Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview
Open Access

Artificial intelligence strengthenes cervical cancer screening – present and future

Tong Wu, Eric Lucas, Fanghui Zhao, Partha Basu and Youlin Qiao
Cancer Biology & Medicine September 2024, 20240198; DOI: https://doi.org/10.20892/j.issn.2095-3941.2024.0198
Tong Wu
1School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric Lucas
2Early Detection, Prevention & Infections Branch International Agency for Research on Cancer (WHO), 25 avenue Tony Garnier, Lyon 69007, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fanghui Zhao
3Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Partha Basu
2Early Detection, Prevention & Infections Branch International Agency for Research on Cancer (WHO), 25 avenue Tony Garnier, Lyon 69007, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Partha Basu
  • For correspondence: [email protected] [email protected]
Youlin Qiao
1School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Youlin Qiao
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Bray F,
    2. Laversanne M,
    3. Sung H,
    4. Ferlay J,
    5. Siegel RL,
    6. Soerjomataram I, et al.
    Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74: 229–63.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Zhao F,
    2. Qiao Y.
    Cervical cancer prevention in China: a key to cancer control. Lancet. 2019; 393: 969–70.
    OpenUrlPubMed
  3. 3.↵
    1. Nazari Z,
    2. Torabizadeh G,
    3. Khalilian A,
    4. Ghadami S,
    5. Karimi-Zarchi M,
    6. Allahqoli L, et al.
    Is cryotherapy effective in all women with low-grade cervical intraepithelial neoplasia? Eur Rev Med Pharmacol Sci. 2021; 25: 4211–8.
    OpenUrl
  4. 4.↵
    1. Hou X,
    2. Shen G,
    3. Zhou L,
    4. Li Y,
    5. Wang T,
    6. Ma X.
    Artificial intelligence in cervical cancer screening and diagnosis. Front Oncol. 2022; 12: 851367.
  5. 5.↵
    1. Liu G,
    2. Ding Q,
    3. Luo H,
    4. Sha M,
    5. Li X,
    6. Ju M.
    Cx22: a new publicly available dataset for deep learning-based segmentation of cervical cytology images. Comput Biol Med. 2022; 150: 106194.
  6. 6.↵
    1. Lu Z,
    2. Carneiro G,
    3. Bradley AP.
    An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells. IEEE Trans Image Process. 2015; 24: 1261–72.
    OpenUrl
  7. 7.↵
    1. Lu Z,
    2. Carneiro G,
    3. Bradley AP,
    4. Ushizima D,
    5. Nosrati MS,
    6. Bianchi AG, et al.
    Evaluation of three algorithms for the segmentation of overlapping cervical cells. IEEE J Biomedical Health Inform. 2016; 21: 441–50.
    OpenUrl
  8. 8.↵
    1. Plissiti ME,
    2. Dimitrakopoulos P,
    3. Sfikas G,
    4. Nikou C,
    5. Krikoni O,
    6. Charchanti A.
    SIPaKMeD: a new dataset for feature and image based classification of normal and pathological cervical cells in pap smear images. In: 2018 25th IEEE International Conference on Image Processing (ICIP). 2018. p. 3144–8.
  9. 9.↵
    1. Jantzen J,
    2. Norup J,
    3. Dounias G,
    4. Bjerregaard B.
    Pap-smear benchmark data for pattern classification. In: Nature Inspired Smart Information Systems (NiSIS 2005). 2005. p. 1–9.
  10. 10.↵
    1. Payette J,
    2. Rachleff J,
    3. de Graaf C.
    Intel and MobileODT cervical cancer screening Kaggle competition: cervix type classification using deep learning and image classification. Stanford University; 2017.
  11. 11.↵
    IARC – International Agency for Research on Cancer. IARC visual inspection with acetic acid (via) image bank. https://screening.iarc.fr/cervicalimagebank.php.
  12. 12.↵
    1. Li J,
    2. Hu P,
    3. Gao H,
    4. Shen N,
    5. Hua K.
    Classification of cervical lesions based on multimodal features fusion. Comput Biol Med. 2024; 177: 108589.
  13. 13.↵
    1. Fu L,
    2. Xia W,
    3. Shi W,
    4. Cao G-X,
    5. Ruan Y-T,
    6. Zhao X-Y, et al.
    Deep learning based cervical screening by the cross-modal integration of colposcopy, cytology, and HPV test. Int J Med Inform. 2022; 159: 104675.
