ren AU - Yihui Yang AU - Wan Li AU - Weiqi Fu AU - Jinhua Wang AU - Guanhua Du TI - Tumorigenic bacteria in colorectal cancer: mechanisms and treatments AID - 10.20892/j.issn.2095-3941.2020.0651 DP - 2022 Feb 01 TA - Cancer Biology & Medicine PG - 147--162 VI - 19 IP - 2 4099 - http://www.cancerbiomed.org/content/19/2/147.short 4100 - http://www.cancerbiomed.org/content/19/2/147.full SO - Cancer Biol Med2022 Feb 01; 19 AB - Colorectal cancer (CRC) is the third most common and the second most fatal cancer. In recent years, more attention has been directed toward the role of gut microbiota in the initiation and development of CRC. Some bacterial species, such as Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis, Enterococcus faecalis, and Salmonella sp. have been associated with CRC, based upon sequencing studies in CRC patients and functional studies in cell culture and animal models. These bacteria can cause host DNA damage by genotoxic substances, including colibactin secreted by pks + Escherichia coli, B. fragilis toxin (BFT) produced by Bacteroides fragilis, and typhoid toxin (TT) from Salmonella. These bacteria can also indirectly promote CRC by influencing host-signaling pathways, such as E-cadherin/β-catenin, TLR4/MYD88/NF-κB, and SMO/RAS/p38 MAPK. Moreover, some of these bacteria can contribute to CRC progression by helping tumor cells to evade the immune response by suppressing immune cell function, creating a pro-inflammatory environment, or influencing the autophagy process. Treatments with the classical antibacterial drugs, metronidazole or erythromycin, the antibacterial active ingredients, M13@ Ag (electrostatically assembled from inorganic silver nanoparticles and the protein capsid of bacteriophage M13), berberine, and zerumbone, were found to inhibit tumorigenic bacteria to different degrees. In this review, we described progress in elucidating the tumorigenic mechanisms of several CRC-associated bacteria, as well as progress in developing effective antibacterial therapies. Specific bacteria have been shown to be active in the oncogenesis and progression of CRC, and some antibacterial compounds have shown therapeutic potential in bacteria-induced CRC. These bacteria may be useful as biomarkers or therapeutic targets for CRC.