Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview
Open Access

The role of reactive oxygen species in gastric cancer

Yuqi Wang, Jingli Xu, Zhenjie Fu, Ruolan Zhang, Weiwei Zhu, Qianyu Zhao, Ping Wang, Can Hu and Xiangdong Cheng
Cancer Biology & Medicine August 2024, 20240182; DOI: https://doi.org/10.20892/j.issn.2095-3941.2024.0182
Yuqi Wang
1College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
2Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
3Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
4Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jingli Xu
2Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
3Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
4Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhenjie Fu
2Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
3Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
4Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruolan Zhang
2Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
3Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
4Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Weiwei Zhu
2Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
3Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
4Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qianyu Zhao
2Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
3Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
4Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ping Wang
1College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Can Hu
2Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
3Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
4Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Can Hu
  • For correspondence: [email protected] [email protected]
Xiangdong Cheng
2Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
3Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
4Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xiangdong Cheng
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Sung H,
    2. Ferlay J,
    3. Siegel RL,
    4. Laversanne M,
    5. Soerjomataram I,
    6. Jemal A, et al.
    Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71: 209–49.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Ilic M,
    2. Ilic I.
    Epidemiology of stomach cancer. World J Gastroenterol. 2022; 28: 1187–203.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Sekiguchi M,
    2. Oda I,
    3. Matsuda T,
    4. Saito Y.
    Epidemiological trends and future perspectives of gastric cancer in Eastern Asia. Digestion. 2022; 103: 22–8.
    OpenUrlCrossRef
  4. 4.↵
    1. Xu H,
    2. Li W.
    Early detection of gastric cancer in china: progress and opportunities. Cancer Biol Med. 2022; 19: 1622–8.
    OpenUrlFREE Full Text
  5. 5.↵
    1. Maomao C,
    2. He L,
    3. Dianqin S,
    4. Siyi H,
    5. Xinxin Y,
    6. Fan Y, et al.
    Current cancer burden in China: epidemiology, etiology, and prevention. Cancer Biol Med. 2022; 19: 1121–38.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Zhang C,
    2. Cao S,
    3. Toole BP,
    4. Xu Y.
    Cancer may be a pathway to cell survival under persistent hypoxia and elevated ROS: a model for solid-cancer initiation and early development. Int J Cancer. 2015; 136: 2001–11.
    OpenUrlCrossRef
  7. 7.↵
    1. Srinivasan S,
    2. Guha M,
    3. Kashina A,
    4. Avadhani NG.
    Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection. Biochim Biophys Acta Bioenerg. 2017; 1858: 602–14.
    OpenUrl
  8. 8.↵
    1. Signorello MG,
    2. Ravera S,
    3. Leoncini G.
    Lectin-induced oxidative stress in human platelets. Redox Biol. 2020; 32: 101456.
  9. 9.↵
    1. Zhang L,
    2. Wang X,
    3. Cueto R,
    4. Effi C,
    5. Zhang Y,
    6. Tan H, et al.
    Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 2019; 26: 101284.
  10. 10.↵
    1. Nolfi-Donegan D,
    2. Braganza A,
    3. Shiva S.
    Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020; 37: 101674.
  11. 11.↵
    1. Martinez-Reyes I,
    2. Chandel NS.
    Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020; 11: 102.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Parascandolo A,
    2. Laukkanen MO.
    Carcinogenesis and reactive oxygen species signaling: interaction of the NADPH oxidase NOX1-5 and superoxide dismutase 1-3 signal transduction pathways. Antioxid Redox Signal. 2019; 30: 443–86.
    OpenUrl
  13. 13.↵
    1. Anzai K.
    [Generation, detection and bio-protection of reactive oxygen species/free radicals]. Yakugaku Zasshi. 2021; 141: 1359–72.
    OpenUrl
  14. 14.↵
    1. Wang Y,
    2. Qi H,
    3. Liu Y,
    4. Duan C,
    5. Liu X,
    6. Xia T, et al.
    The double-edged roles of ROS in cancer prevention and therapy. Theranostics. 2021; 11: 4839–57.
    OpenUrl
  15. 15.↵
    1. Juan CA,
    2. de la Lastra JMP,
    3. Plou FJ,
    4. Pérez-Lebeña E.
    The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021; 22: 4642.
    OpenUrlCrossRef
  16. 16.↵
    1. Stone WL,
    2. Pham T,
    3. Mohiuddin SS.
    Biochemistry, antioxidants. Treasure Island, FL: StatPearls Publishing; 2022.
  17. 17.↵
    1. Hayes JD,
    2. Dinkova-Kostova AT,
    3. Tew KD.
    Oxidative stress in cancer. Cancer Cell. 2020; 38: 167–97.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Lennicke C,
    2. Cocheme HM.
    Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021; 81: 3691–707.
    OpenUrlCrossRef
  19. 19.↵
    1. Magnani F,
    2. Mattevi A.
    Structure and mechanisms of ROS generation by NADPH oxidases. Curr Opin Struct Biol. 2019; 59: 91–7.
    OpenUrl
  20. 20.↵
    1. Hori R,
    2. Yamaguchi K,
    3. Sato H,
    4. Watanabe M,
    5. Tsutsumi K,
    6. Iwamoto S, et al.
    The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp. Cancer Med. 2019; 8: 1157–68.
    OpenUrl
  21. 21.↵
    1. Casares L,
    2. Unciti-Broceta JD,
    3. Prados ME,
    4. Caprioglio D,
    5. Mattoteia D,
    6. Higgins M, et al.
    Isomeric O-methyl cannabidiolquinones with dual BACH1/Nrf2 activity. Redox Biol. 2020; 37: 101689.
  22. 22.↵
    1. Liu JZ,
    2. Hu YL,
    3. Feng Y,
    4. Jiang Y,
    5. Guo YB,
    6. Liu YF, et al.
    BDH2 triggers ROS-induced cell death and autophagy by promoting NRF2 ubiquitination in gastric cancer. J Exp Clin Cancer Res. 2020; 39: 123.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Yang H,
    2. Li Y,
    3. Hu B.
    Potential role of mitochondria in gastric cancer detection: fission and glycolysis. Oncol Lett. 2021; 21: 439.
    OpenUrl
  24. 24.↵
    1. Spinelli JB,
    2. Haigis MC.
    The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018; 20: 745–54.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Fan S,
    2. Price T,
    3. Huang W,
    4. Plue M,
    5. Warren J,
    6. Sundaramoorthy P, et al.
    PINK1-dependent mitophagy regulates the migration and homing of multiple myeloma cells via the MOB1B-mediated hippo-YAP/TAZ pathway. Adv Sci (Weinh). 2020; 7: 1900860.
  26. 26.↵
    1. Wang X,
    2. Zhang L,
    3. Chan FKL,
    4. Ji J,
    5. Yu J,
    6. Liang JQ.
    Gamma-glutamyltransferase 7 suppresses gastric cancer by cooperating with RAB7 to induce mitophagy. Oncogene. 2022; 41: 3485–97.
    OpenUrl
  27. 27.↵
    1. Fan X,
    2. Rao J,
    3. Zhang Z,
    4. Li D,
    5. Cui W,
    6. Zhang J, et al.
    Macranthoidin B modulates key metabolic pathways to enhance ROS generation and induce cytotoxicity and apoptosis in colorectal cancer. Cell Physiol Biochem. 2018; 46: 1317–30.
    OpenUrl
  28. 28.↵
    1. Vaupel P,
    2. Multhoff G.
    Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021; 599: 1745–57.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Anderson NM,
    2. Mucka P,
    3. Kern JG,
    4. Feng H.
    The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018; 9: 216–37.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Serena Castelli PDF,
    2. Ciccarone F,
    3. Desideri E,
    4. Ciriolo MR.
    Lipid catabolism and ROS in cancer: a bidirectional liaison. Cancers (Basel). 2021; 13: 5784.
    OpenUrl
  31. 31.↵
    1. Mounier C,
    2. Bouraoui L,
    3. Rassart E.
    Lipogenesis in cancer progression (Review). Int J Oncol. 2014; 45: 485–92.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Shi H,
    2. Cheng Y,
    3. Shi Q,
    4. Liu W,
    5. Yang X,
    6. Wang S, et al.
    Myoferlin disturbs redox equilibrium to accelerate gastric cancer migration. Front Oncol. 2022; 12: 905230.
  33. 33.↵
    1. Klaunig JE.
    Oxidative stress and cancer. Curr Pharm Des. 2018; 24: 4771–8.
    OpenUrlPubMed
  34. 34.↵
    1. Jang JY,
    2. Kang YJ,
    3. Sung B,
    4. Kim MJ,
    5. Park C,
    6. Kang D, et al.
    MHY440, a novel topoisomerase iota inhibitor, induces cell cycle arrest and apoptosis via a ROS-dependent DNA damage signaling pathway in AGS human gastric cancer cells. Molecules. 2018; 24: 96.
    OpenUrl
  35. 35.↵
    1. Huang R,
    2. Chen H,
    3. Liang J,
    4. Li Y,
    5. Yang J,
    6. Luo C, et al.
    Dual role of reactive oxygen species and their application in cancer therapy. J Cancer. 2021; 12: 5543–61.
    OpenUrl
  36. 36.↵
    1. Jalmi SK,
    2. Sinha AK.
    ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Front Plant Sci. 2015; 6: 769.
    OpenUrl
  37. 37.↵
    1. Sheng YN,
    2. Luo YH,
    3. Liu SB,
    4. Xu WT,
    5. Zhang Y,
    6. Zhang T, et al.
    Zeaxanthin induces apoptosis via ROS-regulated MAPK and AKT signaling pathway in human gastric cancer cells. OncoTargets Ther. 2020; 13: 10995–1006.
    OpenUrl
  38. 38.↵
    1. Hoesel B,
    2. Schmid JA.
    The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013; 12: 86.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Eom JW,
    2. Lim JW,
    3. Kim H.
    Lutein induces reactive oxygen species-mediated apoptosis in gastric cancer AGS cells via NADPH oxidase activation. Molecules. 2023; 28: 1178.
    OpenUrl
  40. 40.↵
    1. Zhang J,
    2. Wang X,
    3. Vikash V,
    4. Ye Q,
    5. Wu D,
    6. Liu Y, et al.
    ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016; 2016: 4350965.
  41. 41.↵
    1. Li Y,
    2. She W,
    3. Guo T,
    4. Huang T,
    5. Liu Y,
    6. Liu P, et al.
    The organic arsenical-derived thioredoxin and glutathione system inhibitor ACZ2 induces apoptosis and autophagy in gastric cancer via ROS-dependent ER stress. Biochem Pharmacol. 2023; 208: 115404.
  42. 42.↵
    1. Cao Y,
    2. Wang J,
    3. Tian H,
    4. Fu GH.
    Mitochondrial ROS accumulation inhibiting JAK2/STAT3 pathway is a critical modulator of CYT997-induced autophagy and apoptosis in gastric cancer. J Exp Clin Cancer Res. 2020; 39: 119.
    OpenUrl
  43. 43.↵
    1. Xu W,
    2. Sun T,
    3. Wang J,
    4. Wang T,
    5. Wang S,
    6. Liu J, et al.
    GPX4 alleviates diabetes mellitus-induced erectile dysfunction by inhibiting ferroptosis. Antioxidants (Basel). 2022; 11: 1896.
    OpenUrl
  44. 44.↵
    1. Li C,
    2. Chen H,
    3. Lan Z,
    4. He S,
    5. Chen R,
    6. Wang F, et al.
    mTOR-dependent upregulation of xCT blocks melanin synthesis and promotes tumorigenesis. Cell Death Differ. 2019; 26: 2015–28.
    OpenUrlCrossRef
  45. 45.↵
    1. Wang Y,
    2. Zheng L,
    3. Shang W,
    4. Yang Z,
    5. Li T,
    6. Liu F, et al.
    WNT/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 2022; 29: 2190–202.
    OpenUrl
  46. 46.↵
    1. Zhang L,
    2. Li C,
    3. Zhang Y,
    4. Zhang J,
    5. Yang X.
    Ophiopogonin B induces gastric cancer cell death by blocking the GPX4/XCT-dependent ferroptosis pathway. Oncol Lett. 2022; 23: 104.
    OpenUrl
  47. 47.↵
    1. Zhang H,
    2. Deng T,
    3. Liu R,
    4. Ning T,
    5. Yang H,
    6. Liu D, et al.
    CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020; 19: 43.
    OpenUrlPubMed
  48. 48.↵
    1. Kennel KB,
    2. Greten FR.
    Immune cell-produced ROS and their impact on tumor growth and metastasis. Redox Biol. 2021; 42: 101891.
  49. 49.↵
    1. Koehler RC,
    2. Dawson VL,
    3. Dawson TM.
    Targeting parthanatos in ischemic stroke. Front Neurol. 2021; 12: 662034.
  50. 50.↵
    1. Zhou Y,
    2. Liu L,
    3. Tao S,
    4. Yao Y,
    5. Wang Y,
    6. Wei Q, et al.
    Parthanatos and its associated components: promising therapeutic targets for cancer. Pharmacol Res. 2021; 163: 105299.
  51. 51.↵
    1. Yu Z,
    2. Cao W,
    3. Han C,
    4. Wang Z,
    5. Qiu Y,
    6. Wang J, et al.
    Biomimetic metal-organic framework nanoparticles for synergistic combining of SDT-chemotherapy induce pyroptosis in gastric cancer. Front Bioeng Biotechnol. 2022; 10: 796820.
  52. 52.↵
    1. Kim EK,
    2. Jang M,
    3. Song MJ,
    4. Kim D,
    5. Kim Y,
    6. Jang HH.
    Redox-mediated mechanism of chemoresistance in cancer cells. Antioxidants (Basel). 2019; 8: 471.
    OpenUrl
  53. 53.↵
    1. Yuan J,
    2. Khan SU,
    3. Yan J,
    4. Lu J,
    5. Yang C,
    6. Tong Q.
    Baicalin enhances the efficacy of 5-fluorouracil in gastric cancer by promoting ROS-mediated ferroptosis. Biomed Pharmacother. 2023; 164: 114986.
  54. 54.↵
    1. Xu S,
    2. Chaudhary O,
    3. Rodriguez-Morales P,
    4. Sun X,
    5. Chen D,
    6. Zappasodi R, et al.
    Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity. 2021; 54: 1561–77.e7.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Chen D,
    2. Zhang X,
    3. Li Z,
    4. Zhu B.
    Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 2021; 11: 1016–30.
    OpenUrl
  56. 56.↵
    1. Poljsak B,
    2. Suput D,
    3. Milisav I.
    Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013; 2013: 956792.
  57. 57.↵
    1. Zhu X,
    2. Zheng W,
    3. Wang X,
    4. Li Z,
    5. Shen X,
    6. Chen Q, et al.
    Enhanced photodynamic therapy synergizing with inhibition of tumor neutrophil ferroptosis boosts anti-PD-1 therapy of gastric cancer. Adv Sci (Weinh). 2024; 11: e2307870.
  58. 58.↵
    1. Li X,
    2. Zeng X,
    3. Xu Y,
    4. Wang B,
    5. Zhao Y,
    6. Lai X, et al.
    Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol. 2020; 13: 31.
    OpenUrlCrossRef
  59. 59.↵
    1. Hosokawa K,
    2. Muranski P,
    3. Feng X,
    4. Keyvanfar K,
    5. Townsley DM,
    6. Dumitriu B, et al.
    Identification of novel microRNA signatures linked to acquired aplastic anemia. Haematologica. 2015; 100: 1534–45.
    OpenUrlAbstract/FREE Full Text
  60. 60.↵
    1. Monteiro JP,
    2. Bennett M,
    3. Rodor J,
    4. Caudrillier A,
    5. Ulitsky I,
    6. Baker AH.
    Endothelial function and dysfunction in the cardiovascular system: the long non-coding road. Cardiovasc Res. 2019; 115: 1692–704.
    OpenUrl
  61. 61.↵
    1. Zhang X,
    2. Xie K,
    3. Zhou H,
    4. Wu Y,
    5. Li C,
    6. Liu Y, et al.
    Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer. 2020; 19: 47.
    OpenUrl
  62. 62.↵
    1. Li X,
    2. Wang S,
    3. Mu W,
    4. Barry J,
    5. Han A,
    6. Carpenter RL, et al.
    Reactive oxygen species reprogram macrophages to suppress antitumor immune response through the exosomal miR-155-5P/PD-l1 pathway. J Exp Clin Cancer Res. 2022; 41: 41.
    OpenUrl
  63. 63.↵
    1. Zhang H,
    2. Wang M,
    3. He Y,
    4. Deng T,
    5. Liu R,
    6. Wang W, et al.
    Chemotoxicity-induced exosomal lncFERO regulates ferroptosis and stemness in gastric cancer stem cells. Cell Death Dis. 2021; 12: 1116.
    OpenUrlCrossRefPubMed
  64. 64.↵
    1. Xiao M,
    2. Zhong H,
    3. Xia L,
    4. Tao Y,
    5. Yin H.
    Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-hne) and other bioactive lipids in mitochondria. Free Radic Biol Med. 2017; 111: 316–27.
    OpenUrlCrossRef
  65. 65.↵
    1. Xu H,
    2. Zhao H,
    3. Ding C,
    4. Jiang D,
    5. Zhao Z,
    6. Li Y, et al.
    Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1. Signal Transduct Target Ther. 2023; 8: 51.
    OpenUrl
  66. 66.
    1. Chanu KD,
    2. Thoithoisana S,
    3. Kar A,
    4. Mukherjee PK,
    5. Radhakrishnanand P,
    6. Parmar K, et al.
    Phytochemically analysed extract of Ageratina adenophora (Sprengel) R.M. King & H. Rob. initiates caspase 3-dependant apoptosis in colorectal cancer cell: a synergistic approach with chemotherapeutic drugs. J Ethnopharmacol. 2024; 322: 117591.
  67. 67.
    1. Ling JY,
    2. Wang QL,
    3. Liang HN,
    4. Liu QB,
    5. Yin DH,
    6. Lin L.
    Flavonoid-rich extract of Oldenlandia diffusa (Willd.) Roxb. Inhibits gastric cancer by activation of caspase-dependent mitochondrial apoptosis. Chin J Integr Med. 2023; 29: 213–23.
    OpenUrl
  68. 68.
    1. Le TTH,
    2. Ngo TH,
    3. Nguyen TH,
    4. Hoang VH,
    5. Nguyen VH,
    6. Nguyen PH.
    Anti-cancer activity of green synthesized silver nanoparticles using Ardisia gigantifolia leaf extract against gastric cancer cells. Biochem Biophys Res Commun. 2023; 661: 99–107.
    OpenUrl
  69. 69.
    1. Zhang X,
    2. Chen J,
    3. Zhou S,
    4. Zhao H.
    Ethanol extract of Eryngium foetidum leaves induces mitochondrial associated apoptosis via ROS generation in human gastric cancer cells. Nutr Cancer. 2022; 74: 2996–3006.
    OpenUrl
  70. 70.
    1. Kwon MJ,
    2. Kim JN,
    3. Park J,
    4. Kim YT,
    5. Lee MJ,
    6. Kim BJ.
    Alisma canaliculatum extract affects AGS gastric cancer cells by inducing apoptosis. Int J Med Sci. 2021; 18: 2155–61.
    OpenUrl
  71. 71.
    1. Sun XL,
    2. Zhang XW,
    3. Zhai HJ,
    4. Zhang D,
    5. Ma SY.
    Magnoflorine inhibits human gastric cancer progression by inducing autophagy, apoptosis and cell cycle arrest by JNK activation regulated by ROS. Biomed Pharmacother. 2020; 125: 109118.
  72. 72.
    1. Wang Z,
    2. Yu K,
    3. Hu Y,
    4. Su F,
    5. Gao Z,
    6. Hu T, et al.
    Schisantherin a induces cell apoptosis through ROS/JNK signaling pathway in human gastric cancer cells. Biochem Pharmacol. 2020; 173: 113673.
  73. 73.
    1. Wang H,
    2. Yuan X,
    3. Huang HM,
    4. Zou SH,
    5. Li B,
    6. Feng XQ, et al.
    Swertia mussotii extracts induce mitochondria-dependent apoptosis in gastric cancer cells. Biomed Pharmacother. 2018; 104: 603–12.
    OpenUrl
  74. 74.
    1. Gunes-Bayir A,
    2. Kiziltan HS,
    3. Kocyigit A,
    4. Guler EM,
    5. Karatas E,
    6. Toprak A.
    Effects of natural phenolic compound carvacrol on the human gastric adenocarcinoma (AGS) cells in vitro. Anticancer Drugs. 2017; 28: 522–30.
    OpenUrl
  75. 75.
    1. Ghasemi S,
    2. Moradzadeh M,
    3. Mousavi SH,
    4. Sadeghnia HR.
    Cytotoxic effects of Urtica dioica radix on human colon (HT29) and gastric (MKN45) cancer cells mediated through oxidative and apoptotic mechanisms. Cell Mol Biol (Noisy-le-grand). 2016; 62: 90–6.
    OpenUrl
  76. 76.
    1. Rasul A,
    2. Yu B,
    3. Yang LF,
    4. Ali M,
    5. Khan M,
    6. Ma T, et al.
    Induction of mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells by kuraridin and nor-kurarinone isolated from Sophora flavescens. Asian Pac J Cancer Prev. 2011; 12: 2499–504.
    OpenUrlPubMedWeb of Science
  77. 77.
    1. Hu W,
    2. Lee SK,
    3. Jung MJ,
    4. Heo SI,
    5. Hur JH,
    6. Wang MH.
    Induction of cell cycle arrest and apoptosis by the ethyl acetate fraction of Kalopanax pictus leaves in human colon cancer cells. Bioresour Technol. 2010; 101: 9366–72.
    OpenUrlPubMed
  78. 78.
    1. Liu Z,
    2. Ng EK,
    3. Liang NC,
    4. Deng YF,
    5. Leung BC,
    6. Chen GG.
    Cell death induced by Pteris semipinnata L. Is associated with p53 and oxidant stress in gastric cancer cells. FEBS Lett. 2005; 579: 1477–87.
    OpenUrlPubMed
  79. 79.↵
    1. Commander R,
    2. Wei C,
    3. Sharma A,
    4. Mouw JK,
    5. Burton LJ,
    6. Summerbell E, et al.
    Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion. Nat Commun. 2020; 11: 1533.
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. Wang P,
    2. Jin JM,
    3. Liang XH,
    4. Yu MZ,
    5. Yang C,
    6. Huang F, et al.
    Helichrysetin inhibits gastric cancer growth by targeting c-Myc/PDHK1 axis-mediated energy metabolism reprogramming. Acta Pharmacol Sin. 2022; 43: 1581–93.
    OpenUrl
  81. 81.↵
    1. Giddings EL,
    2. Champagne DP,
    3. Wu MH,
    4. Laffin JM,
    5. Thornton TM,
    6. Valenca-Pereira F, et al.
    Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat Commun. 2021; 12: 2804.
    OpenUrl
  82. 82.↵
    1. Gao J,
    2. Wang Z,
    3. Guo Q,
    4. Tang H,
    5. Wang Z,
    6. Yang C, et al.
    Mitochondrion-targeted supramolecular “nano-boat” simultaneously inhibiting dual energy metabolism for tumor selective and synergistic chemo-radiotherapy. Theranostics. 2022; 12: 1286–302.
    OpenUrl
  83. 83.↵
    1. Yu M,
    2. Pan Q,
    3. Li W,
    4. Du T,
    5. Huang F,
    6. Wu H, et al.
    Isoliquiritigenin inhibits gastric cancer growth through suppressing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α mediated energy metabolic collapse. Phytomedicine. 2023; 121: 155045.
  84. 84.↵
    1. Lu J,
    2. Tan M,
    3. Cai Q.
    The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015; 356: 156–64.
    OpenUrlCrossRefPubMed
  85. 85.↵
    1. Guan Z,
    2. Chen J,
    3. Li X,
    4. Dong N.
    Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci Rep. 2020; 40: BSR20201807.
  86. 86.↵
    1. Gao Z,
    2. Deng G,
    3. Li Y,
    4. Huang H,
    5. Sun X,
    6. Shi H, et al.
    Actinidia chinensis planch prevents proliferation and migration of gastric cancer associated with apoptosis, ferroptosis activation and mesenchymal phenotype suppression. Biomed Pharmacother. 2020; 126: 110092.
  87. 87.↵
    1. Li L,
    2. Wang K,
    3. Jia R,
    4. Xie J,
    5. Ma L,
    6. Hao Z, et al.
    Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the snare complexes formation. Redox Biol. 2022; 56: 102435.
  88. 88.↵
    1. Fang Y,
    2. Chen X,
    3. Tan Q,
    4. Zhou H,
    5. Xu J,
    6. Gu Q.
    Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action. ACS Cent Sci. 2021; 7: 980–9.
    OpenUrl
  89. 89.↵
    1. Zheng F,
    2. Wang Y,
    3. Zhang Q,
    4. Chen Q,
    5. Liang CL,
    6. Liu H, et al.
    Polyphyllin I suppresses the gastric cancer growth by promoting cancer cell ferroptosis. Front Pharmacol. 2023; 14: 1145407.
  90. 90.↵
    1. Raha S,
    2. Kim SM,
    3. Lee HJ,
    4. Yumnam S,
    5. Saralamma VV,
    6. Ha SE, et al.
    Naringin induces lysosomal permeabilization and autophagy cell death in AGS gastric cancer cells. Am J Chin Med. 2020; 48: 679–702.
    OpenUrl
  91. 91.↵
    1. Sun W,
    2. Zhang ND,
    3. Zhang T,
    4. Li YN,
    5. Xue H,
    6. Cao JL, et al.
    Cyanidin-3-O-glucoside induces the apoptosis of human gastric cancer MKN-45 cells through ROS-mediated signaling pathways. Molecules. 2023; 28: 652.
    OpenUrl
  92. 92.↵
    1. Zhang T,
    2. Xiu YH,
    3. Xue H,
    4. Li YN,
    5. Cao JL,
    6. Hou WS, et al.
    A mechanism of isoorientin-induced apoptosis and migration inhibition in gastric cancer AGS cells. Pharmaceuticals (Basel). 2022; 15: 1541.
    OpenUrl
  93. 93.↵
    1. Kim TW.
    Paeoniflorin induces ER stress-mediated apoptotic cell death by generating Nox4-derived ROS under radiation in gastric cancer. Nutrients. 2023; 15: 5092.
    OpenUrl
  94. 94.↵
    1. Buchke S,
    2. Sharma M,
    3. Bora A,
    4. Relekar M,
    5. Bhanu P,
    6. Kumar J.
    Mitochondria-targeted, nanoparticle-based drug-delivery systems: therapeutics for mitochondrial disorders. Life (Basel). 2022; 12: 657.
    OpenUrl
Next
Back to top

In this issue

Cancer Biology & Medicine: 22 (5)
Cancer Biology & Medicine
Vol. 22, Issue 5
15 May 2025
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The role of reactive oxygen species in gastric cancer
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
The role of reactive oxygen species in gastric cancer
Yuqi Wang, Jingli Xu, Zhenjie Fu, Ruolan Zhang, Weiwei Zhu, Qianyu Zhao, Ping Wang, Can Hu, Xiangdong Cheng
Cancer Biology & Medicine Aug 2024, 20240182; DOI: 10.20892/j.issn.2095-3941.2024.0182

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The role of reactive oxygen species in gastric cancer
Yuqi Wang, Jingli Xu, Zhenjie Fu, Ruolan Zhang, Weiwei Zhu, Qianyu Zhao, Ping Wang, Can Hu, Xiangdong Cheng
Cancer Biology & Medicine Aug 2024, 20240182; DOI: 10.20892/j.issn.2095-3941.2024.0182
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Generation of ROS
    • Dual role of ROS in tumor cells
    • Anti-GC therapy based on ROS regulation
    • Conclusion
    • Conflict of interest statement
    • Author contributions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Drugging the ‘undruggable’ KRAS: breakthroughs, challenges, and opportunities in pancreatic cancer
  • Neutrophils in cancer: from immune defense to tumor promotion
  • Multi-omics in colorectal cancer liver metastasis: applications and research advances
Show more Review

Similar Articles

Keywords

  • Gastric cancer
  • reactive oxygen species
  • ROS
  • antitumor therapy
  • natural products
  • pharmacology

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire