Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Progress in oncolytic viruses modified with nanomaterials for intravenous application

Liting Chen, Zhijun Ma, Chen Xu, Youbang Xie, Defang Ouyang, Shuhui Song, Xiao Zhao and Funan Liu
Cancer Biology & Medicine November 2023, 20230275; DOI: https://doi.org/10.20892/j.issn.2095-3941.2023.0275
Liting Chen
1Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
2Phase I Clinical Trials Center, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110102, China
3CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhijun Ma
4Department of General Surgery, Panjin People’s Hospital, Panjin 124221, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chen Xu
1Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
2Phase I Clinical Trials Center, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110102, China
3CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Youbang Xie
5Department of Hematology and Rheumatology, Qinghai Provincial People’s Hospital, Xining 810007, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Defang Ouyang
6State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau 999078, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shuhui Song
1Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
2Phase I Clinical Trials Center, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110102, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao Zhao
3CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
7Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
8IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xiao Zhao
  • For correspondence: [email protected] [email protected]
Funan Liu
1Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
2Phase I Clinical Trials Center, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110102, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Funan Liu
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Chen DS,
    2. Mellman I.
    Elements of cancer immunity and the cancer-immune set point. Nature. 2017; 541: 321–30.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Harrington K,
    2. Freeman DJ,
    3. Kelly B,
    4. Harper J,
    5. Soria JC.
    Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019; 18: 689–706.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Bommareddy PK,
    2. Shettigar M,
    3. Kaufman HL.
    Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018; 18: 498–513.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Martinez-Quintanilla J,
    2. Seah I,
    3. Chua M,
    4. Shah K.
    Oncolytic viruses: overcoming translational challenges. J Clin Invest. 2019; 129: 1407–18.
    OpenUrlPubMed
  5. 5.↵
    1. Heidbuechel JPW,
    2. Engeland CE.
    Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J Hematol Oncol. 2021; 14: 63.
    OpenUrl
  6. 6.↵
    1. Macedo N,
    2. Miller DM,
    3. Haq R,
    4. Kaufman HL.
    Clinical landscape of oncolytic virus research in 2020. J Immunother Cancer. 2020; 8: e001486
  7. 7.
    1. Lawler SE,
    2. Speranza MC,
    3. Cho CF,
    4. Chiocca EA.
    Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2017; 3: 841–9.
    OpenUrl
  8. 8.↵
    1. Martin NT,
    2. Bell JC.
    Oncolytic virus combination therapy: killing one bird with two stones. Mol Ther. 2018; 26: 1414–22.
    OpenUrlPubMed
  9. 9.↵
    1. Hemminki O,
    2. Dos Santos JM,
    3. Hemminki A.
    Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020; 13: 84.
    OpenUrl
  10. 10.
    1. Russell SJ,
    2. Peng KW.
    Oncolytic virotherapy: a contest between apples and oranges. Mol Ther. 2017; 25: 1107–16.
    OpenUrlCrossRef
  11. 11.↵
    1. Frampton JE.
    Teserpaturev/g47Δ: first approval. BioDrugs. 2022; 36: 667–72.
    OpenUrl
  12. 12.↵
    1. Melero I,
    2. Castanon E,
    3. Alvarez M,
    4. Champiat S,
    5. Marabelle A.
    Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol. 2021; 18: 558–76.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Abd-Aziz N,
    2. Poh CL.
    Development of oncolytic viruses for cancer therapy. Transl Res. 2021; 237: 98–123.
    OpenUrl
  14. 14.↵
    1. Kepp O,
    2. Marabelle A,
    3. Zitvogel L,
    4. Kroemer G.
    Oncolysis without viruses - inducing systemic anticancer immune responses with local therapies. Nat Rev Clin Oncol. 2020; 17: 49–64.
    OpenUrlPubMed
  15. 15.↵
    1. Raja J,
    2. Ludwig JM,
    3. Gettinger SN,
    4. Schalper KA,
    5. Kim HS.
    Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer. 2018; 6: 140.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Goradel NH,
    2. Negahdari B,
    3. Ghorghanlu S,
    4. Jahangiri S,
    5. Arashkia A.
    Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacol Ther. 2020; 213: 107586.
  17. 17.↵
    1. Kaufman HL,
    2. Kohlhapp FJ,
    3. Zloza A.
    Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015; 14: 642–62.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Siu L,
    2. Brody J,
    3. Gupta S,
    4. Marabelle A,
    5. Jimeno A,
    6. Munster P, et al.
    Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors. J Immunother Cancer. 2020; 8: e001095.
  19. 19.↵
    1. Farrera-Sal M,
    2. Moya-Borrego L,
    3. Bazan-Peregrino M,
    4. Alemany R.
    Evolving status of clinical immunotherapy with oncolytic adenovirus. Clin Cancer Res. 2021; 27: 2979–88.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Hatefi A,
    2. Amsden B.
    Camptothecin delivery methods. Pharma Res. 2002; 19: 1389–99.
    OpenUrl
  21. 21.
    1. Zander M,
    2. Madsbad S,
    3. Madsen JL,
    4. Holst JJ.
    Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002; 359: 824–30.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Martins S,
    2. Sarmento B,
    3. Ferreira DC,
    4. Souto EB.
    Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int J Nanomedicine. 2007; 2: 595–607.
    OpenUrlPubMed
  23. 23.↵
    1. Krishnan V,
    2. Mitragotri S.
    Nanoparticles for topical drug delivery: potential for skin cancer treatment. Adv Drug Deliv Rev. 2020; 153: 87–108.