  14. 14.↵
    1. Bao H,
    2. Sun X,
    3. Zhang Y,
    4. Pang B,
    5. Li H,
    6. Zhou L, et al.
    The artificial intelligence-assisted cytology diagnostic system in large-scale cervical cancer screening: a population-based cohort study of 0.7 million women. Cancer Med. 2020; 9: 6896–906.
    OpenUrl
  15. 15.↵
    1. Xue P,
    2. Xu HM,
    3. Tang HP,
    4. Wu WQ,
    5. Seery S,
    6. Han X, et al.
    Assessing artificial intelligence enabled liquid-based cytology for triaging HPV-positive women: a population-based cross-sectional study. Acta Obstet Gynecol Scand. 2023; 102: 1026–33.
    OpenUrl
  16. 16.↵
    1. Hu L,
    2. Bell D,
    3. Antani S,
    4. Xue Z,
    5. Yu K,
    6. Horning MP, et al.
    An observational study of deep learning and automated evaluation of cervical images for cancer screening. J Natl Cancer Inst. 2019; 111: 923–32.
    OpenUrlPubMed
  17. 17.↵
    1. Mango LJ.
    Computer-assisted cervical cancer screening using neural networks. Cancer Lett. 1994; 77: 155–62.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Lee KR,
    2. Ashfaq R,
    3. Birdsong GG,
    4. Corkill ME,
    5. Mcintosh KM,
    6. Inhorn SL.
    Comparison of conventional Papanicolaou smears and a fluid-based, thin-layer system for cervical cancer screening. Obstet Gynecol. 1997; 90: 278–284.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Fremont-Smith M,
    2. Marino J,
    3. Griffin B,
    4. Spencer L,
    5. Bolick D.
    Comparison of the SurePath™ liquid-based Papanicolaou smear with the conventional Papanicolaou smear in a multisite direct-to-vial study. Cancer. 2004; 102: 269–79.
    OpenUrlPubMed
  20. 20.↵
    1. Chivukula M,
    2. Saad RS,
    3. Elishaev E,
    4. White S,
    5. Mauser N,
    6. Dabbs DJ.
    Introduction of the Thin Prep Imaging System™ (TIS): experience in a high volume academic practice. Cytojournal. 2007; 4: 6.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Wilbur DC,
    2. Black-Schaffer WS,
    3. Luff RD,
    4. Abraham KP,
    5. Kemper C,
    6. Molina JT, et al.
    The Becton Dickinson FocalPoint GS Imaging System: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions. Am J Clin Pathol. 2009; 132: 767–75.
    OpenUrlCrossRefPubMed
  22. 22.
    1. Bolger N,
    2. Heffron C,
    3. Regan I,
    4. Sweeney M,
    5. Kinsella S,
    6. McKeown M, et al.
    Implementation and evaluation of a new automated interactive image analysis system. Acta Cytol. 2006; 50: 483–91.
    OpenUrlPubMed
  23. 23.↵
    1. Biscotti CV,
    2. Dawson AE,
    3. Dziura B,
    4. Galup L,
    5. Darragh T,
    6. Rahemtulla A, et al.
    Assisted primary screening using the automated ThinPrep Imaging System. Am J Clin Pathol. 2005; 123: 281–7.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Delga A,
    2. Goffin F,
    3. Kridelka F,
    4. Marée R,
    5. Lambert C,
    6. Delvenne P.
    Evaluation of CellSolutions BestPrep® automated thin-layer liquid-based cytology Papanicolaou slide preparation and BestCyte® cell sorter imaging system. Acta Cytol. 2014; 58: 469–77.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Chantziantoniou N.
    BestCyte® primary screening of 500 ThinPrep Pap Test thin-layers: 3 Cytologists’ Interobserver diagnostic concordance with predicate manual microscopy relative to Truth Reference diagnoses defining NILM, ASCUS+, LSIL+, and ASCH+ thresholds for specificity, sensitivity, and equivalency grading. J Pathol Inform. 2023; 14: 100182.
  26. 26.↵
    1. Rezende MT,
    2. Bianchi AG,
    3. Carneiro CM.
    Cervical cancer: automation of Pap test screening. Diagn Cytopathol. 2021; 49: 559–74.
    OpenUrl
  27. 27.↵
    1. Sompawong N,
    2. Mopan J,
    3. Pooprasert P,
    4. Himakhun W,
    5. Suwannarurk K,
    6. Ngamvirojcharoen J, et al.
    Automated pap smear cervical cancer screening using deep learning. Annu Int Conf IEEE Eng Med Biol Soc. 2019; 2019: 7044–8.
    OpenUrl
  28. 28.↵
    1. Ronneberger O,
    2. Fischer P,
    3. Brox T.
    U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Munich, Germany, October 5-9, 2015. 2015. p. 234–41.
  29. 29.↵
    1. Rasheed A,
    2. Shirazi SH,
    3. Umar AI,
    4. Shahzad M,
    5. Yousaf W,
    6. Khan Z.
    Cervical cell’s nucleus segmentation through an improved UNet architecture. PLoS One. 2023; 18: e0283568.
  30. 30.↵
    1. Zhang E,
    2. Xie R,
    3. Bian Y,
    4. Wang J,
    5. Tao P,
    6. Zhang H, et al.
    Cervical cell nuclei segmentation based on GC-UNET. Heliyon. 2023; 9: e17647.
  31. 31.↵
    1. Ji J,
    2. Zhang W,
    3. Dong Y,
    4. Lin R,
    5. Geng Y,
    6. Hong L.
    Automated cervical cell segmentation using deep ensemble learning. BMC Med Imaging. 2023; 23: 137.
    OpenUrl
  32. 32.↵
    1. Wang C-W,
    2. Liou Y-A,
    3. Lin Y-J,
    4. Chang C-C,
    5. Chu P-H,
    6. Lee Y-C, et al.
    Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning. Sci Rep. 2021; 11: 16244.
  33. 33.↵
    1. Wang P,
    2. Wang J,
    3. Li Y,
    4. Li L,
    5. Zhang H.
    Adaptive pruning of transfer learned deep convolutional neural network for classification of cervical Pap smear images. IEEE Access. 2020; 8: 50674–83.
    OpenUrl
  34. 34.
    1. Nambu Y,
    2. Mariya T,
    3. Shinkai S,
    4. Umemoto M,
    5. Asanuma H,
    6. Sato I, et al.
    A screening assistance system for cervical cytology of squamous cell atypia based on a two-step combined CNN algorithm with label smoothing. Cancer Med. 2022; 11: 520–9.
    OpenUrl
  35. 35.↵
    1. Cao L,
    2. Yang J,
    3. Rong Z,
    4. Li L,
    5. Xia B,
    6. You C, et al.
    A novel attention-guided convolutional network for the detection of abnormal cervical cells in cervical cancer screening. Med Image Anal. 2021; 73: 102197.
  36. 36.
    1. Hussain E,
    2. Mahanta LB,
    3. Das CR,
    4. Talukdar RK.
    A comprehensive study on the multi-class cervical cancer diagnostic prediction on Pap smear images using a fusion-based decision from ensemble deep convolutional neural network. Tissue Cell. 2020; 65: 101347.
  37. 37.↵
    1. Bhatt AR,
    2. Ganatra A,
    3. Kotecha K.
    Cervical cancer detection in pap smear whole slide images using convNet with transfer learning and progressive resizing. PeerJ Comput Sci. 2021; 7: e348.
  38. 38.↵
    1. Ke J,
    2. Shen Y,
    3. Lu Y,
    4. Deng J,
    5. Wright JD,
    6. Zhang Y, et al.
    Quantitative analysis of abnormalities in gynecologic cytopathology with deep learning. Lab Invest. 2021; 101: 513–24.
    OpenUrl
  39. 39.
    1. Lin H,
    2. Chen H,
    3. Wang X,
    4. Wang Q,
    5. Wang L,
    6. Heng P-A.
    Dual-path network with synergistic grouping loss and evidence driven risk stratification for whole slide cervical image analysis. Med Image Anal. 2021; 69: 101955.
  40. 40.↵
    1. Lasyk Ł,
    2. Barbasz J,
    3. Żuk P,
    4. Prusaczyk A,
    5. Włodarczyk T,
    6. Prokurat E, et al.
    An evaluation of the construction of the device along with the software for digital archiving, sending the data, and supporting the diagnosis of cervical cancer. Contemp Oncol. 2019; 23: 171–7.
    OpenUrl
  41. 41.↵
    1. Bao H,
    2. Bi H,
    3. Zhang X,
    4. Zhao Y,
    5. Dong Y,
    6. Luo X, et al.
    Artificial intelligence-assisted cytology for detection of cervical intraepithelial neoplasia or invasive cancer: a multicenter, clinical-based, observational study. Gynecol Oncol. 2020; 159: 171–8.
    OpenUrl
  42. 42.↵
    1. Wentzensen N,
    2. Lahrmann B,
    3. Clarke MA,
    4. Kinney W,
    5. Tokugawa D,
    6. Poitras N, et al.
    Accuracy and efficiency of deep-learning-based automation of dual stain cytology in cervical cancer screening. J Natl Cancer Inst. 2021; 113: 72–9.
    OpenUrl
  43. 43.↵
    1. Cheng S,
    2. Liu S,
    3. Yu J,
    4. Rao G,
    5. Xiao Y,
    6. Han W, et al.
    Robust whole slide image analysis for cervical cancer screening using deep learning. Nat Commun. 2021; 12: 5639.
    OpenUrlCrossRefPubMed
  44. 44.
    1. Du H,
    2. Dai W,
    3. Zhou Q,
    4. Li C,
    5. Li SC,
    6. Wang C, et al.
    AI-assisted system improves the work efficiency of cytologists via excluding cytology-negative slides and accelerating the slide interpretation. Front Oncol. 2023; 13: 1290112.
  45. 45.↵
    1. Bai X,
    2. Wei J,
    3. Starr D,
    4. Zhang X,
    5. Wu X,
    6. Guo Y, et al.
    Assessment of efficacy and accuracy of cervical cytology screening with artificial intelligence assistive system. Mod Pathol. 2024; 37: 100486.
  46. 46.↵
    1. Xue P,
    2. Xu H-M,
    3. Tang H-P,
    4. Weng H-Y,
    5. Wei H-M,
    6. Wang Z, et al.
    Improving the accuracy and efficiency of abnormal cervical squamous cell detection with cytologist-in-the-loop artificial intelligence. Mod Pathol. 2023; 36: 100186.
  47. 47.↵
    1. Zhu X,
    2. Li X,
    3. Ong K,
    4. Zhang W,
    5. Li W,
    6. Li L, et al.
    Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nature Commun. 2021; 12: 3541.
    OpenUrl
  48. 48.↵
    1. Tang HP,
    2. Cai D,
    3. Kong YQ,
    4. Ye H,
    5. Ma ZX,
    6. Lv HS, et al.
    Cervical cytology screening facilitated by an artificial intelligence microscope: a preliminary study. Cancer Cytopathol. 2021; 129: 693–700.
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Holmström O,
    2. Linder N,
    3. Kaingu H,
    4. Mbuuko N,
    5. Mbete J,
    6. Kinyua F, et al.
    Point-of-care digital cytology with artificial intelligence for cervical cancer screening in a resource-limited setting. JAMA Network Open. 2021; 4: e211740.
  50. 50.↵
    Bounds OCKN. Sustainability report. https://www.hologic.com/hologic-products/cytology/genius-digital-diagnostics-system.
  51. 51.↵
    1. Shen M,
    2. Zou Z,
    3. Bao H,
    4. Fairley CK,
    5. Canfell K,
    6. Ong JJ, et al.
    Cost-effectiveness of artificial intelligence-assisted liquid-based cytology testing for cervical cancer screening in China. Lancet Reg Health West Pac. 2023; 34: 100726.
  52. 52.↵
    1. Xue Z,
    2. Novetsky AP,
    3. Einstein MH,
    4. Marcus JZ,
    5. Befano B,
    6. Guo P, et al.
    A demonstration of automated visual evaluation of cervical images taken with a smartphone camera. Int J Cancer. 2020; 147: 2416–23.
    OpenUrlPubMed
  53. 53.
    1. Vinals R,
    2. Vassilakos P,
    3. Rad MS,
    4. Undurraga M,
    5. Petignat P,
    6. Thiran J-P.
    Using dynamic features for automatic cervical precancer detection. Diagnostics. 2021; 11: 716.
    OpenUrl
  54. 54.
    1. Zhang Y,
    2. Zall Y,
    3. Nissim R,
    4. Zimmermann R.
    Evaluation of a new dataset for visual detection of cervical precancerous lesions. Expert Systs Appl. 2022; 190: 116048.
  55. 55.↵
    1. Ito Y,
    2. Miyoshi A,
    3. Ueda Y,
    4. Tanaka Y,
    5. Nakae R,
    6. Morimoto A, et al.
    An artificial intelligence-assisted diagnostic system improves the accuracy of image diagnosis of uterine cervical lesions. Mol Clin Oncol. 2022; 16: 1–6.
    OpenUrl
  56. 56.↵
    1. Peng G,
    2. Dong H,
    3. Liang T,
    4. Li L,
    5. Liu J.
    Diagnosis of cervical precancerous lesions based on multimodal feature changes. Comput Biol Med. 2021; 130: 104209.
  57. 57.↵
    1. Cho B-J,
    2. Choi YJ,
    3. Lee M-J,
    4. Kim JH,
    5. Son G-H,
    6. Park S-H, et al.
    Classification of cervical neoplasms on colposcopic photography using deep learning. Sci Rep. 2020; 10: 13652.
  58. 58.
    1. Li Y,
    2. Chen J,
    3. Xue P,
    4. Tang C,
    5. Chang J,
    6. Chu C, et al.
    Computer-aided cervical cancer diagnosis using time-lapsed colposcopic images. IEEE Trans Med Imaging. 2020; 39: 3403–15.
    OpenUrl
  59. 59.
    1. Luo Y-M,
    2. Zhang T,
    3. Li P,
    4. Liu P-Z,
    5. Sun P,
    6. Dong B, et al.
    MDFI: multi-CNN decision feature integration for diagnosis of cervical precancerous lesions. IEEE Access. 2020; 8: 29616–26.
    OpenUrl
  60. 60.↵
    1. Yuan C,
    2. Yao Y,
    3. Cheng B,
    4. Cheng Y,
    5. Li Y,
    6. Li Y, et al.
    The application of deep learning based diagnostic system to cervical squamous intraepithelial lesions recognition in colposcopy images. Sci Rep. 2020; 10: 11639.
  61. 61.↵
    1. Yan L,
    2. Li S,
    3. Guo Y,
    4. Ren P,
    5. Song H,
    6. Yang J, et al.
    Multi-state colposcopy image fusion for cervical precancerous lesion diagnosis using BF-CNN. Biomed Signal Process Control. 2021; 68: 102700.
  62. 62.↵
    1. Chen X,
    2. Pu X,
    3. Chen Z,
    4. Li L,
    5. Zhao KN,
    6. Liu H, et al.
    Application of EfficientNet-B0 and GRU-based deep learning on classifying the colposcopy diagnosis of precancerous cervical lesions. Cancer Med. 2023; 12: 8690–99.
    OpenUrl
  63. 63.↵
    1. Chandran V,
    2. Sumithra M,
    3. Karthick A,
    4. George T,
    5. Deivakani M,
    6. Elakkiya B, et al.
    Diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images. BioMed Res Int. 2021; 2021: 5584004.
  64. 64.↵
    1. Angara S,
    2. Guo P,
    3. Xue Z,
    4. Antani S.
    Semi-supervised learning for cervical precancer detection. In: 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). 2021. p. 202–6.
  65. 65.↵
    1. Ou Y,
    2. Xue Y,
    3. Yuan Y,
    4. Xu T,
    5. Pisztora V,
    6. Li J, et al.
    Semi-supervised cervical dysplasia classification with learnable graph convolutional network. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). 2020. p. 1720–4.
  66. 66.↵
    1. Khan MJ,
    2. Werner CL,
    3. Darragh TM,
    4. Guido RS,
    5. Mathews C,
    6. Moscicki A-B, et al.
    ASCCP colposcopy standards: role of colposcopy, benefits, potential harms, and terminology for colposcopic practice. J Lower Genit Tract Dis. 2017; 21: 223–9.
    OpenUrl
  67. 67.↵
    1. Yue Z,
    2. Ding S,
    3. Li X,
    4. Yang S,
    5. Zhang Y.
    Automatic acetowhite lesion segmentation via specular reflection removal and deep attention network. IEEE J Biomed Health Inform. 2021; 25: 3529–40.
    OpenUrl
  68. 68.↵
    1. Liu J,
    2. Liang T,
    3. Peng Y,
    4. Peng G,
    5. Sun L,
    6. Li L, et al.
    Segmentation of acetowhite region in uterine cervical image based on deep learning. Technol Health Care. 2022; 30: 469–82.
    OpenUrl
  69. 69.↵
    1. Xue P,
    2. Tang C,
    3. Li Q,
    4. Li Y,
    5. Shen Y,
    6. Zhao Y, et al.
    Development and validation of an artificial intelligence system for grading colposcopic impressions and guiding biopsies. BMC Med. 2020; 18: 1–10.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Ueda A,
    2. Yamaguchi K,
    3. Kitamura S,
    4. Taki M,
    5. Yamanoi K,
    6. Murakami R, et al.
    Development of an artificial intelligence-based diagnostic system for the detection of abnormal colposcopic findings. JCO Glob Oncol. 2023; 9: 82.
    OpenUrl
  71. 71.↵
    1. Wu A,
    2. Xue P,
    3. Abulizi G,
    4. Tuerxun D,
    5. Rezhake R,
    6. Qiao Y.
    Artificial intelligence in colposcopic examination: a promising tool to assist junior colposcopists. Front Med. 2023; 10: 1060451.
  72. 72.↵
    1. Kim S,
    2. Lee H,
    3. Lee S,
    4. Song J-Y,
    5. Lee J-K,
    6. Lee N-W.
    Role of artificial intelligence interpretation of colposcopic images in cervical cancer screening. Healthcare. 2022; 10: 468.
    OpenUrl
  73. 73.
    1. Mukku L,
    2. Thomas J.
    Multimodal early fusion strategy based on deep learning methods for cervical cancer identification. In: Congress on Intelligent Systems. 2023. p. 109–18.
  74. 74.↵
    1. Miyagi Y,
    2. Takehara K,
    3. Miyake T.
    Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images. Mol Clin Oncol. 2019; 11: 583–9.
    OpenUrl
  75. 75.
    1. Li Y,
    2. Liu Z-H,
    3. Xue P,
    4. Chen J,
    5. Ma K,
    6. Qian T, et al.
    Grand: a large-scale dataset and benchmark for cervical intraepithelial neoplasia grading with fine-grained lesion description. Med Image Anal. 2021; 70: 102006.
  76. 76.↵
    1. Zimmer-Stelmach A,
    2. Zak J,
    3. Pawlosek A,
    4. Rosner-Tenerowicz A,
    5. Budny-Winska J,
    6. Pomorski M, et al.
    The application of artificial intelligence-assisted colposcopy in a tertiary care hospital within a cervical pathology diagnostic unit. Diagnostics. 2022; 12: 106.
    OpenUrl
  77. 77.↵
    1. Mitchell EM,
    2. Doede AL,
    3. McLean Estrada M,
    4. Granera OB,
    5. Maldonado F,
    6. Dunn B, et al.
    Feasibility and acceptability of tele-colposcopy on the Caribbean coast of Nicaragua: a descriptive mixed-methods study. Telemed Rep. 2021; 2: 264–72.
    OpenUrl
  78. 78.↵
    1. Ouh Y-T,
    2. Kim TJ,
    3. Ju W,
    4. Kim SW,
    5. Jeon S,
    6. Kim S-N, et al.
    Development and validation of artificial intelligence-based analysis software to support screening system of cervical intraepithelial neoplasia. Sci Rep. 2024; 14: 1957.
    OpenUrl
  79. 79.↵
    1. Basu P,
    2. Sankaranarayanan R.
    Atlas of colposcopy – principles and practice. IARC CancerBase; 2017. Available from: https://screening.iarc.fr/atlascolpo.php.
  80. 80.↵
    1. Chen M,
    2. Xue P,
    3. Li Q,
    4. Shen Y,
    5. Ye Z,
    6. Wang H, et al.
    Enhancing colposcopy training using a widely accessible digital education tool in China. Am J Obstet Gynecol. 2023; 229: 538.e1–e9.
    OpenUrl
  81. 81.↵
    1. Zhao J,
    2. Dai L,
    3. Zhang M,
    4. Yu F,
    5. Li M,
    6. Li H, et al.
    PGU-Net+: progressive growing of U-Net+ for automated cervical nuclei segmentation. In: Proceedings of the First International Workshop on Multiscale Multimodal Medical Imaging: MMMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019. 2020. p. 51–58.
  82. 82.↵
    1. Harangi B,
    2. Toth J,
    3. Bogacsovics G,
    4. Kupas D,
    5. Kovacs L,
    6. Hajdu A.
    Cell detection on digitized Pap smear images using ensemble of conventional image processing and deep learning techniques. In: 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA). 2019. p. 38–42.
  83. 83.↵
    1. Nanni L,
    2. Brahnam S,
    3. Ghidoni S,
    4. Lumini A.
    Toward a general-purpose heterogeneous ensemble for pattern classification. Comput Intell Neurosci. 2015; 2015: 909123.
  84. 84.↵
    1. Sarwar A,
    2. Sharma V,
    3. Gupta R.
    Hybrid ensemble learning technique for screening of cervical cancer using Papanicolaou smear image analysis. Pers Med Univ. 2015; 4: 54–62.
    OpenUrl
  85. 85.↵
    1. Promworn Y,
    2. Pattanasak S,
    3. Pintavirooj C,
    4. Piyawattanametha W.
    Comparisons of Pap smear classification with deep learning models. In: 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). 2019. p. 282–5.
  86. 86.↵
    1. Kirillov A,
    2. Mintun E,
    3. Ravi N,
    4. Mao H,
    5. Rolland C,
    6. Gustafson L, et al.
    Segment anything. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. p. 4015–26.
  87. 87.↵
    1. Xu H,
    2. Usuyama N,
    3. Bagga J,
    4. Zhang S,
    5. Rao R,
    6. Naumann T, et al.
    A whole-slide foundation model for digital pathology from real-world data. Nature. 2024; 630; 181–8.
    OpenUrlCrossRef
  88. 88.↵
    1. Hwang TJ,
    2. Kesselheim AS,
    3. Vokinger KN.
    Lifecycle regulation of artificial intelligence- and machine learning-based software devices in medicine. JAMA. 2019; 322: 2285–6.
    OpenUrlPubMed
  89. 89.↵
    1. Niemiec E.
    Will the EU medical device regulation help to improve the safety and performance of medical AI devices? Digit Health. 2022; 8: 20552076221089079.
  90. 90.↵
    1. Gupta R,
    2. Kumar N,
    3. Bansal S,
    4. Singh S,
    5. Sood N,
    6. Gupta S.
    Artificial intelligence-driven digital cytology-based cervical cancer screening: is the time ripe to adopt this disruptive technology in resource-constrained settings? A literature review. J Digit Imag. 2023; 36: 1643–52.
    OpenUrl
Next
Back to top

In this issue

Cancer Biology & Medicine: 22 (5)
Cancer Biology & Medicine
Vol. 22, Issue 5
15 May 2025
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Artificial intelligence strengthenes cervical cancer screening – present and future
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Artificial intelligence strengthenes cervical cancer screening – present and future
Tong Wu, Eric Lucas, Fanghui Zhao, Partha Basu, Youlin Qiao
Cancer Biology & Medicine Sep 2024, 20240198; DOI: 10.20892/j.issn.2095-3941.2024.0198

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Artificial intelligence strengthenes cervical cancer screening – present and future
Tong Wu, Eric Lucas, Fanghui Zhao, Partha Basu, Youlin Qiao
Cancer Biology & Medicine Sep 2024, 20240198; DOI: 10.20892/j.issn.2095-3941.2024.0198
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Machine learning in cervical cancer risk prediction
    • AI-guided technologies in cervical cancer screening
    • AI-guided methods in enhancing cervical cytology
    • AI applications in colposcopic diagnosis and assistance in biopsies
    • AI-assisted Cervical Cancer Screening Challenges and Suggestions
    • Conclusions
    • Conflicts of interest statement
    • Author contributions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Drugging the ‘undruggable’ KRAS: breakthroughs, challenges, and opportunities in pancreatic cancer
  • Neutrophils in cancer: from immune defense to tumor promotion
  • Multi-omics in colorectal cancer liver metastasis: applications and research advances
Show more Review

Similar Articles

Keywords

  • Cervical cancer screening
  • Artificial intelligence
  • deep learning algorithms

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire