Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Expert opinion on translational research for advanced glioblastoma treatment

Xiaoteng Cui, Yunfei Wang, Junhu Zhou, Qixue Wang and Chunsheng Kang
Cancer Biology & Medicine April 2023, 20230012; DOI: https://doi.org/10.20892/j.issn.2095-3941.2023.0012
Xiaoteng Cui
Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yunfei Wang
Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Junhu Zhou
Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qixue Wang
Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chunsheng Kang
Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chunsheng Kang
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Ostrom QT,
    2. Price M,
    3. Neff C,
    4. Cioffi G,
    5. Waite KA,
    6. Kruchko C, et al.
    CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2015-2019. Neuro Oncol. 2022; 24(Suppl 5): v1–95.
    OpenUrlCrossRef
  2. 2.↵
    1. Wen PY,
    2. Kesari S.
    Malignant gliomas in adults. N Engl J Med. 2008; 359: 492–507.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Louis DN,
    2. Perry A,
    3. Wesseling P,
    4. Brat DJ,
    5. Cree IA,
    6. Figarella-Branger D, et al.
    The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021; 23: 1231–51.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Stylli SS.
    Novel treatment strategies for glioblastoma. Cancers (Basel). 2020; 12: 2883.
    OpenUrl
  5. 5.↵
    1. Chen C,
    2. Xu T,
    3. Lu Y,
    4. Chen J,
    5. Wu S.
    The efficacy of temozolomide for recurrent glioblastoma multiforme. Eur J Neurol. 2013; 20: 223–30.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Sarkaria JN,
    2. Kitange GJ,
    3. James CD,
    4. Plummer R,
    5. Calvert H,
    6. Weller M, et al.
    Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res. 2008; 14: 2900–8.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Stupp R,
    2. Hegi ME,
    3. Mason WP,
    4. van den Bent MJ,
    5. Taphoorn MJ,
    6. Janzer RC, et al.
    Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009; 10: 459–66.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Perry JR,
    2. Laperriere N,
    3. O’Callaghan CJ,
    4. Brandes AA,
    5. Menten J,
    6. Phillips C, et al.
    Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017; 376: 1027–37.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Stevens MF,
    2. Hickman JA,
    3. Langdon SP,
    4. Chubb D,
    5. Vickers L,
    6. Stone R, et al.
    Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045; M & B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res. 1987; 47: 5846–52.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Cohen MH,
    2. Johnson JR,
    3. Pazdur R.
    Food and drug administration drug approval summary: temozolomide plus radiation therapy for the treatment of newly diagnosed glioblastoma multiforme. Clin Cancer Res. 2005; 11(19 Pt 1): 6767–71.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Lee SY.
    Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016; 3: 198–210.
    OpenUrl
  12. 12.↵
    1. Serwer LP,
    2. James CD.
    Challenges in drug delivery to tumors of the central nervous system: an overview of pharmacological and surgical considerations. Adv Drug Deliv Rev. 2012; 64: 590–7.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Knisely JP,
    2. Baehring JM.
    A silver lining on the horizon for glioblastoma. Lancet Oncol. 2009; 10: 434–5.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Huse JT,
    2. Holland EC.
    Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010; 10: 319–31.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Fabian D,
    2. Guillermo Prieto Eibl MDP,
    3. Alnahhas I,
    4. Sebastian N,
    5. Giglio P,
    6. Puduvalli V, et al.
    Treatment of glioblastoma (GBM) with the addition of tumor-treating fields (TTF): a review. Cancers (Basel). 2019; 11: 174.
    OpenUrl
  16. 16.↵
    1. Hu H,
    2. Mu Q,
    3. Bao Z,
    4. Chen Y,
    5. Liu Y,
    6. Chen J, et al.
    Mutational landscape of secondary glioblastoma guides met-targeted trial in brain tumor. Cell. 2018; 175: 1665–78.e18.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Diaz RJ,
    2. Ali S,
    3. Qadir MG,
    4. De La Fuente MI,
    5. Ivan ME,
    6. Komotar RJ.
    The role of bevacizumab in the treatment of glioblastoma. J Neurooncol. 2017; 133: 455–67.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. O’Rourke DM,
    2. Nasrallah MP,
    3. Desai A,
    4. Melenhorst JJ,
    5. Mansfield K,
    6. Morrissette JJD, et al.
    A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017; 9: eaaa0984.
  19. 19.↵
    1. Britten CD,
    2. Rowinsky EK,
    3. Baker SD,
    4. Agarwala SS,
    5. Eckardt JR,
    6. Barrington R, et al.
    A phase I and pharmacokinetic study of temozolomide and cisplatin in patients with advanced solid malignancies. Clin Cancer Res. 1999; 5: 1629–37.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Fuchs RP,
    2. Isogawa A,
    3. Paulo JA,
    4. Onizuka K,
    5. Takahashi T,
    6. Amunugama R, et al.
    Crosstalk between repair pathways elicits double-strand breaks in alkylated DNA and implications for the action of temozolomide. Elife. 2021; 10: e69544.
  21. 21.↵
    1. Hirose Y,
    2. Berger MS,
    3. Pieper RO.
    p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res. 2001; 61: 1957–63.
    OpenUrlAbstract/FREE Full Text
  22. 22.
    1. Shen HY,
    2. Tang HL,
    3. Zheng YH,
    4. Feng J,
    5. Dong BX,
    6. Chen XQ.
    The PARP1 inhibitor niraparib represses DNA damage repair and synergizes with temozolomide for antimyeloma effects. J Oncol. 2022; 2022: 2800488.
  23. 23.↵
    1. Alonso MM,
    2. Gomez-Manzano C,
    3. Bekele BN,
    4. Yung WKA,
    5. Fueyo J.
    Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res. 2007; 67: 11499–504.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Robey RW,
    2. Pluchino KM,
    3. Hall MD,
    4. Fojo AT,
    5. Bates SE,
    6. Gottesman MM.
    Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018; 18: 452–64.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Ambudkar SV,
    2. Dey S,
    3. Hrycyna CA,
    4. Ramachandra M,
    5. Pastan I,
    6. Gottesman MM.
    Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999; 39: 361–98.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Munoz JL,
    2. Walker ND,
    3. Scotto KW,
    4. Rameshwar P.
    Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett. 2015; 367: 69–75.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Demeule M,
    2. Shedid D,
    3. Beaulieu E,
    4. Del Maestro RF,
    5. Moghrabi A,
    6. Ghosn PB, et al.
    Expression of multidrug-resistance P-glycoprotein (MDR1) in human brain tumors. Int J Cancer. 2001; 93: 62–6.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Yang E,
    2. Wang L,
    3. Jin W,
    4. Liu X,
    5. Wang Q,
    6. Wu Y, et al.
    PTRF/Cavin-1 enhances chemo-resistance and promotes temozolomide efflux through extracellular vesicles in glioblastoma. Theranostics. 2022; 12: 4330–47.
    OpenUrl
  29. 29.↵
    1. Roos WP,
    2. Batista LF,
    3. Naumann SC,
    4. Wick W,
    5. Weller M,
    6. Menck CFM, et al.
    Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene. 2007; 26: 186–97.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Atkins RJ,
    2. Ng W,
    3. Stylli SS,
    4. Hovens CM,
    5. Kaye AH.
    Repair mechanisms help glioblastoma resist treatment. J Clin Neurosci. 2015; 22: 14–20.
    OpenUrl
  31. 31.↵
    1. Yip S,
    2. Miao J,
    3. Cahill DP,
    4. Iafrate AJ,
    5. Aldape K,
    6. Nutt CL, et al.
    MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. 2009; 15: 4622–9.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Erasimus H,
    2. Gobin M,
    3. Niclou S,
    4. Van Dyck E.
    DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res. 2016; 769: 19–35.
    OpenUrl
  33. 33.↵
    1. Zharkov DO.
    Base excision DNA repair. Cell Mol Life Sci. 2008; 65: 1544–65.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Wu S,
    2. Li X,
    3. Gao F,
    4. de Groot JF,
    5. Koul D,
    6. Yung WKA.
    PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro Oncol. 2021; 23: 920–31.
    OpenUrl
  35. 35.↵
    1. Sim HW,
    2. Galanis E,
    3. Khasraw M.
    PARP inhibitors in glioma: a review of therapeutic opportunities. Cancers (Basel). 2022; 14: 1003.
    OpenUrl
  36. 36.↵
    1. Choi S,
    2. Yu Y,
    3. Grimmer MR,
    4. Wahl M,
    5. Chang SM,
    6. Costello JF.
    Temozolomide-associated hypermutation in gliomas. Neuro Oncol. 2018; 20: 1300–9.
    OpenUrl
  37. 37.↵
    1. Esteller M,
    2. Garcia-Foncillas J,
    3. Andion E,
    4. Goodman SN,
    5. Hidalgo OF,
    6. Vanaclocha V, et al.
    Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000; 343: 1350–4.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Butler M,
    2. Pongor L,
    3. Su YT,
    4. Xi L,
    5. Raffeld M,
    6. Quezado M, et al.
    MGMT status as a clinical biomarker in glioblastoma. Trends Cancer. 2020; 6: 380–91.
    OpenUrl
  39. 39.↵
    1. Hegi ME,
    2. Diserens AC,
    3. Gorlia T,
    4. Hamou MF,
    5. de Tribolet N,
    6. Weller M, et al.
    MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005; 352: 997–1003.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.↵
    1. Friedman HS,
    2. McLendon RE,
    3. Kerby T,
    4. Dugan M,
    5. Bigner SH,
    6. Henry AJ, et al.
    DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J Clin Oncol. 1998; 16: 3851–7.
    OpenUrlAbstract/FREE Full Text
  41. 41.↵
    1. Wu P,
    2. Cai J,
    3. Chen Q,
    4. Han B,
    5. Meng X,
    6. Li Y, et al.
    Lnc-TALC promotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun. 2019; 10: 2045.
    OpenUrl
  42. 42.↵
    1. Zhao J,
    2. Yang S,
    3. Cui X,
    4. Wang Q,
    5. Yang E,
    6. Tong F, et al.
    A novel compound EPIC-0412 reverses temozolomide resistance via inhibiting DNA repair/MGMT in glioblastoma. Neuro Oncol. 2022; noac242.
  43. 43.↵
    1. Chai R,
    2. Li G,
    3. Liu Y,
    4. Zhang K,
    5. Zhao Z,
    6. Wu F, et al.
    Predictive value of MGMT promoter methylation on the survival of TMZ treated IDH-mutant glioblastoma. Cancer Biol Med. 2021; 18: 272–82.
    OpenUrl
  44. 44.
    1. Rosch L,
    2. Herter S,
    3. Najafi S,
    4. Ridinger J,
    5. Peterziel H,
    6. Cinatl J, et al.
    ERBB and P-glycoprotein inhibitors break resistance in relapsed neuroblastoma models through P-glycoprotein. Mol Oncol. 2023; 17: 37–58.
    OpenUrl
  45. 45.
    1. Hanna C,
    2. Kurian KM,
    3. Williams K,
    4. Watts C,
    5. Jackson A,
    6. Carruthers R, et al.
    Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial. Neuro Oncol. 2020; 22: 1840–50.
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. Brennan CW,
    2. Verhaak RG,
    3. McKenna A,
    4. Campos B,
    5. Noushmehr H,
    6. Salama SR, et al.
    The somatic genomic landscape of glioblastoma. Cell. 2013; 155: 462–77.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Verhaak RG,
    2. Hoadley KA,
    3. Purdom E,
    4. Wang V,
    5. Qi Y,
    6. Wilkerson MD, et al.
    Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010; 17: 98–110.
    OpenUrlCrossRefPubMedWeb of Science
  48. 48.↵
    1. Wang Z,
    2. Bao Z,
    3. Yan W,
    4. You G,
    5. Wang Y,
    6. Li X, et al.
    Isocitrate dehydrogenase 1 (IDH1) mutation-specific microRNA signature predicts favorable prognosis in glioblastoma patients with IDH1 wild type. J Exp Clin Cancer Res. 2013; 32: 59.
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Eckel-Passow JE,
    2. Lachance DH,
    3. Molinaro AM,
    4. Walsh KM,
    5. Decker PA,
    6. Sicotte H, et al.
    Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015; 372: 2499–508.
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. Subbiah V,
    2. Puzanov I,
    3. Blay JY,
    4. Chau I,
    5. Lockhart AC,
    6. Raje NS, et al.
    Pan-cancer efficacy of vemurafenib in BRAFv600-mutant non-melanoma cancers. Cancer Discov. 2020; 10: 657–63.
    OpenUrlAbstract/FREE Full Text
  51. 51.↵
    1. Reifenberger G,
    2. Hentschel B,
    3. Felsberg J,
    4. Schackert G,
    5. Simon M,
    6. Schnell O, et al.
    Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer. 2012; 131: 1342–50.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Mo Z,
    2. Xin J,
    3. Chai R,
    4. Woo PYM,
    5. Chan DTM,
    6. Wang J.
    Epidemiological characteristics and genetic alterations in adult diffuse glioma in East Asian populations. Cancer Biol Med. 2022; 19: 1440–59.
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. Newick K,
    2. O’Brien S,
    3. Moon E,
    4. Albelda SM.
    CAR T cell therapy for solid tumors. Annu Rev Med. 2017; 68: 139–52.
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. Reck M,
    2. Remon J,
    3. Hellmann MD.
    First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 2022; 40: 586–97.
    OpenUrl
  55. 55.
    1. Carlino MS,
    2. Larkin J,
    3. Long GV.
    Immune checkpoint inhibitors in melanoma. Lancet. 2021; 398: 1002–14.
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. Lee EQ.
    Immune checkpoint inhibitors in GBM. J Neurooncol. 2021; 155: 1–11.
    OpenUrl
  57. 57.↵
    1. Popovici-Muller J,
    2. Lemieux RM,
    3. Artin E,
    4. Saunders JO,
    5. Salituro FG,
    6. Travins J, et al.
    Discovery of AG-120 (ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med Chem Lett. 2018; 9: 300–5.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Konteatis Z,
    2. Artin E,
    3. Nicolay B,
    4. Straley K,
    5. Padyana AK,
    6. Jin L, et al.
    Vorasidenib (AG-881): a first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma. ACS Med Chem Lett. 2020; 11: 101–7.
    OpenUrlCrossRef
  59. 59.↵
    1. Tong L,
    2. Li J,
    3. Li Q,
    4. Wang X,
    5. Medikonda R,
    6. Zhao T, et al.
    ACT001 reduces the expression of PD-L1 by inhibiting the phosphorylation of STAT3 in glioblastoma. Theranostics. 2020; 10: 5943–56.
    OpenUrl
  60. 60.↵
    1. Wang Q,
    2. Liu X,
    3. Zhou J,
    4. Yang C,
    5. Wang G,
    6. Tan Y, et al.
    The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells. Adv Sci (Weinh). 2019; 6: 1901299.
  61. 61.↵
    1. Seliger C,
    2. Luber C,
    3. Gerken M,
    4. Schaertl J,
    5. Proescholdt M,
    6. Riemenschneider MJ, et al.
    Use of metformin and survival of patients with high-grade glioma. Int J Cancer. 2019; 144: 273–80.
    OpenUrl
  62. 62.↵
    1. Ding C,
    2. Yi X,
    3. Wu X,
    4. Bu X,
    5. Wang D,
    6. Wu Z, et al.
    Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma. Cancer Lett. 2020; 479: 1–12.
    OpenUrlCrossRef
  63. 63.
    1. Li Z,
    2. Meng X,
    3. Wu P,
    4. Zha C,
    5. Han B,
    6. Li L, et al.
    Glioblastoma cell-derived lncRNA-containing exosomes induce microglia to produce complement C5, promoting chemotherapy resistance. Cancer Immunol Res. 2021; 9: 1383–99.
    OpenUrlAbstract/FREE Full Text
  64. 64.
    1. Wei QT,
    2. Liu BY,
    3. Ji HY,
    4. Lan YF,
    5. Tang WH,
    6. Zhou J, et al.
    Exosome-mediated transfer of MIF confers temozolomide resistance by regulating TIMP3/PI3k/AKT axis in gliomas. Mol Ther Oncolytics. 2021; 22: 114–28.
    OpenUrl
  65. 65.↵
    1. Zhang Z,
    2. Yin J,
    3. Lu C,
    4. Wei Y,
    5. Zeng A,
    6. You Y.
    Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 2019; 38: 166.
    OpenUrl
  66. 66.↵
    1. Lin K,
    2. Gueble SE,
    3. Sundaram RK,
    4. Huseman ED,
    5. Bindra RS,
    6. Herzon SB.
    Mechanism-based design of agents that selectively target drug-resistant glioma. Science. 2022; 377: 502–11.
    OpenUrl
  67. 67.↵
    1. Tomaszewski W,
    2. Sanchez-Perez L,
    3. Gajewski TF,
    4. Sampson JH.
    Brain tumor microenvironment and host state: implications for immunotherapy. Clin Cancer Res. 2019; 25: 4202–10.
    OpenUrlAbstract/FREE Full Text
  68. 68.↵
    1. Patel AP,
    2. Tirosh I,
    3. Trombetta JJ,
    4. Shalek AK,
    5. Gillespie SM,
    6. Wakimoto H, et al.
    Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344: 1396–401.
    OpenUrlAbstract/FREE Full Text
  69. 69.↵
    1. Neftel C,
    2. Laffy J,
    3. Filbin MG,
    4. Hara T,
    5. Shore ME,
    6. Rahme GJ, et al.
    An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019; 178: 835–49.e21.
    OpenUrlPubMed
  70. 70.↵
    1. Muller S,
    2. Kohanbash G,
    3. Liu SJ,
    4. Alvarado B,
    5. Carrera D,
    6. Bhaduri A, et al.
    Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 2017; 18: 234.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. Chen Z,
    2. Feng X,
    3. Herting CJ,
    4. Garcia VA,
    5. Nie K,
    6. Pong WW, et al.
    Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 2017; 77: 2266–78.
    OpenUrlAbstract/FREE Full Text
  72. 72.↵
    1. Stanley ER,
    2. Chitu V.
    CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014; 6: a021857.
  73. 73.↵
    1. Peranzoni E,
    2. Lemoine J,
    3. Vimeux L,
    4. Feuillet V,
    5. Barrin S,
    6. Kantari-Mimoun C, et al.
    Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018; 115: E4041–50.
    OpenUrlAbstract/FREE Full Text
  74. 74.↵
    1. Fang Y,
    2. He Y,
    3. Wu C,
    4. Zhang M,
    5. Gu Z,
    6. Zhang J, et al.
    Magnetism-mediated targeting hyperthermia-immunotherapy in “cold” tumor with CSF1R inhibitor. Theranostics. 2021; 11: 6860–72.
    OpenUrl
  75. 75.↵
    1. Rao R,
    2. Han R,
    3. Ogurek S,
    4. Xue C,
    5. Wu LM,
    6. Zhang L, et al.
    Glioblastoma genetic drivers dictate the function of tumor-associated macrophages/microglia and responses to CSF1R inhibition. Neuro Oncol. 2022; 24: 584–97.
    OpenUrlCrossRef
  76. 76.↵
    1. Plaks V,
    2. Kong N,
    3. Werb Z.
    The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015; 16: 225–38.
    OpenUrlCrossRefPubMed
  77. 77.↵
    1. Vlashi E,
    2. Pajonk F.
    Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol. 2015; 31: 28–35.
    OpenUrlCrossRefPubMed
  78. 78.↵
    1. Lathia JD,
    2. Mack SC,
    3. Mulkearns-Hubert EE,
    4. Valentim CL,
    5. Rich JN.
    Cancer stem cells in glioblastoma. Genes Dev. 2015; 29: 1203–17.
    OpenUrlAbstract/FREE Full Text
  79. 79.↵
    1. Boyd NH,
    2. Tran AN,
    3. Bernstock JD,
    4. Etminan T,
    5. Jones AB,
    6. Gillespie GY, et al.
    Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics. 2021; 11: 665–83.
    OpenUrl
  80. 80.↵
    1. Li Z,
    2. Bao S,
    3. Wu Q,
    4. Wang H,
    5. Eyler C,
    6. Sathornsumetee S, et al.
    Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009; 15: 501–13.
    OpenUrlCrossRefPubMedWeb of Science
  81. 81.↵
    1. Torres A,
    2. Erices JI,
    3. Sanchez F,
    4. Ehrenfeld P,
    5. Turchi L,
    6. Virolle T, et al.
    Extracellular adenosine promotes cell migration/invasion of glioblastoma stem-like cells through A3 adenosine receptor activation under hypoxia. Cancer Lett. 2019; 446: 112–22.
    OpenUrl
  82. 82.↵
    1. Gargiulo G.
    Next-generation in vivo modeling of human cancers. Front Oncol. 2018; 8: 429.
    OpenUrlCrossRef
  83. 83.↵
    1. Holland EC,
    2. Celestino J,
    3. Dai C,
    4. Schaefer L,
    5. Sawaya RE,
    6. Fuller GN.
    Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000; 25: 55–7.
    OpenUrlCrossRefPubMedWeb of Science
  84. 84.↵
    1. Rahme GJ,
    2. Luikart BW,
    3. Cheng C,
    4. Israel MA.
    A recombinant lentiviral PDGF-driven mouse model of proneural glioblastoma. Neuro Oncol. 2018; 20: 332–42.
    OpenUrl
  85. 85.↵
    1. Golebiewska A,
    2. Hau AC,
    3. Oudin A,
    4. Stieber D,
    5. Yabo YA,
    6. Baus V, et al.
    Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 2020; 140: 919–49.
    OpenUrlCrossRef
  86. 86.↵
    1. Goranci-Buzhala G,
    2. Mariappan A,
    3. Gabriel E,
    4. Ramani A,
    5. Ricci-Vitiani L,
    6. Buccarelli M, et al.
    Rapid and efficient invasion assay of glioblastoma in human brain organoids. Cell Rep. 2020; 31: 107738.
  87. 87.↵
    1. Tang M,
    2. Xie Q,
    3. Gimple RC,
    4. Zhong Z,
    5. Tam T,
    6. Tian J, et al.
    Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 2020; 30: 833–53.
    OpenUrl
PreviousNext
Back to top

In this issue

Cancer Biology & Medicine: 20 (11)
Cancer Biology & Medicine
Vol. 20, Issue 11
15 Nov 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Expert opinion on translational research for advanced glioblastoma treatment
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Expert opinion on translational research for advanced glioblastoma treatment
Xiaoteng Cui, Yunfei Wang, Junhu Zhou, Qixue Wang, Chunsheng Kang
Cancer Biology & Medicine Apr 2023, 20230012; DOI: 10.20892/j.issn.2095-3941.2023.0012

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Expert opinion on translational research for advanced glioblastoma treatment
Xiaoteng Cui, Yunfei Wang, Junhu Zhou, Qixue Wang, Chunsheng Kang
Cancer Biology & Medicine Apr 2023, 20230012; DOI: 10.20892/j.issn.2095-3941.2023.0012
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • TMZ is currently the optimal and only available chemotherapeutic drug for GBM treatment
    • Strategies for better therapy against GBM
    • Conclusions
    • Conflict of interest statement
    • Author contributions
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Targeting the mechano-microenvironment and liver cancer stem cells: a promising therapeutic strategy for liver cancer
  • Repurposing drugs for solid tumor treatment: focus on immune checkpoint inhibitors
  • Progress in oncolytic viruses modified with nanomaterials for intravenous application
Show more Review

Similar Articles

Keywords

  • Malignant gliomas
  • glioblastoma
  • temozolomide
  • chemoresistance
  • small molecule drugs

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2023 Cancer Biology & Medicine

Powered by HighWire