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Deciphering gastric inflammation-induced tumorigenesis 
through multi-omics data and AI methods
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ABSTRACT Gastric cancer (GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-

induced tumorigenesis is the predominant process in GC development; therefore, systematic research in this area should improve 

understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize 

biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems 

biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state- 

of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose 

translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for 

GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.
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Introduction

Currently, gastric cancer (GC) is the fifth most common 

malignancy and the third leading cause of cancer mortality 

worldwide, contributing to approximately 723,000 deaths 

annually1. Eastern Asia, particularly China, has a substantial 

GC burden2,3. In 2020, 44.0% of global GC incidence and 

48.6% of global GC-related deaths occurred in China. Notably, 

the 5-year survival outcomes for GC are strongly dependent 

on clinical stage, because early detection is associated with a 

95% survival rate4. However, the rate of early diagnosis of GC 

is low: only 20% of GC cases in Europe5 are diagnosed in an 

early stage, and the rate is even lower in China6. Late-stage 

GC has a median survival of approximately 10 months and 

a 5-year survival rate below 30%7. Therefore, an innovative 

paradigm for early GC detection and prevention is required 

for precision oncology, and for decreasing GC incidence and 

mortality.

A key limitation in early GC detection and diagnosis is 

the insufficient knowledge regarding the malignant pro-

gression of premalignant GC lesions. Histologically, intesti-

nal-type GC, the most common subtype, develops through 

an inflammation-induced tumorigenesis cascade, according 

to epidemiological observations of normal gastric epithe-

lium. Disease progression involves premalignant lesions, 

including chronic atrophic gastritis (CAG), intestinal meta-

plasia (IM), and dysplasia, which ultimately develop into 

GC8. Gastric inflammation-induced tumorigenesis is an 

evolutionary process involving multiple changes at the phe-

notypic, cellular, and molecular levels; the dynamic disease 

progression often lasts 10–30 years (Figure 1). The risk of 

developing GC increases during this evolutionary process. 

One study has indicated that 1/50 of patients with CAG, 

1/39 of patients with IM, and 1/19 of patients with dysplasia 

develop GC within 20-year follow-up9. In a study in 92,250 

patients in Western populations, the annual incidence of GC 

has been found to be 0.1% for patients with CAG, 0.25% for 

patients with IM, 0.6% for patients with low-grade dysplasia 

(LGD), and 6% for patients with high-grade dysplasia (HGD) 

within 5 years after histopathological diagnosis10. When 
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tumorigenesis occurs during progression remains unclear, 

thus hindering the early  diagnosis and prevention of GC. In 

recent years, progress in multi- omics technologies accompa-

nied by mathematical modeling  methods, including network 

analysis11, has swiftly advanced the field. These methods have 

enabled systemic identification of key points of tumorigenesis 

onset, exploration of early GC  biomarkers, and new strategies 

for GC  prevention, thus  providing substantial scientific and 

practical benefits in  combating GC.

In this review, we discuss challenges in early GC diagnosis 

and intervention, focusing on the multi-level and dynamic 

characteristics of gastric inflammation-induced tumorigenesis 

from the perspective of omics-based approaches. We focus on 

the potential of multi-level biological networks based on arti-

ficial intelligence (AI) in early GC detection and intervention, 

and in providing a novel paradigm for the precise prevention 

and management of cancers.

Multi-omics data characterizing 
gastric inflammation-induced 
tumorigenesis

The rapid advancement of omics technology has enabled data-

driven insights into GC tumorigenesis mechanisms, thus facil-

itating a holistic understanding of this dynamic multi-level 

process from both macroscopic and microscopic perspectives 

(Figure 2).

Macroscopically, phenomics, which involves multidisci-

plinary phenotypic data at the organismal level12, has gained 

growing attention for enabling the relationships of genotypes 

and phenotypes with GC incidence to be traced both clini-

cally and morphologically. The clinical features of phenomics 

commonly refer to clinical manifestations, such as signs and 

symptoms, which are external features resulting from internal 
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factors, such as molecules and environmental influences dur-

ing disease development. Common clinical GC indicators 

include age; unhealthful lifestyle habits, such as smoking and 

drinking; and a family history of GC8. Symptoms may com-

prise indigestion, anorexia (restless appetite), weight loss, and 

abdominal pain13. Dysphagia or reflux can occur in proximal 

GC or tumors located at the gastroesophageal junction. Some 

patients with GC may exhibit bleeding symptoms14. However, 

common clinical symptoms lack pathological stage specific-

ity, whereas several symptoms indicate GC development at 

an inoperable advanced stage. Extensive clinical experience 

in traditional Chinese medicine (TCM) has also been gained 

in treating and inhibiting gastric tumorigenesis, and identi-

fying characteristic phenotype information associated with 

 malignant progression15. Wu et al.16 have constructed a com-

prehensive database on the integration of TCM symptom 

 mapping, thereby improving phenomic data formats and aid-

ing in a deep understanding of GC incidence. Hou et al.17 have 

summarized the pathogenesis of GC premalignant lesions 

(GPLs) as internal deficiencies, such as spleen qi deficiency and 

stomach yin deficiency, and external excess, such as qi stagna-

tion, damp heat, and blood stasis. Li et al.18,19 have analyzed 

patients with CAG with cold syndrome and hot syndrome 

by using a network balance model to evaluate the imbal-

anced network underlying TCM syndromes, thus revealing 

the potential associations between symptoms and molecular 

changes in gastric premalignant lesions. Additionally, in TCM, 

tongue coating is associated with GC diseases, and tongue 

information, such as color and coating thickness, is associated 

with malignant progression18,20. Integration of tongue images 

and TCM symptoms by using AI methods has been demon-

strated to be effective in identifying GC precancerous lesions 

and predicting risk21,22.

Gastroscopy examination remains the gold standard for 

identifying gastric morphological features of malignant 

progression, and endoscopic and histopathological images 
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directly reflect the pathological state23. The pathological states 

of precancerous GC lesions vary. CAG is defined by a decrease 

in parietal cells and chief cells24, whereas IM is characterized 

by the emergence of enterocytes and goblet cells25. Dysplasia 

is characterized by abnormal cellular atypia26. In early GC, 

endoscopy shows a mild mucosal uplift or depression, accom-

panied by mild redness; because the images lack typical fea-

tures, early cancer interpretation is highly dependent on the 

endoscopists’ experience. Simultaneously, predicting progres-

sion risk according to pathological information regarding 

GPLs is difficult27. With the gathering of extensive gastros-

copy image data, AI methods have emerged as a  promising 

avenue in GC research, owing to their efficient computa-

tional and learning capabilities28. In particular, the applica-

tion of machine learning algorithms to process gastroscopy 

images has garnered substantial interest, because it allows for 

automatic annotation and extraction of lesion conditions in 

images; facilitates analysis of the pathological features of gas-

tric mucosal lesions; and enables prediction of their progres-

sion trends. Huang et al.29 have performed pioneering research 

in Helicobacter pylori (HP) infection by training a neural net-

work on endoscopic images of a 30-patient cohort, which 

identified HP with a sensitivity of 85.4%. In 2018, Hirasawa 

et al.30 reported an automatic GC monitoring system based 

on convolutional neural networks under routine endoscopy, 

which had an overall sensitivity of 92.2% for tumor recogni-

tion in 2,296 test images. Wu et al.31 have used a deep convo-

lutional neural network to develop an intelligent recognition 

method for early GC endoscopic images; the recognition accu-

racy rate of 92.5% indicated better performance than that of 

endoscopists. Luo et al.32 have conducted a multicenter case–

control trial involving collection of a vast corpus of 1,036,469 

GC gastroscopy images from 84,424 patients. Subsequently, 

they developed a deep learning framework that predicted early 

GC with an internal validation set accuracy rate of 95.5%, 

which was comparable to the performances of endoscopists. 

In general, accumulating phenomic knowledge regarding gas-

tric inflammation-induced tumorigenesis has provided fun-

damental perspectives for identifying potential biological con-

nections between phenotypes and genotypes, thus supporting 

translational application for the early diagnosis and treatment 

monitoring of GC.

Multi-omics at the microscopic level primarily involves 

the examination of cellular and molecular characteristics 

during the tumorigenesis process. Regarding cellular fea-

tures, significant changes in cell states can reflect phenotypic 

transformations, such as morphologic diversity during dis-

ease progression. Corresponding molecular alterations occur, 

because cells are responsible for biological functions in organ-

isms. Therefore, cellular features may serve as a crucial link 

between macroscopic phenotypic knowledge and microscopic 

molecular knowledge; consequently, reliable resolution of 

changes in cell states is necessary. Single-cell transcriptomics, 

a high-resolution technique capable of resolving gene expres-

sion differences in individual cells, can be used to study the 

molecular characteristics and heterogeneity of individual cells 

in GC precancerous lesions. This method aids in systematic 

understanding of the changes in cell associations during gas-

tric inflammation-induced tumorigenesis. Zhang et al.33 have 

conducted the first single-cell transcriptomic studies on GC 

precancerous and cancer lesions and have successfully cap-

tured more than 50,000 cells from patients with gastritis and 

GC. On the basis of these findings, they have established the 

first single-cell atlas of GC tissue, thus revealing the gene 

expression changes occurring during the progression from 

precancerous lesions to early GC. This study has revealed 

gene expression changes during gastric inflammation-induced 

tumorigenesis and identified unique molecular features and 

specific marker genes, which may aid in the early diagnosis of 

GC. This research has provided a reliable molecular basis for 

studying GC mucosal cell heterogeneity and different types of 

precancerous lesions, thus aiding in the identification of can-

cer prevention biomarkers that could potentially be used to 

identify individuals with high-risk lesions expected to progress 

to invasive carcinoma. Sathe et al.34 have analyzed approxi-

mately 55,000 cells from biopsy samples of IM and GC, and 

generated a receptor–ligand network associated with different 

components of the GC immune microenvironment. Single-

cell transcriptomic sequencing has also been widely applied 

in GC heterogeneity research. Kumar et al.35 have constructed 

a large-scale GC single-cell atlas from 31 patients (more than 

200,000 cells); deeply analyzed intratumor and intertumor 

heterogeneity; discovered new features of the tumor microen-

vironment in diffuse GC; and identified and validated the role 

of INHBA in specific subtypes of cancer-associated fibroblasts. 

Wang et al.36 have comprehensively analyzed a single-cell atlas 

constructed from 45,000 cells from patients with malignant 

ascites, and have found that specific cancer cell subpopula-

tions of GC origin lead to diminished patient survival rates, 

possibly through activating carcinogenic pathways such as cell 

cycle regulation, DNA repair, and metabolic reprogramming 

during the metastatic process. These findings have revealed the 
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high developmental plasticity of GC cells during migration. 

In summary, single-cell transcriptomics has broad applica-

tion prospects in gastric inflammation-induced tumorigene-

sis research. The exact subclonal composition of a sequenced 

cancer cell population has emerging roles in improving under-

standing of the biological mechanisms of GC development, 

and providing effective methods for early GC diagnosis and 

treatment.

At the molecular level, genomic, epigenomic, and transcrip-

tomic technologies are used to analyze the molecular asso-

ciations underlying GC tumorigenesis across various omics 

levels, thus providing data for understanding biological mech-

anisms. From genomic data, 2 broad categories of driver genes 

have been identified in GC: genes frequently mutated in vari-

ous tumors, such as TP53, ARID1A, ERBB2, and FGFR237, and 

genes exhibiting tissue and lineage specificity, such as CDH1 

and RHOA38. TCGA defines specific molecular subtypes of 

GC at the genomic level, including chromosomal instability, 

microsatellite instability, genomic stability, or Epstein-Barr 

virus (EBV) positivity39. In noncoding genes, mutations in 

CTCF binding sites involving AT>CG and AT>GC substitu-

tions and "enhancer hijacking" events have been identified in 

GC. Common mutation features of GC include T>G substitu-

tions, which may help determine the origin of GC according 

to tissue specificity. In the dysplasia stage of GPLs, genomic 

changes such as chromosomal instability40, telomere short-

ening, and copy number changes have been detected; conse-

quently, the loss of chromosomal integrity regulation might 

be an essential feature of GC tumorigenesis. However, existing 

research on single types of omics is facing with difficulties in 

identifying functional associations among different data levels; 

moreover, the prioritization of samples with high tumor pro-

portions in research may shift focus away from the role of the 

microenvironment. In recent years, studies have indicated that 

epigenetic changes promote carcinogenesis, thus providing 

new insights into the critical molecular features of GC devel-

opment. Tumor epigenetic changes include primarily modi-

fications to DNA, histones, and RNA. Changes in CpG island 

DNA methylation have been widely studied, and may be asso-

ciated with exogenous stimuli such as HP and EBV. Chronic 

inflammation induced by HP has been shown to lead to wide-

spread DNA hypermethylation and hypomethylation in the 

GC epithelium, such as CDH family methylation, which is irre-

versible even after HP eradication, thereby suggesting a possi-

ble risk marker for GC development41,42. In the study of gastric 

malignant progression, research on histone modifications43, 

such as changes in H3K27ac and H3K4me3 signals marking 

enhancers and promoters, is attracting attention. Alternative 

promoter selection is a common epigenetic feature of GC, 

and the use of alternative promoters can help newly formed 

tumors evade the host immune system and achieve immune 

programming, thus potentially representing an intervention 

target and direction for GC research44. Previous epigenetics 

research45 on RNA modifications has focused primarily on 

miRNAs and lncRNAs, such as the oncogenic lncRNA ZFAS1, 

which may promote the division of GC cells, and miR-584-3p, 

which may inhibit GC progression. Transcriptomic studies 

have also identified other events, such as tumor-associated 

selective splicing events and A-to-I base pair changes caused 

by RNA editing46. However, RNA-level changes themselves are 

not heritable, and the roles of GC-driving events have not yet 

been fully determined. Additional quantitative characteriza-

tion of gastric inflammation-induced tumorigenesis has been 

increasingly provided by a variety of emerging omics tech-

nologies, including proteomics, metabolomics, lipidomics, 

microbiomics, and radiomics.

In summary, substantial omics data have been collected on 

the multi-layered and dynamic processes involved in gastric 

inflammation-induced tumorigenesis, thus facilitating under-

standing of the complex biological mechanisms underpin-

ning this process, and highlighting the need for using robust 

analytical methods to uncover potential biological associa-

tions between patient characteristics and disease risk by using 

extensive, multi-level omics data (Table 1).

AI-based methods for systematically 
resolving multi-omics data

The dynamic characteristics of gastric inflammation-induced 

tumorigenesis involve associations of multi-level information, 

such as phenotypic features, including TCM symptoms, and 

cellular and molecular features. Achieving comprehensive 

and holistic characterization from single-level information is 

difficult, given that distinct levels of omics information pres-

ent unique data structures while simultaneously containing 

deeply embedded correlations. Identifying key components 

associated with disease progression amid the massive accu-

mulation of multi-level omics data is a critical methodological 

challenge in current research.

For multi-level omics integration, existing coupling 

methods can be roughly divided into 3 categories (Table 2). 
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The first is based on similarity measurement methods, which 

calculate similarity information for each omics level and 

then use various fusion methods to process similarity fea-

tures for unified analysis. These methods are ideally suited 

for applications in which the number of features exceeds the 

number of samples, thereby enabling effective integration of 

diverse data types. Rappoport et al.51 have constructed similar-

ity-based multi-omics clustering methods to exploit similarity 

Table 1 Multi-omics research on gastric inflammation-induced tumorigenesis

Omics level   Omics conducted   Sample categories   Study design   Highlighted findings   Refs

Phenotype   Phenomics   Clinical follow-up 
information

  Longitudinal   Association between smoking and IM 
progression

  47

Phenotype   Phenomics   Tissue samples and PBMC   Longitudinal   Association between serum biomarkers and 
gastric precancerous progression

  48

Cellular   Single-cell transcriptomics   Tissue samples   Cross-sectional   Single-cell atlas, cell cluster marker, GC signatures  33

Cellular   Single-cell transcriptomics   Tissue samples and PBMC   Cross-sectional   TME components, receptor‒ligand network   34

Cellular   Single-cell transcriptomics   Tissue samples   Cross-sectional   Heterogeneous cell population, epithelial-
myofibroblast transition

  49

Cellular   Single-cell transcriptomics, 
spatial transcriptomics

  Tissue samples, in vitro 
and in vivo models

  Cross-sectional   Lineage states across GC subtypes   35

Cellular   Single-cell transcriptomics   Ascites samples   Cross-sectional   Diversity in tumor cell lineage composition, 
intertumoral heterogeneity

  36

Molecular   Genomics   Tissue samples   Cross-sectional   Genomic amplification in GC   37

Molecular   Genomics   Cell lines   Cross-sectional   Transcription factors and their role in 
tumorigenesis

  38

Molecular   Genomics   Tissue samples   Cross-sectional   Molecular subtypes of GC   39

Molecular   Genomics   Tissue samples   Cross-sectional   Association between genetic instability and HP 
infection

  40

Molecular   Genomics, epigenomics   Tissue samples   Longitudinal   Molecular features of IM progression   50

Molecular   Microbiomics   Tongue-coating samples   Cross-sectional   Association between the variation in tongue-
coating microbiota and development of gastritis

  20

Table 2 Research on network-based methods for resolving multi-omics data

Method category   Modeling methods   Input   Application   Refs

Multi-layer integration   Dimensionality reduction   Multi-layer network   Multi-layer clustering   52

Multi-layer integration   Similarity measurement   Multi-layer network   Multi-layer clustering   57

Multi-layer integration   Network structure analysis  Multi-layer network   Multi-level biological network 
construction and resolution

  59

Multi-layer integration   Network structure analysis 
and machine learning

  Multi-layer network   Multi-level biological network 
construction and disease gene prediction

  61

Dynamic feature identification  Representation learning   Dynamic network   Network topology dynamic representation   63

Dynamic feature identification  Dynamic embedding   Dynamic network   Dynamic features identification and 
anomaly detection

  65

Dynamic feature identification  State transition simulation   Dynamic biological network   Dynamic features identification, early 
warning signals

  66

Dynamic feature identification  Multiscale modeling   Dynamic biological data   Simulation of tumorigenesis   67
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relationships among multi-omics levels. These methods have 

achieved reinforcement and supplementation of information 

among different levels of networks and identification of key 

data features. Notably, a key intrinsic shortcoming of algo-

rithms in this category is the lack of feature importance at each 

omics level. Consequently, further computational methods are 

necessary to calculate the feature importance values among 

omics features, thus largely restricting the implementation 

of these algorithms. The second category comprises methods 

that output feature importance parameters from omics data, 

thus facilitating downstream analysis based on dimension-

ality reduction methods. This category of methods is based 

on an assumption that omics data have an inherently low- 

dimensional representation, and each level of omics data can 

be considered as a projection from this low-dimensional rep-

resentation to high-dimensional space. Matrix decomposition 

methods can effectively identify significant hierarchical struc-

tures. For example, nonnegative matrix factorization (NMF) 

methods use an intrinsic low-rank representation of data and 

map it onto a high-dimensional transformation matrix that 

is also nonnegative. These methods enable the depiction of 

relationships among various omics features52. Mo et al.53 have 

proposed a flexible matrix decomposition structure that uses 

the EM algorithm to analyze the regularized clustering struc-

tures among structural data and the intrinsic connections in 

multi-level data. Notably, the NMF method is often used in 

single-cell transcriptome sequencing analysis to analyze the 

relationships between cellular data and molecular levels data, 

and to identify molecular features associated with different cell 

states54,55. As described above, Kumar et al.35 have constructed 

a GC single-cell atlas by using NMF methods to identify high 

variable genes for cell clusters, thus supporting the identifica-

tion and clinical validation of the gene signatures of cancer-as-

sociated fibroblasts. Although these methods efficiently anno-

tate the dominant features of omics data at multiple levels and 

have high inference accuracy in identifying potential connec-

tions, the lack of biological interpretability is currently largely 

challenging the implantation effects, as the original features 

of omics data are projected into the hidden feature space53. 

The third category encompasses network structure analysis 

methods, which use principles of network science to abstractly 

represent multi-level information. These methods use a node-

edge model, wherein nodes represent distinct basic units 

within the system, and edges describe the interaction relation-

ships among these units. Thus, network structure analysis can 

link conventionally disordered data samples and facilitate the 

preservation of biological interpretability. AI algorithm prop-

agation has been widely applied to the analysis of multi-layer 

network structures and topologies. Han et al.56 have used 

a machine learning model to construct a large-scale multi- 

omics network, which has been applied to detect associated 

structures within the network. Wang et al.57 have constructed a 

network-based machine learning model called similarity net-

work fusion, which was initially developed for patient stratifi-

cation and survival analysis, and iteratively updates individual 

omics similarity networks. In bioinformatics research, meth-

ods such as deep learning strategies58, module-based optimi-

zation algorithms, and spectral clustering similarity network 

fusion57 have been widely used in biological gene-associated 

networks for effectively processing unweighted network struc-

tures; however, their calculations require extensive time and 

memory resources, and the large number of model parame-

ters may lead to accidental overfitting. Wu et al.59 first revealed 

the existence of hierarchical modularization in macro-micro 

biological networks. Modularization primarily indicates that 

the biological elements within each module are closely related, 

whereas their connections with adjacent modules is relatively 

weaker. Furthermore, correlations have been observed among 

different levels of modules at macro- and microscales, such 

that stronger modular associations of disease genes or drug 

targets in the network are observed when the corresponding 

phenotypes are more similar. “Multi-level modular relation-

ship” law could be thus uncovered and summarized among 

biological elements at various hierarchical levels. Predictive 

algorithms have been established for disease-causing genes 

and drug targets with higher accuracy than popular methods, 

and used to systematically analyze disease network regula-

tion mechanisms under specific tissue or cell conditions, thus 

achieving systematic integration of multi-level information 

such as phenotype-cell-molecule modules60,61.

GC malignant progression involves intricate multi-level 

information that corresponds to dynamic evolution at vari-

ous pathological stages, such as CAG, IM, and LGD. Given the 

multifaceted characteristics of this complex process, mathe-

matical modeling methods require the analysis and fitting of 

dynamics at multiple time points. Recently, increasing atten-

tion has been paid to methods for dynamically fitting mul-

ti-level information. Because of the added dimension of time, 

structural features become increasingly complex, thus making 

description of deeper structural patterns in evolving patterns 

difficult through traditional statistical methods. Although 

these methods have successfully extracted dynamic network 



8 Zhang et al. Multi-omics and AI in deciphering gastric inflammation-induced tumorigenesis

features, they may lead to error accumulation over time. To 

address this issue, machine learning methods have been widely 

applied in dynamic network feature extraction. Network rep-

resentation learning is an important method for analyzing 

such networks and mining information from them; the core 

of this method involves embedding these unstructured data 

into a low-dimensional space through low-dimensional vec-

tors, to characterize nodes and edges or even entire networks. 

Jiao et al.62 have proposed a temporal network embedding 

framework that uses a variational autoencoder tool to gen-

erate low-dimensional embedding vectors for network nodes 

while preserving the dynamic nonlinear features of network 

substructures. Additionally, Cui et al.63 have used graph con-

volutional networks to achieve low-dimensional representa-

tions while updating node representations on the basis of 

unified representations. When the network state changes, 

new representations from neighboring nodes relevant to the 

change are automatically aggregated along the graph. Notably, 

dynamic network analysis methods have also been widely 

applied to specific biological problems. By combining bio-

logical networks with multi-omic sequencing data, Greene 

et al.64 have integrated multiple levels of information analy-

sis, and achieved the prediction of disease-causing genes and 

resolution mechanisms for specific tissue/cell type regulatory 

mechanisms by exploiting multiscale information integration 

methods. Chen et al.65,66 have developed dynamic signaling 

pathway recognition methods that use individual patient data 

to identify biomarkers indicative of distorted physiologies. 

Their approach leverages complex biomedical processes that 

operate across multiple scales and are influenced by metasta-

ble equilibria phenomena. In this context, critical molecular 

interactions between transduction scaffold complexes have 

facilitated the identification of regulatory pathways underly-

ing targeted region-of-interest conditions that extend beyond 

single-cell resolution under perturbations, stressors, and other 

conditions. Specifically, this method has enabled the identifi-

cation of key features associated with system/network bound-

aries, thereby providing valuable insights into the mechanisms 

driving cancer onset and progression. In a study targeting 

inflammation-induced tumorigenesis in the digestive system 

from the perspective of the phenotype-cell-molecule network, 

Guo et al.67 have established a dynamic mathematical model 

to interpret the interactions between inflammatory environ-

ments and cell functions across multiple scales according to 

relationship analysis. Through function relation methods, 

they have analyzed the dynamic evolutionary trends in key 

multi-level network modules. By fitting the long-term dynam-

ics of inflammation-induced tumorigenesis and identifying 

metabolic-immune balance states playing critical roles in 

tumor transformation, they have defined the molecular path-

ways driving genetic mutations that are responsible for cancer 

onset, and have conducted etiological analyses. Their findings 

have established regulatory networks and risk assessment 

models for inflammation-induced tumorigenesis, and have 

made valuable contributions to the understanding of tumori-

genesis and its underlying mechanisms.

Collectively, multi-level dynamic biological network analy-

sis is poised to enable reliable characterization of multi-omics 

data in malignant progression. Consequently, understand-

ing and measuring the underlying evolutionary process in 

gastric inflammation-induced tumorigenesis is an innova-

tive approach for prognosticating the progression to cancer. 

Through systematic analysis of key network modules exhib-

iting dynamic multi-level features, trustworthy early warning 

biomarkers may be identified and used to stratify patients into 

those at truly high risk of progression who require enhanced 

endoscopic observation, as well as to shed light on new strate-

gies for early recognition and diagnosis of GC (Figure 3).

Identifying biomarkers of gastric 
inflammation-induced tumorigenesis 
according to dynamic multi-level 
omics features

Biomarkers are objective measures used to evaluate com-

plex diseases. In GC, biomarkers can serve as indicators of 

pathogenesis. Although several GC biomarkers are clinically 

applied, their effectiveness in improving the diagnosis rate of 

early-stage GC is suboptimal; therefore, effective diagnostic 

biomarkers must be explored. The systematic dissection of 

dynamic multi-level biological networks may reveal network 

modules that may serve as potential biomarkers of inflamma-

tion-induced tumorigenesis from a holistic perspective, thus 

substantially advancing the early diagnosis and precise treat-

ment of GC.

GC biomarkers in clinical applications can be generally 

divided into 2 categories: serum biomarkers and liquid biop-

sies. Serum biomarkers, such as CEA, CA19-9, AFP, CA72-

4, and CA12-5, have limited ability in early GC detection68. 

CEA is a widely used tumor marker in clinical practice, and 

its expression levels may increase in other conditions, such as 
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inflammatory bowel disease and liver disease. Additionally, 

CEA levels may increase only in advanced stages rather than 

in early stages of GC69. Similarly, high CA19-9 expression is 

found in many other types of cancer, including pancreatic can-

cer69. AFP-positive GC is also observed in advanced stages70. 

Other conventional clinical biomarkers, including CA72-4 

and CA125, generally exhibit high sensitivity and accuracy, 

yet little research has examined their ability to detect early 

GC71. In recent years, liquid biopsies have shown promise in 

early GC diagnosis; cell-free DNA (cfDNA) and circulating 

tumor DNA (ctDNA) are the most widely used. However, the 

translational practice of liquid biopsies remains challenging, 

because nearly all studies have focused on monitoring tumor 

signals in detectable conditions but have ignored the unique 

characteristics of gastric precancerous lesions. Notably, one 

study has found that cfDNA in the precancerous stage is not 

significantly elevated beyond that in healthy controls, thus 

limiting the potential value of cfDNA as an early diagnostic 

biomarker. Therefore, further studies are needed to establish a 

reliable set of biomarkers that can predict malignant progres-

sion and enable personalized treatment of early GC.

Because GC develops through stepwise progression, the 

most effective strategy for the early diagnosis of GC is identify-

ing patients with premalignant lesions at high risk of progres-

sion. Extensive research has identified biomarkers in gastric 

premalignant lesions or early stages of GC from multi-om-

ics perspectives (Table 3). Among genomic analyses, Fassan 

et al.72 have indicated that HGD and EGC share similar molec-

ular signatures, and that TP53 might play an important role 

in the progression to invasive GC. Similarly, Rokutan et al.73 

have described the somatic mutational landscape of LGD and 

emphasized the importance of TP53 mutation, which precedes 

Dynamic multi-omics data

Network construction

Phenotypic level

Cellular level

Molecular level

Multi-layer data integration

• Early warning • Early diagnosis

• Precision prevention• Personalized treatment

Al

P1

C1
C2 Cn

M1

P2 Pn

M2
Mn

Dynamic feature identification

Al

Modules
Time

Modules

Network dissection

Network application

E1
Cov(Pi , Ci)
r (Pi) r (Ci)
=

E2
Cov(Mi , Ci)
r (Mi) r (Ci)
=

dX(t)
f(X(t); P)

dt
=

Figure 3 Application of the integration of AI and network-based methods for early GC prevention.
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other mutations in the development of GC. These results sug-

gest that somatic TP53 mutation might serve as a potential 

marker for the high progression risk of LGD and thus con-

tribute to the early diagnosis of GC. Among transcriptomic 

analyses, Lee et al.74 have performed microarray analysis on 

IM glands by using laser capture microdissection and have 

suggested that CDH17 might serve as a promising biomarker 

for early-stage GC. Dynamic changes in cell types play crucial 

roles in gastric tumorigenesis. Among single-cell transcrip-

tomics studies, we have constructed the first dynamic cellular 

network across distinct premalignant lesions; this network has 

revealed the expression signature of exceedingly early cells of 

gastric cancer (EEGC) and characterized biomarkers of EEGC, 

including KLK1033,75,76. On the basis of EEGC, potential bio-

markers for discriminating and warning GC in curable stages 

could be determined, thus improving understanding of the 

associated etiology and pathogenicity, while informing new 

therapies and prevention targets. Among microRNA- omics 

studies, researchers77,78 have found that miR-30, miR-194, 

and miR-143-3p might contribute to gastric tumorigenesis. 

Table 3 Research on early GC diagnosis biomarkers from omics data

Omics level   Sample category   Biomarkers   Performance index odds ratio (95% confidence interval)  Refs

Cellular   Tissue samples   KLK10   N/A   33

Molecular   Tissue samples   Somatic TP53 mutation   Six positive among 9 EGC-coexisting HG-IEN lesions   72

Molecular   Tissue samples   Somatic TP53 mutation   N/A   73

Molecular   Tissue samples   CDH17   N/A   74

Molecular   Tissue samples   miR-30
miR-194

  N/A   77

Molecular   Tissue samples   miR-143-3p   N/A   78

Molecular   Tissue samples   APOA1BP
PGC
HPX
DDT

  IM/LGIN vs. SG/CAG
APOA1BP: 0.71(0.45–1.11)
PGC: 0.33(0.19–0.57)
HPX: 1.45(0.69–3.05)
DDT: 0.71(0.45–1.11)

  79

Molecular   Plasma samples   Sn-2 LysoPC(20:3)
Sn-1 LysoPC(18:3)
α-Linolenic acid
Linoleic acid
Palmitic acid
Arachidonic acid

  IM/LGIN vs. SG/CAG
Sn-2 LysoPC(20:3): 1.31 (0.93–1.87)
Sn-1 LysoPC(18:3): 1.26 (0.90–1.77)
α-Linolenic acid: 1.09 (0.78–1.53)
Linoleic acid: 1.12 (0.80–1.56)
Palmitic acid: 1.23 (0.89–1.71)
Arachidonic acid: 1.35 (0.98–1.88)

  80

Molecular   Plasma samples   PC38:6(20:4)
PC38:5(20:4)
PA32:1
LPI18:0
LPI20:4
FFA20:4
FFA18:3
FFA18:0
LysoPC18:3
LysoPC20:4
PC34:3

  GC vs. IM/LGIN
PC38:6(20:4): 0.61
PC38:5(20:4): 0.74
PA32:1: 0.50
LPI18:0: 0.58
LPI20:4: 0.13
FFA20:4: 0.50
FFA18:3: 0.50
FFA18:0: 0.58
LysoPC18:3: 0.31
LysoPC20:4: 0.17
PC34:3: 0.60

  81

Molecular   Tongue-coating samples   Campylobacter concisus   N/A   20

Molecular   Tissue samples   FBXW7 mutation   4.7% in gastric biopsies   50

Molecular   Tissue samples   RNF43 mutation   35.2% in EGC-adenomas   82
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Among proteomics studies, Li et al.79 have found distinct dif-

ferences in proteomic features between gastric premalignant 

lesions (GPLs) and GC, thus identifying several proteins asso-

ciated with increased risk of gastric lesion progression. Among 

metabolomic studies, Huang et al.80 have used an untargeted 

plasma metabolomic assay and identified 6 metabolites asso-

ciated with a decreased risk of early GC, 3 of which were 

associated with the progression of IM. Among lipidomics 

studies, Liu et al.81 have investigated the association between 

lipidomic signatures and the risk of progression to GC. The 

study has identified 11 plasma lipids inversely associated with 

gastric lesion progression and GC occurrence. These lipids 

were organized into 5 clusters, thus improving the ability to 

predict the progression potential and risk of early GC. Among 

microbiome analyses, Cui et al.20 have performed metagen-

omic sequencing and have found that Campylobacter concisus 

is associated with the development of GPLs. The presence of 

Campylobacter concisus has been detected in both the tongue 

coating and gastric fluid of patients with gastritis, and thus 

may serve as a potential noninvasive biomarker for long-term 

monitoring of the disease. Because single-layer omics data 

might not be sufficient to decipher the multi-level biological 

mechanisms underlying the progression of gastric tumori-

genesis, multi-omics level investigations have been performed 

to uncover the underlying mechanisms. By integrating the 

genomic and epigenomic levels, Huang et al.50 have found that 

IM exhibits specific genomic and epigenomic features, includ-

ing low mutational burden; recurrent mutations in certain 

tumor suppressors, such as FBXW7, chromosome 8q ampli-

fication; and shortened telomeres. In patients with IM, short-

ened telomeres and chromosomal alterations are associated 

with subsequent LGD or GC. Several IMs exhibit hypermeth-

ylation at DNA methylation valleys but generally lack intra-

genic hypomethylation signatures of advanced malignancy. 

Min et al.82 have analyzed the genetic and transcriptomic 

characteristics of adenomas with LGD, HGD, and EGC. The 

study has demonstrated that RNF43 mutations and downreg-

ulation are key events in the progression from LGD to HGD, 

and eventually to EGC. The findings suggest that tumors with 

RNF43 mutations may be responsive to Wnt-targeted agents, 

thus highlighting the diagnostic value and potential therapeu-

tic strategy for intestinal-type GC with RNF43 mutations.

In general, increasing the sensitivity and specificity of bio-

markers for early GC diagnosis remains a key research prior-

ity, which requires in-depth investigation of the multi-level 

biological mechanisms underlying gastric tumorigenesis. 

Although most studies have focused on cross-sectional sam-

ples, recognizing the dynamic features of this process is cru-

cial; thus, prospective clinical trials are needed to determine 

the effectiveness of early diagnosis biomarkers on the basis 

of longitudinal samples. By leveraging AI methods to iden-

tify crucial features in this process, robust biomarkers may 

be identified that enable early detection of GC and improve 

patient outcomes.

Network pharmacology and AI-based 
TCM in the prevention and treatment 
of gastric inflammation-induced 
tumorigenesis

Although current strategies for preventing gastric cancer 

have focused on addressing common risk factors, they have 

often been unable to effectively prevent GC at the precancer-

ous stage. Therefore, new preventive strategies that target the 

molecular mechanisms underlying gastric tumorigenesis are 

needed. Because the core output of the biological network 

modules represents the multi-level and dynamic characteris-

tics of gastric inflammation-induced tumorigenesis, systemat-

ically screening drugs to target network modules by using AI 

methods may enhance understanding for updating strategies 

of GC prevention and treatment, and ultimately achieving 

better patient outcomes.

Current strategies for preventing GC primarily target com-

mon risk factors but cannot accurately prevent cancer devel-

opment of GPLs. HP infection is among the most important 

risk factors for GC occurrence. The most widely used clini-

cal treatment for preventing GC is eradication of HP, but the 

effectiveness of HP eradication in reversing GPLs remains 

controversial, particularly in cases of IM and relatively severe 

lesions. For example, Hwang et al.83 have found that HP erad-

ication contributes to the reversal of CAG and IM in a 10-year 

follow-up clinical study. In another 16-year clinical follow-up 

study84, researchers have found that HP eradication ame-

liorates CAG that has not progressed to IM. However, some 

studies85 have shown that HP eradication may be ineffective in 

patients with IM, thus suggesting that eradicating HP may not 

be sufficient to prevent the reversal of GPLs. The efficacy of 

HP eradication in decreasing the incidence of GC also has lim-

itations. Although a long-term follow-up study has indicated 

that patients who received HP eradication had a lower inci-

dence of GC, the benefit was not observed until 26.5 years later 
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and was difficult to achieve in the short term86. These studies 

have indicated that, although HP eradication may be effective 

in interventions to prevent the progression of GPLs, additional 

interventions are required.

Several risk factors for gastric cancer have been identified, 

including hereditary factors, smoking and alcohol consump-

tion, and EBV infection. Hereditary factors are responsible 

for 1%–3% of GCs87. The tumorigenesis of CDH1 mutation- 

associated diffuse-type gastric cancer does not strictly fol-

low the Correa cascade model, and the underlying genetic 

causes of intestinal-type gastric cancer remain incompletely 

 understood88. Lifestyle factors, such as smoking and alcohol 

use, increase the risk of various types of tumors, including GC. 

Smoking is also associated with a greater increase in the risk 

of EBV-positive GC than EBV-negative GC89. EBV is known 

to remodel host chromatin topology and promote activation 

of oncogenes90. It plays a critical role in activating the PI3K-

Akt and Wnt signaling pathways91, thus leading to altered cell 

signaling in malignant cells. Currently, EBV-associated GC 

treatments include chemotherapy alone or in combination 

with specific inhibitors, such as PD-L1 inhibitors and PI3K 

inhibitors92. However, EBV has been reported to be associated 

with only 8%–10% of GCs92, and HP eradication remains the 

best-studied therapy strategy. By focusing on these risk fac-

tors, more effective prevention, intervention, and personal-

ized treatment strategies can be developed to improve patient 

outcomes.

Given the abnormally elevated oxidative phosphorylation 

during gastric tumorigenesis, vitamin supplements with anti-

oxidant properties have been used as an adjunct to HP erad-

ication, but their effectiveness has remained insignificant in 

the short term. A randomized, double-blind study of 1980 

patients receiving vitamin C, vitamin E, and beta-carotene has 

indicated no significant differences in the pathological pro-

gression rate and regression rate between the treatment and 

placebo groups93. Another follow-up study in 3,365 patients 

has shown that HP eradication and continuous use of various 

vitamins for as long as 7 years decreases the incidence of GC94. 

In summary, additional vitamin supplementation does not 

significantly enhance the effect of HP eradication in blocking 

gastric tumorigenesis in the short term, and additional drug 

intervention is needed.

Although some Western medicines target GPLs, includ-

ing celecoxib, rebamipide, and aspirin, their strength of evi-

dence is low, and their recommendation in clinical practice 

guidelines is poor95. Western medicines such as the COX2 

inhibitor celecoxib have been found by Sheu et al.96 to pro-

mote IM reversion and delay progression in patients who 

underwent HP eradication. However, this finding contradicts 

the conclusion of another study by Wong et al.97, who have 

found no significant improvement after celecoxib intervention 

for 24 months after HP eradication in HP-positive patients. 

Therefore, the effectiveness of celecoxib for GPL intervention 

has not been uniformly agreed upon. Other Western medicine 

studies have targeted GPLs beyond celecoxib. For example, 

a meta-analysis by Huang et al.98 has indicated that aspirin 

decreases the incidence of GC in HP-positive patients but has 

no significant effect on HP-negative patients. Some research-

ers99 have found that rebamipide promotes the reversal of IM 

and LGD in patients; however, in another multicenter clinical 

trial, its effectiveness in improving IM was not found to be 

significant, and its efficacy requires further validation through 

more research100. Overall, the effects of Western medicine in 

GPL interventions have also been unsatisfactory. One possible 

reason is that gastric tumorigenesis is a long-term process, and 

the mechanisms involved are complex and must be extensively 

investigated from a systematic and comprehensive perspective. 

TCM provides a trove of treatments waiting to be explored, 

and its multi-component, systemic regulatory effects are 

highly compatible with treating the complex process of gas-

tric tumorigenesis. Currently, the TCM Moluodan has been 

included in clinical consensus opinions and is considered to 

have potential value in treating GPLs95. The most reliable evi-

dence supporting this treatment has come from a prospective, 

randomized, double-blind, placebo-controlled trial, in which 

Tang et al.101 have found that, compared with folic acid com-

bined with vitamin E, Moluodan effectively ameliorates gastric 

mucosal CAG and IM, and notably reverses LGD. Intervention 

strategies for gastric tumorigenesis remain largely unsatisfac-

tory, and TCM may provide novel candidate strategies for the 

prevention of precancerous lesions.

Multicomponent TCM is characterized by its holistic per-

spective; thus, a holistic TCM research approach is needed. 

Consequently, the concept of network pharmacology with 

a holistic network target as the core concept has been pro-

posed102. Representative algorithms include CIPHER,59 which 

enables genome-wide pathogenic gene prediction and is based 

on multi-level biological networks, and a genome-wide tar-

get prediction algorithm for TCM ingredients called drugCI-

PHER103. TCM network pharmacology provides a promising 

approach for understanding the molecular network features of 

complex disease processes and the intervention mechanisms 
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of multicomponent TCM, including elucidation of the overall 

mechanism of action of Moluodan on CAG104. Recent TCM 

intervention studies on gastric tumorigenesis based on TCM 

network pharmacology are listed in Table 4. However, few of 

them have integrated omics or dynamic data. Of note, with 

the progress in single-cell RNA-seq technology and the accu-

mulation of single-cell data, studies have integrated single-cell 

RNA-seq data with network pharmacology, in an emerging 

method for conducting drug intervention research at the cel-

lular level105,106. However, such studies have not yet been con-

ducted on interventions for gastric tumorigenesis, and further 

in-depth exploration is urgently needed. Systematic research 

integrating multi-omics data, AI algorithms, and TCM net-

work pharmacology is expected to address the problem of the 

unclear intervention mechanisms for gastric tumorigenesis 

and explore potential effective TCM intervention drugs. This 

approach has shown promise for precision intervention with 

Weifuchun capsules in patients with CAG107.

Future perspectives

With the pioneering accumulation of multi-omics data and 

machine learning methods, recent years have seen an explo-

sion in gastric inflammation-induced tumorigenesis research, 

which has provided new biological understanding of GC 

oncology and prevention. On the basis of the newly determined 

biological mechanism, promising biomarkers and potential 

targets that characterize key state changes initiating tumori-

genesis during inflammation-induced tumorigenesis may be 

reliably identified and validated, to enable better early GC risk 

stratification as well as personalized prevention strategies.

Despite major advances in this field, several challenges 

remain unsolved, thus strictly limiting further understanding 

of the key point of GC onset during gastric inflammation- 

induced tumorigenesis. Among multi-omics data, large-scale 

individual longitudinal data are lacking, and multi-omics data 

obtained from the same patients at different time points are 

needed to avoid crucial bias in feature identification. Moreover, 

prolonged surveillance of patient samples over the course of 

years could also help accrue sufficient parameters for simulat-

ing evolutionary models statistically while offering an exem-

plary opportunity to study lesion evolution over time and in 

space during progression. Greater attention should be paid 

to new omics in gastric inflammation-induced tumorigene-

sis research. For example, radiomics is increasingly becom-

ing a powerful tool for mining quantitative medical image 

features, which may substantially broaden multi-level omics 

insights into inflammation-induced tumorigenesis. Radiomics 

has shown high potential in early tumor diagnosis for breast 

cancer and lung cancer114,115. These methods transform med-

ical images into quantifiable features for mining through 

lesion image segmentation, radiomic feature extraction, and 

Table 4 Network pharmacology research on TCM interventions for gastric inflammation-induced tumorigenesis

Formula   Lesion   Research strategy   Mechanism of action   Refs

Huangqi Jianzhong Tang   CAG   Network pharmacology and metabolomics   Mitochondrial energy metabolism regulation   108

Qilianshupi decoction   CAG   Network pharmacology and in vivo validation  Survivin and p53 inhibition; regulation of 
telomerase activity and telomere length

  109

Modified Sijunzi decoction   CAG   Network pharmacology and clinical trial   T-cell receptor beta regulation   110

Huazhuojiedu decoction   CAG   Network pharmacology and in vivo validation  Cancer-associated AKT1 pathway inhibition   111

Moluodan   CAG   Network pharmacology and in vitro validation   Inhibition of cell proliferation; promotion of 
cell differentiation and apoptosis; decreased 
inflammation; increased lipid droplet 
accumulation

  104

Banxia Xiexin decoction   CAG   Network pharmacology and in vitro dynamic 
validation

  Gastrin and MAPK signaling pathway 
regulation

  112

Manpixiao decoction   LGD   Network pharmacology and in vivo validation  EGFR-PI3K-Akt-associated EMT pathway 
downregulation

  113

Weifuchun capsule   CAG   Network pharmacology and omics data and 
algorithms, and in vitro validation

  Inhibition of inflammatory cytokines; 
regulation of immune cells, such as T cells 
and macrophages; inflammation inhibition

  107
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intelligent model construction, and use machine learning 

methods to combine image features and other clinical infor-

mation to assist in the diagnosis and treatment of diseases116. 

The performance of radiomics in some tumor clinical tasks is 

similar to or better than that of the judgment of clinical phy-

sicians. Recent advances in spatial transcriptomics have been 

systematically used to generate biological insights into can-

cer contexts by providing transcriptomic profiles with crucial 

spatial information within biological tissues at subcellular lev-

els117. The typical repertoire of operations of spatial transcrip-

tomics, accompanied by single-cell transcriptomics, has been 

systematically demonstrated in liver diseases and cancer118. 

Multi-omics at spatial resolution has also led to integration of 

analysis methods119. Spatial omics may be inherently amena-

ble to integration with other modalities, and adding time series 

samples could ultimately broaden biological understanding by 

enabling parallel insights to be gained.

With AI methods, the essential role of integrating mul-

ti-level information from various time points underscores 

the need for adequate robustness and repeatability. Machine 

learning approaches are used to satisfy the need to appropri-

ately incorporate biological knowledge hidden at different 

 levels, such as gene regulation mechanisms, into models; in 

contrast, statistical methods tend to ignore the details of bio-

logical relationships in attempts to explain most variations by 

using only a few surrogate parameters. By incorporating AI 

methods, network analysis of gastric inflammation-induced 

tumorigenesis can enable the elucidation of intricate relation-

ships among various factors at multiple levels, including genes, 

cells, pathways, and phenotypes59-61,120-122. In summary, inte-

grating information across levels and developing more sophis-

ticated models will be key to advancing understanding of the 

complex processes underlying malignant progression.

On the basis of multi-omics data, series of biomarkers at 

different omics levels have been identified. However, room 

remains for further in-depth research, as summarized in the 

following 2 points. First, given that tumorigenesis is a dynamic 

process, testing of the effectiveness of early diagnosis bio-

markers should be performed on more longitudinal samples 

which have greater credibility than cross-sectional samples. 

Second, given that the current effectiveness of early diagnosis 

biomarkers remains not ideal, researchers have attempted to 

improve the performance index through using a combination 

of multiple biomarkers. However, most of these combinations 

have remained at the single-omics level; therefore, further 

research on biomarker combinations at the multi-omics level 

is needed. From intervention perspectives, some therapeutic 

drug methods for GC are available, including blocking anti-

bodies123-125, tyrosine kinase inhibitors126,127, and novel agents 

such as ATR inhibitors128 and FAK inhibitors129. However, the 

current intervention efficacy for GPLs remains unsatisfactory. 

Given the complexity of intervention mechanisms, drugs that 

exert holistic regulation are needed. The research strategy of 

combing multi-omics data, AI algorithms, and TCM network 

pharmacology provides a promising method to systematically 

predict intervention drugs.

In summary, multi-omics data and AI-based methods are 

critical tools for systematically deciphering the biological 

mechanisms of gastric inflammation-induced tumorigenesis. 

Reliable experimental designs for omics and clinical applica-

tion can inform more realistic mathematical models, whereas 

quantitative AI models can generate testable predictions and 

specific intervention strategies from a network strategy per-

spective130. Although current research has not yielded treat-

ment guidelines for individual patients, a comprehensive 

framework including computational, experimental, and clin-

ical strategies may facilitate more anticipatory, precise, and 

adaptive approaches to GC oncology.
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