    OpenUrl
  24. 24.↵
    1. Wang C,
    2. Li Q,
    3. Xiao J,
    4. Liu Y.
    Nanomedicine-based combination therapies for overcoming temozolomide resistance in glioblastomas. Cancer Biol Med. 2023; 20: 325–43.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Yi W,
    2. Yan D,
    3. Wang D,
    4. Li Y.
    Smart drug delivery systems to overcome drug resistance in cancer immunotherapy. Cancer Bio Med. 2023; 20: 248–67.
    OpenUrl
  26. 26.↵
    1. Mitchell MJ,
    2. Billingsley MM,
    3. Haley RM,
    4. Wechsler ME,
    5. Peppas NA,
    6. Langer R.
    Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021; 20: 101–24.
    OpenUrlCrossRef
  27. 27.↵
    1. Azushima K,
    2. Gurley SB,
    3. Coffman TM.
    Modelling diabetic nephropathy in mice. Nat Rev Nephrol. 2018; 14: 48–56.
    OpenUrlPubMed
  28. 28.↵
    1. Wu ZY,
    2. Liang HW,
    3. Chen LF,
    4. Hu BC,
    5. Yu SH.
    Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc Chem Res. 2016; 49: 96–105.
    OpenUrlCrossRef
  29. 29.↵
    1. Klochkov SG,
    2. Neganova ME,
    3. Nikolenko VN,
    4. Chen K,
    5. Somasundaram SG,
    6. Kirkland CE, et al.
    Implications of nanotechnology for the treatment of cancer: recent advances. Semin Cancer Biol. 2021; 69: 190–9.
    OpenUrlCrossRef
  30. 30.↵
    1. Zahednezhad F,
    2. Saadat M,
    3. Valizadeh H,
    4. Zakeri-Milani P,
    5. Baradaran B.
    Liposome and immune system interplay: challenges and potentials. J Control Release. 2019; 305: 194–209.
    OpenUrl
  31. 31.↵
    1. Cheng X,
    2. Gao J,
    3. Ding Y,
    4. Lu Y,
    5. Wei Q,
    6. Cui D, et al.
    Multi-functional liposome: a powerful theranostic nano-platform enhancing photodynamic therapy. Adv Sci (Weinh). 2021; 8: e2100876.
  32. 32.↵
    1. Wang S,
    2. Cheng K,
    3. Chen K,
    4. Xu C,
    5. Ma P,
    6. Dang G, et al.
    Nanoparticle-based medicines in clinical cancer therapy. Nano Today. 2022; 45: 101512.
  33. 33.↵
    1. Groll AH,
    2. Rijnders BJA,
    3. Walsh TJ,
    4. Adler-Moore J,
    5. Lewis RE,
    6. Brüggemann RJM.
    Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of liposomal amphotericin B. Clin Infect Dis. 2019; 68: S260–74.
    OpenUrlCrossRef
  34. 34.↵
    1. Large DE,
    2. Abdelmessih RG,
    3. Fink EA,
    4. Auguste DT.
    Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev. 2021; 176: 113851.
  35. 35.↵
    1. Tan C,
    2. Wang J,
    3. Sun B.
    Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: recent advances. Biotechnol Adv. 2021; 48: 107727.
  36. 36.↵
    1. Sang R,
    2. Stratton B,
    3. Engel A,
    4. Deng W.
    Liposome technologies towards colorectal cancer therapeutics. Acta Biomater. 2021; 127: 24–40.
    OpenUrl
  37. 37.↵
    1. Shah S,
    2. Dhawan V,
    3. Holm R,
    4. Nagarsenker MS,
    5. Perrie Y.
    Liposomes: advancements and innovation in the manufacturing process. Adv Drug Deliv Rev. 2020; 154-155: 102–22.
    OpenUrl
  38. 38.↵
    1. Olusanya TOB,
    2. Haj Ahmad RR,
    3. Ibegbu DM,
    4. Smith JR,
    5. Elkordy AA.
    Liposomal drug delivery systems and anticancer drugs. Molecules. 2018; 23: 907.
    OpenUrl
  39. 39.↵
    1. Griffin JI,
    2. Wang G,
    3. Smith WJ,
    4. Vu VP,
    5. Scheinman R,
    6. Stitch D, et al.
    Revealing dynamics of accumulation of systemically injected liposomes in the skin by intravital microscopy. ACS Nano. 2017; 11: 11584–93.
    OpenUrl
  40. 40.↵
    1. Son K,
    2. Ueda M,
    3. Taguchi K,
    4. Maruyama T,
    5. Takeoka S,
    6. Ito Y.
    Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. J Control Release. 2020; 322: 209–16.
    OpenUrlCrossRef
  41. 41.↵
    1. Wang J,
    2. Zhu M,
    3. Nie G.
    Biomembrane-based nanostructures for cancer targeting and therapy: from synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev. 2021; 178: 113974.
  42. 42.↵
    1. Apolinário AC,
    2. Hauschke L,
    3. Nunes JR,
    4. Lopes LB.
    Lipid nanovesicles for biomedical applications: ‘what is in a name’? Prog Lipid Res. 2021; 82: 101096.
  43. 43.↵
    1. Mahajan S,
    2. Aalhate M,
    3. Guru SK,
    4. Singh PK.
    Nanomedicine as a magic bullet for combating lymphoma. J Control Release. 2022; 347: 211–36.
    OpenUrl
  44. 44.↵
    1. Ishida T,
    2. Harashima H,
    3. Kiwada H.
    Liposome clearance. Biosci Rep. 2002; 22: 197–224.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Aoyama K,
    2. Kuroda S,
    3. Morihiro T,
    4. Kanaya N,
    5. Kubota T,
    6. Kakiuchi Y, et al.
    Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. Sci Rep. 2017; 7: 14177.
  46. 46.↵
    1. Sun X,
    2. Yan X,
    3. Jacobson O,
    4. Sun W,
    5. Wang Z,
    6. Tong X, et al.
    Improved tumor uptake by optimizing liposome based RES blockade strategy. Theranostics. 2017; 7: 319–28.
    OpenUrl
  47. 47.↵
    1. Chen W,
    2. Cai Y,
    3. Fu Q,
    4. Chen B,
    5. Guo J,
    6. Chou JJ.
    Unidirectional presentation of membrane proteins in nanoparticle-supported liposomes. Angew Chem Int Ed Engl. 2019; 58: 9866–70.
    OpenUrl
  48. 48.↵
    1. Delma KL,
    2. Lechanteur A,
    3. Evrard B,
    4. Semdé R,
    5. Piel G.
    Sterilization methods of liposomes: drawbacks of conventional methods and perspectives. Int J Pharm. 2021; 597: 120271.
  49. 49.↵
    1. Ono R,
    2. Takayama K,
    3. Sakurai F,
    4. Mizuguchi H.
    Efficient antitumor effects of a novel oncolytic adenovirus fully composed of species b adenovirus serotype 35. Mol Ther Oncolytics. 2021; 20: 399–409.
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. Fu X,
    2. Zhang X.
    Delivery of herpes simplex virus vectors through liposome formulation. Mol Ther. 2001; 4: 447–53.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Sun M,
    2. Yang S,
    3. Huang H,
    4. Gao P,
    5. Pan S,
    6. Cheng Z, et al.
    Boarding oncolytic viruses onto tumor-homing bacterium-vessels for augmented cancer immunotherapy. Nano Lett. 2022; 22: 5055–64.
    OpenUrl
  52. 52.↵
    1. Kwon OJ,
    2. Kang E,
    3. Kim S,
    4. Yun CO.
    Viral genome DNA/lipoplexes elicit in situ oncolytic viral replication and potent antitumor efficacy via systemic delivery. J Control Release. 2011; 155: 317–25.
    OpenUrlPubMed
  53. 53.↵
    1. Choi JW,
    2. Lee JS,
    3. Kim SW,
    4. Yun CO.
    Evolution of oncolytic adenovirus for cancer treatment. Adv Drug Deliv Rev. 2012; 64: 720–9.
    OpenUrlPubMed
  54. 54.↵
    1. Sakurai F,
    2. Inoue S,
    3. Kaminade T,
    4. Hotani T,
    5. Katayama Y,
    6. Hosoyamada E, et al.
    Cationic liposome-mediated delivery of reovirus enhances the tumor cell-killing efficiencies of reovirus in reovirus-resistant tumor cells. Int J Pharm. 2017; 524: 238–47.
    OpenUrl
  55. 55.↵
    1. Zhong Z,
    2. Han J,
    3. Wan Y,
    4. Zhang Z,
    5. Sun X.
    Anionic liposomes enhance and prolong adenovirus-mediated gene expression in airway epithelia in vitro and in vivo. Mol Pharm. 2011; 8: 673–82.
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. Wang Y,
    2. Huang H,
    3. Zou H,
    4. Tian X,
    5. Hu J,
    6. Qiu P, et al.
    Liposome encapsulation of oncolytic virus M1 to reduce immunogenicity and immune clearance in vivo. Mol Pharm. 2019; 16: 779–85.
    OpenUrlPubMed
  57. 57.↵
    1. Zhong Z,
    2. Shi S,
    3. Han J,
    4. Zhang Z,
    5. Sun X.
    Anionic liposomes increase the efficiency of adenovirus-mediated gene transfer to coxsackie-adenovirus receptor deficient cells. Mol Pharm. 2010; 7: 105–15.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Mendez N,
    2. Herrera V,
    3. Zhang L,
    4. Hedjran F,
    5. Feuer R,
    6. Blair SL, et al.
    Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency. Biomaterials. 2014; 35: 9554–61.
    OpenUrl
  59. 59.↵
    1. Tintore M,
    2. Vidal-Jordana A,
    3. Sastre-Garriga J.
    Treatment of multiple sclerosis - success from bench to bedside. Nat Rev Neurol. 2019; 15: 53–8.
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Kopeček J,
    2. Yang J.
    Polymer nanomedicines. Adv Drug Deliv Rev. 2020; 156: 40–64.
    OpenUrl
  61. 61.↵
    1. Martins C,
    2. Sousa F,
    3. Araújo F,
    4. Sarmento B.
    Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater. 2018; 7.
  62. 62.↵
    1. Gerardi C,
    2. Bertele V,
    3. Rossi S,
    4. Garattini S,
    5. Banzi R.
    Preapproval and postapproval evidence on drugs for multiple sclerosis. Neurology. 2018; 90: 964–73.
    OpenUrl
  63. 63.↵
    1. Weyand AC,
    2. Pipe SW.
    New therapies for hemophilia. Blood. 2019; 133: 389–98.
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. Desai K,
    2. McManus JM,
    3. Sharifi N.
    Hormonal therapy for prostate cancer. Endocr. Rev. 2021; 42: 354–73.
    OpenUrl
  65. 65.↵
    1. Zhang F,
    2. King MW.
    Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Adv Healthc Mater. 2020; 9: e1901358.
  66. 66.↵
    1. Jung K,
    2. Corrigan N,
    3. Wong EHH,
    4. Boyer C.
    Bioactive synthetic polymers. Adv Mater. 2022; 34: e2105063.
  67. 67.↵
    1. Wang N,
    2. Cheng X,
    3. Li N,
    4. Wang H,
    5. Chen H.
    Nanocarriers and their loading strategies. Adv Healthc Mater. 2019; 8: e1801002.
  68. 68.↵
    1. Khan S,
    2. Sharifi M,
    3. Gleghorn JP,
    4. Babadaei MMN,
    5. Bloukh SH,
    6. Edis Z, et al.
    Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release. 2022; 348: 127–47.
    OpenUrl
  69. 69.↵
    1. Jurak M,
    2. Wiącek AE,
    3. Ładniak A,
    4. Przykaza K,
    5. Szafran K.
    What affects the biocompatibility of polymers? Adv Colloid Interface Sci. 2021; 294: 102451.
  70. 70.↵
    1. Wang C,
    2. Yokota T,
    3. Someya T.
    Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem Rev. 2021; 121: 2109–46.
    OpenUrl
  71. 71.↵
    1. Madruga LYC,
    2. Kipper MJ.
    Expanding the repertoire of electrospinning: new and emerging biopolymers, techniques, and applications. Adv Healthc Mater. 2022; 11: e2101979.
  72. 72.↵
    1. Date T,
    2. Nimbalkar V,
    3. Kamat J,
    4. Mittal A,
    5. Mahato RI,
    6. Chitkara D.
    Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release. 2018; 271: 60–73.
    OpenUrl
  73. 73.↵
    1. Borandeh S,
    2. van Bochove B,
    3. Teotia A,
    4. Seppälä J.
    Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev. 2021; 173: 349–73.
    OpenUrl
  74. 74.↵
    1. Birk SE,
    2. Boisen A,
    3. Nielsen LH.
    Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev. 2021; 174: 30–52.
    OpenUrl
  75. 75.↵
    1. Wibowo D,
    2. Jorritsma SHT,
    3. Gonzaga ZJ,
    4. Evert B,
    5. Chen S,
    6. Rehm BHA.
    Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials. 2021; 268: 120597.
  76. 76.
    1. Lai WF,
    2. Wong WT.
    Design of polymeric gene carriers for effective intracellular delivery. Trends Biotechnol. 2018; 36: 713–28.
    OpenUrl
  77. 77.↵
    1. Hwang D,
    2. Ramsey JD,
    3. Kabanov AV.
    Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020; 156: 80–118.
    OpenUrl
  78. 78.↵
    1. Hoang Thi TT,
    2. Pilkington EH,
    3. Nguyen DH,
    4. Lee JS,
    5. Park KD,
    6. Truong NP.
    The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel). 2020; 12: 298.
    OpenUrl
  79. 79.↵
    1. Cattaneo R,
    2. Miest T,
    3. Shashkova EV,
    4. Barry MA.
    Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol. 2008; 6: 529–40.
    OpenUrlCrossRefPubMedWeb of Science
  80. 80.↵
    1. Doronin K,
    2. Shashkova EV,
    3. May SM,
    4. Hofherr SE,
    5. Barry MA.
    Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. Hum Gene Ther. 2009; 20: 975–88.
    OpenUrlCrossRefPubMedWeb of Science
  81. 81.↵
    1. Wortmann A,
    2. Vöhringer S,
    3. Engler T,
    4. Corjon S,
    5. Schirmbeck R,
    6. Reimann J, et al.
    Fully detargeted polyethylene glycol-coated adenovirus vectors are potent genetic vaccines and escape from pre-existing anti-adenovirus antibodies. Mol Ther. 2008; 16: 154–62.
    OpenUrlCrossRefPubMed
  82. 82.↵
    1. Weaver EA,
    2. Barry MA.
    Effects of shielding adenoviral vectors with polyethylene glycol on vector-specific and vaccine-mediated immune responses. Hum Gene Ther. 2008; 19: 1369–82.
    OpenUrlCrossRefPubMed
  83. 83.↵
    1. Yao X,
    2. Yoshioka Y,
    3. Morishige T,
    4. Eto Y,
    5. Watanabe H,
    6. Okada Y, et al.
    Systemic administration of a pegylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis. Gene Ther. 2009; 16: 1395–404.
    OpenUrlPubMed
  84. 84.↵
    1. O’Riordan CR,
    2. Lachapelle A,
    3. Delgado C,
    4. Parkes V,
    5. Wadsworth SC,
    6. Smith AE, et al.
    Pegylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther. 1999; 10: 1349–58.
    OpenUrlCrossRefPubMedWeb of Science
  85. 85.↵
    1. Croyle MA,
    2. Chirmule N,
    3. Zhang Y,
    4. Wilson JM.
    “Stealth” adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol. 2001; 75: 4792–801.
    OpenUrlAbstract/FREE Full Text
  86. 86.↵
    1. Croyle MA,
    2. Chirmule N,
    3. Zhang Y,
    4. Wilson JM.
    Pegylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum Gene Ther. 2002; 13: 1887–900.
    OpenUrlCrossRefPubMedWeb of Science
  87. 87.↵
    1. De Geest B,
    2. Snoeys J,
    3. Van Linthout S,
    4. Lievens J,
    5. Collen D.
    Elimination of innate immune responses and liver inflammation by PEGylation of adenoviral vectors and methylprednisolone. Hum Gene Ther. 2005; 16: 1439–51.
    OpenUrlCrossRefPubMed
  88. 88.
    1. Mok H,
    2. Palmer DJ,
    3. Ng P,
    4. Barry MA.
    Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther. 2005; 11: 66–79.
    OpenUrlPubMedWeb of Science
  89. 89.↵
    1. Croyle MA,
    2. Le HT,
    3. Linse KD,
    4. Cerullo V,
    5. Toietta G,
    6. Beaudet A, et al.
    PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile. Gene Ther. 2005; 12: 579–87.
    OpenUrlCrossRefPubMedWeb of Science
  90. 90.↵
    1. Nguyen TV,
    2. Heller GJ,
    3. Barry ME,
    4. Crosby CM,
    5. Turner MA,
    6. Barry MA.
    Evaluation of polymer shielding for adenovirus serotype 6 (Ad6) for systemic virotherapy against human prostate cancers. Mol Ther Oncol. 2016; 3: 15021.
  91. 91.↵
    1. Beatty MS,
    2. Curiel DT.
    Chapter two--adenovirus strategies for tissue-specific targeting. Adv Cancer Res. 2012; 115: 39–67.
    OpenUrlCrossRefPubMed
  92. 92.↵
    1. Krutzke L,
    2. Prill JM,
    3. Engler T,
    4. Schmidt CQ,
    5. Xu Z,
    6. Byrnes AP, et al.
    Substitution of blood coagulation factor X-binding to Ad5 by position-specific PEGylation: preventing vector clearance and preserving infectivity. J Control Release. 2016; 235: 379–92.
    OpenUrl
  93. 93.↵
    1. Sun Y,
    2. Lv X,
    3. Ding P,
    4. Wang L,
    5. Sun Y,
    6. Li S, et al.
    Exploring the functions of polymers in adenovirus-mediated gene delivery: evading immune response and redirecting tropism. Acta Biomater. 2019; 97: 93–104.
    OpenUrl
  94. 94.↵
    1. Choi JW,
    2. Kim J,
    3. Bui QN,
    4. Li Y,
    5. Yun CO,
    6. Lee DS, et al.
    Tuning surface charge and pegylation of biocompatible polymers for efficient delivery of nucleic acid or adenoviral vector. Bioconjug Chem. 2015; 26: 1818–29.
    OpenUrl
  95. 95.↵
    1. Danhier F,
    2. Ansorena E,
    3. Silva JM,
    4. Coco R,
    5. Le Breton A,
    6. Préat V.
    PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012; 161: 505–22.
    OpenUrlCrossRefPubMedWeb of Science
  96. 96.↵
    1. Kapoor DN,
    2. Bhatia A,
    3. Kaur R,
    4. Sharma R,
    5. Kaur G,
    6. Dhawan S.
    PLGA: a unique polymer for drug delivery. Ther Deliv. 2015; 6: 41–58.
    OpenUrlPubMed
  97. 97.↵
    1. Ahmed K,
    2. Jones MN.
    The effect of shear on the desorption of liposomes adsorbed to bacterial biofilms. J Liposome Res. 2003; 13: 187–97.
    OpenUrlCrossRefPubMed
  98. 98.
    1. Immordino ML,
    2. Dosio F,
    3. Cattel L.
    Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006; 1: 297–315.
    OpenUrlCrossRefPubMedWeb of Science
  99. 99.↵
    1. Marcotte L,
    2. Therien-Aubin H,
    3. Sandt C,
    4. Barbeau J,
    5. Lafleur M.
    Solute size effects on the diffusion in biofilms of streptococcus mutans. Biofouling. 2004; 20: 189–201.
    OpenUrlCrossRefPubMedWeb of Science
  100. 100.↵
    1. Miller JK,
    2. Neubig R,
    3. Clemons CB,
    4. Kreider KL,
    5. Wilber JP,
    6. Young GW, et al.
    Nanoparticle deposition onto biofilms. Ann Biomed Eng. 2013; 41: 53–67.
    OpenUrlCrossRefPubMed
  101. 101.↵
    1. Digman MA,
    2. Gratton E.
    Lessons in fluctuation correlation spectroscopy. Ann Rev Phys Chem. 2011; 62: 645–68.
    OpenUrlCrossRefPubMed
  102. 102.↵
    1. Badrinath N,
    2. Jeong YI,
    3. Woo HY,
    4. Bang SY,
    5. Kim C,
    6. Heo J, et al.
    Local delivery of a cancer-favoring oncolytic vaccinia virus via poly (lactic-co-glycolic acid) nanofiber for theranostic purposes. Int J Pharm. 2018; 552: 437–42.
    OpenUrl
  103. 103.↵
    1. Duong HTT,
    2. Yin Y,
    3. Thambi T,
    4. Nguyen TL,
    5. Giang Phan VH,
    6. Lee MS, et al.
    Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials. 2018; 185: 13–24.
    OpenUrl
  104. 104.
    1. Duong HTT,
    2. Kim NW,
    3. Thambi T,
    4. Giang Phan VH,
    5. Lee MS,
    6. Yin Y, et al.
    Microneedle arrays coated with charge reversal ph-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. J Control Release. 2018; 269: 225–34.
    OpenUrl
  105. 105.↵
    1. Thambi T,
    2. Hong J,
    3. Yoon AR,
    4. Yun CO.
    Challenges and progress toward tumor-targeted therapy by systemic delivery of polymer-complexed oncolytic adenoviruses. Cancer Gene Ther. 2022; 29: 1321–31.
    OpenUrl
  106. 106.↵
    1. Han S,
    2. Mahato RI,
    3. Sung YK,
    4. Kim SW.
    Development of biomaterials for gene therapy. Mol Ther. 2000; 2: 302–17.
    OpenUrlCrossRefPubMed
  107. 107.↵
    1. Kim TI,
    2. Ou M,
    3. Lee M,
    4. Kim SW.
    Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems. Biomaterials. 2009; 30: 658–64.
    OpenUrlCrossRefPubMedWeb of Science
  108. 108.↵
    1. Kim PH,
    2. Kim TI,
    3. Yockman JW,
    4. Kim SW,
    5. Yun CO.
    The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy. Biomaterials. 2010; 31: 1865–74.
    OpenUrl
  109. 109.↵
    1. Kim PH,
    2. Kim J,
    3. Kim TI,
    4. Nam HY,
    5. Yockman JW,
    6. Kim M, et al.
    Bioreducible polymer-conjugated oncolytic adenovirus for hepatoma-specific therapy via systemic administration. Biomaterials. 2011; 32: 9328–42.
    OpenUrl
  110. 110.↵
    1. Wang CH,
    2. Chan LW,
    3. Johnson RN,
    4. Chu DS,
    5. Shi J,
    6. Schellinger JG, et al.
    The transduction of coxsackie and adenovirus receptor-negative cells and protection against neutralizing antibodies by HPMA-co-oligolysine copolymer-coated adenovirus. Biomaterials. 2011; 32: 9536–45.
    OpenUrlCrossRef
  111. 111.↵
    1. Fisher KD,
    2. Stallwood Y,
    3. Green NK,
    4. Ulbrich K,
    5. Mautner V,
    6. Seymour LW.
    Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 2001; 8: 341–8.
    OpenUrlCrossRefPubMedWeb of Science
  112. 112.↵
    1. Green NK,
    2. Herbert CW,
    3. Hale SJ,
    4. Hale AB,
    5. Mautner V,
    6. Harkins R, et al.
    Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. 2004; 11: 1256–63.
    OpenUrlCrossRefPubMedWeb of Science
  113. 113.
    1. Fisher KD,
    2. Green NK,
    3. Hale A,
    4. Subr V,
    5. Ulbrich K,
    6. Seymour LW.
    Passive tumour targeting of polymer-coated adenovirus for cancer gene therapy. J Drug Target. 2007; 15: 546–51.
    OpenUrlCrossRefPubMed
  114. 114.
    1. Ahi YS,
    2. Bangari DS,
    3. Mittal SK.
    Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther. 2011; 11: 307–20.
    OpenUrlCrossRefPubMed
  115. 115.↵
    1. Lovett JR,
    2. Ratcliffe LP,
    3. Warren NJ,
    4. Armes SP,
    5. Smallridge MJ,
    6. Cracknell RB, et al.
    A robust cross-linking strategy for block copolymer worms prepared via polymerization-induced self-assembly. Macromolecules. 2016; 49: 2928–41.
    OpenUrl
  116. 116.↵
    1. Prill JM,
    2. Subr V,
    3. Pasquarelli N,
    4. Engler T,
    5. Hoffmeister A,
    6. Kochanek S, et al.
    Traceless bioresponsive shielding of adenovirus hexon with HPMA copolymers maintains transduction capacity in vitro and in vivo. PLoS One. 2014; 9: e82716.
  117. 117.↵
    1. Carlisle R,
    2. Choi J,
    3. Bazan-Peregrino M,
    4. Laga R,
    5. Subr V,
    6. Kostka L, et al.
    Enhanced tumor uptake and penetration of virotherapy using polymer stealthing and focused ultrasound. J Natl Cancer Inst. 2013; 105: 1701–10.
    OpenUrlCrossRefPubMed
  118. 118.↵
    1. Carlisle RC,
    2. Benjamin R,
    3. Briggs SS,
    4. Sumner-Jones S,
    5. McIntosh J,
    6. Gill D, et al.
    Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera. J Gene Med. 2008; 10: 400–11.
    OpenUrlCrossRefPubMed
  119. 119.↵
    1. Hall A,
    2. Lächelt U,
    3. Bartek J,
    4. Wagner E,
    5. Moghimi SM.
    Polyplex evolution: understanding biology, optimizing performance. Mol Ther. 2017; 25: 1476–90.
    OpenUrl
  120. 120.↵
    1. Zhang H,
    2. Chen Z,
    3. Du M,
    4. Li Y,
    5. Chen Y.
    Enhanced gene transfection efficiency by low-dose 25 kDa polyethylenimine by the assistance of 1.8 kDa polyethylenimine. Drug Deliv. 2018; 25: 1740–5.
    OpenUrl
  121. 121.
    1. Lee JY,
    2. Hong JW,
    3. Thambi T,
    4. Yoon AR,
    5. Choi JW,
    6. Li Y, et al.
    Optimizing active tumor targeting biocompatible polymers for efficient systemic delivery of adenovirus. Cells. 2021; 10: 1896.
    OpenUrl
  122. 122.↵
    1. Kafil V,
    2. Omidi Y.
    Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. BioImpacts. 2011; 1: 23–30.
    OpenUrlCrossRef
  123. 123.↵
    1. Choi JW,
    2. Nam JP,
    3. Nam K,
    4. Lee YS,
    5. Yun CO,
    6. Kim SW.
    Oncolytic adenovirus coated with multidegradable bioreducible core-cross-linked polyethylenimine for cancer gene therapy. Biomacromolecules. 2015; 16: 2132–43.
    OpenUrl
  124. 124.↵
    1. Jung SJ,
    2. Kasala D,
    3. Choi JW,
    4. Lee SH,
    5. Hwang JK,
    6. Kim SW, et al.
    Safety profiles and antitumor efficacy of oncolytic adenovirus coated with bioreducible polymer in the treatment of a CAR negative tumor model. Biomacromolecules. 2015; 16: 87–96.
    OpenUrl
  125. 125.↵
    1. Nosaki K,
    2. Hamada K,
    3. Takashima Y,
    4. Sagara M,
    5. Matsumura Y,
    6. Miyamoto S, et al.
    A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity. Mol Ther Oncolytics. 2016; 3: 16022.
  126. 126.↵
    1. Hong J,
    2. Yun CO.
    Overcoming the limitations of locally administered oncolytic virotherapy. BMC Biomed Eng. 2019; 1: 17.
    OpenUrl
  127. 127.↵
    1. Na Y,
    2. Nam JP,
    3. Hong J,
    4. Oh E,
    5. Shin HC,
    6. Kim HS, et al.
    Systemic administration of human mesenchymal stromal cells infected with polymer-coated oncolytic adenovirus induces efficient pancreatic tumor homing and infiltration. J Control Release. 2019; 305: 75–88.
    OpenUrlPubMed
  128. 128.↵
    1. Choi JW,
    2. Jung SJ,
    3. Kasala D,
    4. Hwang JK,
    5. Hu J,
    6. Bae YH, et al.
    Ph-sensitive oncolytic adenovirus hybrid targeting acidic tumor microenvironment and angiogenesis. J Control Release. 2015; 205: 134–43.
    OpenUrl
  129. 129.↵
    1. Choi JW,
    2. Dayananda K,
    3. Jung SJ,
    4. Lee SH,
    5. Kim D,
    6. Hu J, et al.
    Enhanced anti-tumor efficacy and safety profile of tumor microenvironment-responsive oncolytic adenovirus nanocomplex by systemic administration. Acta Biomater. 2015; 28: 86–98.
    OpenUrl
  130. 130.↵
    1. Moon CY,
    2. Choi JW,
    3. Kasala D,
    4. Jung SJ,
    5. Kim SW,
    6. Yun CO.
    Dual tumor targeting with pH-sensitive and bioreducible polymer-complexed oncolytic adenovirus. Biomaterials. 2015; 41: 53–68.
    OpenUrl
  131. 131.↵
    1. Park Y,
    2. Kang E,
    3. Kwon OJ,
    4. Hwang T,
    5. Park H,
    6. Lee JM, et al.
    Ionically crosslinked Ad/chitosan nanocomplexes processed by electrospinning for targeted cancer gene therapy. J Control Release. 2010; 148: 75–82.
    OpenUrlPubMed
  132. 132.↵
    1. Kwon OJ,
    2. Kang E,
    3. Choi JW,
    4. Kim SW,
    5. Yun CO.
    Therapeutic targeting of chitosan-peg-folate-complexed oncolytic adenovirus for active and systemic cancer gene therapy. J Control Release. 2013; 169: 257–65.
    OpenUrlCrossRefPubMed
  133. 133.↵
    1. Yoon AR,
    2. Kasala D,
    3. Li Y,
    4. Hong J,
    5. Lee W,
    6. Jung SJ, et al.
    Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J Control Release. 2016; 231: 2–16.
    OpenUrl
  134. 134.↵
    1. Ireson CR,
    2. Alavijeh MS,
    3. Palmer AM,
    4. Fowler ER,
    5. Jones HJ.
    The role of mouse tumour models in the discovery and development of anticancer drugs. Br J Cancer. 2019; 121: 101–8.
    OpenUrl
  135. 135.↵
    1. Kim J,
    2. Nam HY,
    3. Kim TI,
    4. Kim PH,
    5. Ryu J,
    6. Yun CO, et al.
    Active targeting of RGD-conjugated bioreducible polymer for delivery of oncolytic adenovirus expressing shRNA against IL-8 mRNA. Biomaterials. 2011; 32: 5158–66.
    OpenUrl
  136. 136.↵
    1. Garofalo M,
    2. Bellato F,
    3. Magliocca S,
    4. Malfanti A,
    5. Kuryk L,
    6. Rinner B, et al.
    Polymer coated oncolytic adenovirus to selectively target hepatocellular carcinoma cells. Pharmaceutics. 2021; 13: 949.
    OpenUrl
  137. 137.↵
    1. Hill C,
    2. Grundy M,
    3. Bau L,
    4. Wallington S,
    5. Balkaran J,
    6. Ramos V, et al.
    Polymer stealthing and mucin-1 retargeting for enhanced pharmacokinetics of an oncolytic vaccinia virus. Mol Ther Oncolytics. 2021; 21: 47–61.
    OpenUrl
  138. 138.↵
    1. Qiao H,
    2. Chen X,
    3. Wang Q,
    4. Zhang J,
    5. Huang D,
    6. Chen E, et al.
    Tumor localization of oncolytic adenovirus assisted by pH-degradable microgels with JQ1-mediated boosting replication and PD-L1 suppression for enhanced cancer therapy. Biomater Sci. 2020; 8: 2472–80.
    OpenUrl
  139. 139.↵
    1. Brugada-Vilà P,
    2. Cascante A,
    3. Lázaro M,
    4. Castells-Sala C,
    5. Fornaguera C,
    6. Rovira-Rigau M, et al.
    Oligopeptide-modified poly(beta-amino ester)s-coated AdNuPARmE1A: boosting the efficacy of intravenously administered therapeutic adenoviruses. Theranostics. 2020; 10: 2744–58.
    OpenUrl
  140. 140.↵
    1. Hwang HS,
    2. Shin H,
    3. Han J,
    4. Na K.
    Combination of photodynamic therapy (PDT) and anti-tumor immunity in cancer therapy. J Pharm Investig. 2018; 48: 143–51.
    OpenUrl
  141. 141.↵
    1. Chen G,
    2. Roy I,
    3. Yang C,
    4. Prasad PN.
    Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016; 116: 2826–85.
    OpenUrl
  142. 142.↵
    1. Liu Z,
    2. Chen X.
    Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem Soc Rev. 2016; 45: 1432–56.
    OpenUrlCrossRef
  143. 143.↵
    1. Hoogenboezem EN,
    2. Duvall CL.
    Harnessing albumin as a carrier for cancer therapies. Adv Drug Deliv Rev. 2018; 130: 73–89.
    OpenUrlCrossRefPubMed
  144. 144.↵
    1. Kianfar E.
    Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology. 2021; 19: 159.
    OpenUrl
  145. 145.↵
    1. Lohcharoenkal W,
    2. Wang L,
    3. Chen YC,
    4. Rojanasakul Y.
    Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int. 2014; 2014: 180549.
  146. 146.↵
    1. Kratz F.
    Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008; 132: 171–83.
    OpenUrlCrossRefPubMedWeb of Science
  147. 147.↵
    1. Battogtokh G,
    2. Kang JH,
    3. Ko YT.
    Long-circulating self-assembled cholesteryl albumin nanoparticles enhance tumor accumulation of hydrophobic anticancer drug. Eur J Pharm Biopharm. 2015; 96: 96–105.
    OpenUrl
  148. 148.↵
    1. An FF,
    2. Zhang XH.
    Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics. 2017; 7: 3667–89.
    OpenUrl
  149. 149.↵
    1. Saha A,
    2. Pradhan N,
    3. Chatterjee S,
    4. Singh RK,
    5. Trivedi V,
    6. Bhattacharyya A, et al.
    Fatty-amine-conjugated cationic bovine serum albumin nanoparticles for target-specific hydrophobic drug delivery. ACS Appl Nano Mater. 2019; 2: 3671–83.
    OpenUrl
  150. 150.↵
    1. Ruan C,
    2. Liu L,
    3. Lu Y,
    4. Zhang Y,
    5. He X,
    6. Chen X, et al.
    Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharm Sin B. 2018; 8: 85–96.
    OpenUrl
  151. 151.↵
    1. Rojas LA,
    2. Condezo GN,
    3. Moreno R,
    4. Fajardo CA,
    5. Arias-Badia M,
    6. San Martín C, et al.
    Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. J Control Release. 2016; 237: 78–88.
    OpenUrl
  152. 152.↵
    1. Mato-Berciano A,
    2. Morgado S,
    3. Maliandi MV,
    4. Farrera-Sal M,
    5. Gimenez-Alejandre M,
    6. Ginestà MM, et al.
    Oncolytic adenovirus with hyaluronidase activity that evades neutralizing antibodies: VCN-11. J Control Release. 2021; 332: 517–528.
    OpenUrlCrossRefPubMed
  153. 153.↵
    1. Walker S,
    2. Busatto S,
    3. Pham A,
    4. Tian M,
    5. Suh A,
    6. Carson K, et al.
    Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 2019; 9: 8001–17.
    OpenUrlCrossRef
  154. 154.↵
    1. Lv P,
    2. Liu X,
    3. Chen X,
    4. Liu C,
    5. Zhang Y,
    6. Chu C, et al.
    Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy. Nano Lett. 2019; 19: 2993–3001.
    OpenUrlPubMed
  155. 155.↵
    1. Garofalo M,
    2. Saari H,
    3. Somersalo P,
    4. Crescenti D,
    5. Kuryk L,
    6. Aksela L, et al.
    Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J Control Release. 2018; 283: 223–34.
    OpenUrlPubMed
  156. 156.↵
    1. Garofalo M,
    2. Villa A,
    3. Rizzi N,
    4. Kuryk L,
    5. Rinner B,
    6. Cerullo V, et al.
    Extracellular vesicles enhance the targeted delivery of immunogenic oncolytic adenovirus and paclitaxel in immunocompetent mice. J Control Release. 2019; 294: 165–75.
    OpenUrl
  157. 157.↵
    1. Ban W,
    2. Sun M,
    3. Huang H,
    4. Huang W,
    5. Pan S,
    6. Liu P, et al.
    Engineered bacterial outer membrane vesicles encapsulating oncolytic adenoviruses enhance the efficacy of cancer virotherapy by augmenting tumor cell autophagy. Nat Commun. 2023; 14: 2933.
    OpenUrl
  158. 158.↵
    1. Huang L-L,
    2. Li X,
    3. Zhang J,
    4. Zhao QR,
    5. Zhang MJ,
    6. Liu A-A, et al.
    MnCaCs-biomineralized oncolytic virus for bimodal imaging-guided and synergistically enhanced anticancer therapy. Nano Lett. 2019; 19: 8002–9.
    OpenUrl
Next
Back to top

In this issue

Cancer Biology & Medicine: 22 (5)
Cancer Biology & Medicine
Vol. 22, Issue 5
15 May 2025
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Progress in oncolytic viruses modified with nanomaterials for intravenous application
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Progress in oncolytic viruses modified with nanomaterials for intravenous application
Liting Chen, Zhijun Ma, Chen Xu, Youbang Xie, Defang Ouyang, Shuhui Song, Xiao Zhao, Funan Liu
Cancer Biology & Medicine Nov 2023, 20230275; DOI: 10.20892/j.issn.2095-3941.2023.0275

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Progress in oncolytic viruses modified with nanomaterials for intravenous application
Liting Chen, Zhijun Ma, Chen Xu, Youbang Xie, Defang Ouyang, Shuhui Song, Xiao Zhao, Funan Liu
Cancer Biology & Medicine Nov 2023, 20230275; DOI: 10.20892/j.issn.2095-3941.2023.0275
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Liposomes
    • Polymers
    • Albumin
    • Other nanoparticles
    • Conclusions and future perspectives
    • Conflicts of interest statement
    • Author contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Improving systemic delivery of oncolytic virus by cellular carriers
  • Google Scholar

More in this TOC Section

  • Drugging the ‘undruggable’ KRAS: breakthroughs, challenges, and opportunities in pancreatic cancer
  • Neutrophils in cancer: from immune defense to tumor promotion
  • Multi-omics in colorectal cancer liver metastasis: applications and research advances
Show more Review

Similar Articles

Keywords

  • oncolytic virus
  • nanomaterials
  • drug delivery
  • tumor treatment
  • intravenous application

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire