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ABSTRACT The initiation and progression of cancer not only
involves genetic abnormalities, but also epigenetic alterations, such
as DNA methylation and histone modifications. Epigenetics refers to
the heritable changes that do not involve any structural changes in
the target gene, i.e., DNA sequence and protein sequence. Thus,
these epigenetic aberrations are potentially reversible, allowing the
malignant cells to revert to a state with more normal characteristics.
The use of epigenetics is emerging as an effective and promising
approach to treat cancer. Epigenetic drugs, which target two well-
known epigenetic pathways, namely, DNA methyltransferases and
histone deacetylases, are already being applied for the cancer
treatment. In the current study, an overview regarding the under-
standing of epigenetic alterations in the development of cancer and
the current state of epigenetic drug discovery is provided.
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Cancer Epigenetics

Epigenetic alteration patterns in cancer cells

Epigenetic is a term originally defined by C.H. Waddington to describe
the heritable changes in gene expression that are not related to changes
in DNA sequence[1–3]. Two major levels of epigenetic modification have
been indentified over the last five decades, namely, DNA methylation
and histone modification. These epigenetic events play important roles
in all aspects of biology, including replication, transcription, recombi-
nation, and DNA repair. In eukaryotic cells, DNA wrap around
histones to form nucleosomes, which further associate to form the
condensed structure of chromatin. Changes in chromatin structure
through covalent modifications of histone proteins or DNA lead to the
profound regulation of gene expression. The unexpected deactivating
genes that are supposed to be active or activating genes that are
supposed to be inactive by certain physical marks on histones or DNA
over time would lead to failure in the control of cell cycle, programmed
cell death, and eventually result in uncontrolled proliferation, namely,
tumors.
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DNA Methylation in cancer

The only known epigenetic modification of DNA in
mammals is the DNA methylation, which involved the
enzymatic addition of a methyl group to the 5-position
(C5) cytosine of the pyrimidine ring. The reaction was
carried out by DNA methyltransferases, using S-adeno-
sylmethionine (SAM) as methyl donor (Fig.1). A study
using high-performance liquid chromatography found
that cytosines (1%) in a normal genome are methylated[4].
Initiation and progression of cancer were associated with
the profound changes in DNA methylation patterns
(Fig.2), which were the first identified as cancer-
associated epigenetic alteration[5,6]. Promoter CpG-island
hypermethylation and global hypomethylation occur
frequently in tumor tissues. Low levels of DNA
methylation in the promoter region were correlated with
gene activation. Approximately half of the human genes,
including housekeeping genes and tissues-specific genes,

contain CpG-islands in their promoter regions that are
usually low in methylation. Methylation of DNA near
the transcriptional initiation site abolishes gene activa-
tion either by recruiting transcription repressors or by
blocking the binding of transcription activators. Genome-
wide hypomethylation contribute to chromosomal
instability. Aberrant transcription initiations result in
abnormal expression of genes that would normally be
silenced by methylation[7–9]. Thus, the importance of
DNA methylation in cancer had become a flourishing
realm of investigation recently.

DNA hypermethylation in cancer

Abnormal DNA hypermethylation patterns are present
more frequently in cancer cells compared to normal cells.
Hypermethylation on chromosomes 3p, 11p, and 17p CpG-
island containing regions that are normally unmethylated,
was found in various human tumors by Baylin’s group[10–14].
Another recent study showed that aberrant hypermethyla-
tion of CpG-island was wide-spread in the genome of
different types of tumor cells[15]. This was an early event of
transformation and would serve as an excellent biomarker
for early cancer diagnosis. The methylation of CpG-island in
the promoter region resulted in transcriptional silencing
either by promoting or preventing the recruitment of
regulatory proteins to DNA. For example, methylated
DNA was recognized by histone deacetylases (HDACs),
which mediate gene silencing[16,17]. Alternatively, recruitment
of transcriptional c-myc to the targeting-binding site was
impaired by DNA methylation[18]. To date, cancer-associated
hypermethylation have been found in numerous tumor-
susceptible genes. Inactivation of the tumor-suppressor Rb
gene through hypermethylation, in its promoter region was
found both in breast cancer and sporadic retinoblas-
toma[19–22]. Hypermethylation also occured in many other
susceptible genes that were known or likely to play a role

Fig.1. Epigenetic modifications. DNA is wrapped around
histones, whose tails can be covalently marked by various
types of modifications, such as acetylation, methylation,
phosphorylation, and ubiqutination. DNA methyltrans-
ferases (DNMTs) catalyze the transfer of a methyl group
(CH3) from S-adenosylmethionine (SAM) to the 5-carbon
position of cytosine to converse cytosine to 5-methylctosine.

Fig.2. DNA methylation patterns in normal and cancer cells. A, Methylation of CpG islands. In normal cells, actively transcribed
tumour suppressor genes (TSG) are associated with unmethylated CpG islands. During tumorigenesis, many CpG islands in tumor
suppressor gene promoters become hypermethylated, leading to aberrant transcriptional silencing TSG genes. B, Methylation of
repetitive elements and transponsons. Most repetitive elements and transponsons are hypermethylated in normal cells. In
contrast, in cancer cells repeat-rich sequences and transponsons become hypomethylated which contributes to genomic
instability, a hallmark of tumour cells, and tumorigenesis.
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in carcinogenesis, i.e., p16INK4a, cell cycle regulation
(p15INK4a), DNA repair (BRCA1) and apoptosis (DAPK).
The abnormal hypermethylation in these susceptible genes
were also associated with unfavorable clinical outcome.

DNA hypomethylation in cancer

Hypomethylation is the other type of methylation defect
that was found in various malignancies. Although
hypomethylation was first demonstrated to have a link
with cancer in 1983, few details are known about the
biological significance of aberrant DNA hypomethylation
compared to hypermethylation in gene silencing. Hypo-
methylation of highly repeated DNA sequences[23–26],
which resulted in the genomic instability and gene-
specific hypomethylation events that lead to aberrant
gene expression, are mainly responsible for the global
DNA hypomethylation found frequently in different
types of cancers such as breast, lung, prostate, cervical,
and brain cancer, and show tight correlation with the
grade of malignancy[27–31]. Hypomethylation in tumor cells
was primarily due to the loss of methylation from
interspersed repeats and tandem repetitive regions of
the genome, including heterochromatic DNA repeats,
dispersed retrotransposons, and endogenous retroviral
element, which might promote tumor formation or
progression by fostering DNA rearrangement[32–38].
Satellite DNAs were paired with array repeats, which
composed of various oligonucleotide sequences and
usually observed in constitutively heterochromatic chro-
mosome regions. Hypomethylation of satellite 2 DNA
from chromosomes 1 and 16, and satellite 3 DNA from
chromosome 9 are usually found in human tumors
(. 50%), including human hepatocellular carcinomas,
breast adenocarcinomas, and ovarian epithelial carcino-
mas[32,39,40]. Hypomethylation of endogenous retrotranspo-
sons and retroviral element were also associated with
carcinogenesis. DNA demethylation activated the tran-
scription of retrotransponsons retroviral-derived ele-
ments and promotes cancer-predisposing, or tumor
progression-linked genomic rearrangement. Frequent
activation of the expression of full-length transcripts from
retrotransposons was found in certain types of murine
cancer[41]. Several studies demonstrated that hypomethy-
lation in Line-1 (Long interspersed nucleotide elements)
and Alu-repetitive elements were higher in tumors than in
normal tissues, such as lymphocytic leukemia[42], hepato-
cellular carcinomas[43], prostate carcinomas and neuroen-
docrine tumors. Proto-oncogenes were also found to be
associated with hypomethylation of cancer-linked gene
region, in addition to the highly repeated sequences.
Hypomethylation of the gene-regulatory regions involved
in the regulation of gene expression contributed to the
carcinogenesis by altering the recruitment of transcrip-
tional factors. Recently, the increasing hypomethylation of
proto-oncogenes have been reported. Numerous proto-
oncogenes that were upregulated in tumors (c-fos, c-myc,
Ha-ras, and Ki-ras) had shown reduced levels of DNA
methylation compared to the normal cells[44–46].

DNA methylation is catalyzed by a group of DNA
methyltransferase enzymes (DNMTs). The DNMTs family

contains DNMT1, DNMT1b, DNMT1o, DNMT1p,
DNMT2, DNMT3a, DNMT3b with its isoforms, and
DNMT3L. Among the DNMTs, DNMT1 is the most
abundant DNA methyltransferase in mammalian cells
and functions both as a maintenance methyltransferase
and a de novo DNA methyltransferase[47–49]. Mice carrying
the hypomorphic DNMT1 mutation resulted in genome-
wide hypomethylation, having an increased risk of
lymophoma[33]. Global loss of DNA methylation may act
in concert to relieve gene repression in genomic regions
that are usually silent in normal cells. These may directly
or indirectly lead to the reexpression of proto-oncogenes
or reactivation of transposons, followed by increased
genomic instability, and eventual tumor formation and
progression.

Histone modification in cancer

DNA is wrapped around a core of histones to form
nucleosomes, which is the smallest structural unit of
chromatin. Lysine, arginine, and serine residues in the
N-terminal tails of histones were marked by varieties of
post-translational modifications (Fig.1), including acet-
ylation, methylation, phosphorylation, sumolyation, and
ubiqutination[50]. The modification of histone tails had
direct effects on various nuclear processes, including
gene transcription, recombination, replication, DNA
repair, and the organization of chromosomes. Genome-
wide studies revealed that the combinatorial histone
modification patterns in a specific genomic region can
lead to an ‘open’ or ‘closed’ chromatin state; thus,
resulting in the activation or repression of gene expres-
sion. For instance, histone marks, such as acetylation of
histone H3 lysine 9 and 14 (H3K9ac and H3K14ac),
trimethylation of histone H3 lysine 4 (H3K4me3), and
monomethylation of histone H3 lysine 20 and histone
H2B lysine 5 (H4K20me and H2BK5me), led to tran-
scriptional activation. On the other hand, di- or
trimethylated histone H3 lysine 9 (H3K9me2 and
H3K9me3) and trimethylated histone H3 lysine 27
(H3K27me3) were associated with gene repression[51–53].
In addition to modulating the accessibility of chromatin,
combinatorial histone modification can also serve as a
marker to recruit subsequent protein interaction effec-
tors, which are also involved in meditation of specific
gene expression profiles. The combinatorial histone
modifications, also called epigenetic code, determined
the manifestation of a single eukaryotic genome in
different developmental stages and that, if aberrant, will
give initiate cancer and other diseases.

Similar to DNA methylation, the loss and gain of both
acetylation and methylation of specific residues in
histones were also observed in cancer cells, implying
the alteration of general abnormal histone modification
pattern across the genome (Fig.3). DNA hypermethyla-
tion in the promoter CpG-islands of tumor-suppressor
genes of cancer were associated with a combinatorial
histone modification pattern, such as losing histone H3/
H4 acetylation and H3K4 trimethylation and gaining
H3K9 methylation and H3K27 trimethylation, which
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resulted in silencing certain tumor-suppressor gene
(p21WAF1 and Rb)[7, 54].

Losing lysine acetylation, rather than gaining histone
methylation, have been proposed to be the first event
which leads to gene silencing. Histone acetylation is
involved in various histone acetyltransferases (HATs),
such as E1A-binding protein p300 (EP300), CREB-
binding protein (CBP), GNAT (Gcn5-related N-acetyl-
transferase), MYST3, and MYST4. The current study
found that the binding of E1A and SV40T to p300 or CBP
inhibited their acetyltransferase activity, which led to the
loss of the global acetylation of H3K18, and consequent
cellular hyper-proliferation and transformation[55,56].
Furthermore, the alterations of some HAT genes were
found in various types of cancers. For instance, missense
mutations of p300 increased the potential for malignant
transformation of gastrointestinal, colorectal, gastric and
breast tumors[57, 58]. In addtion, two CBP truncating
mutations were indentified in ovarian cancer[59].

Abnormal HDAC activity has also been found to be
associated with the development of different types of
cancer, such as acute promyelocytic leukemia, acute
myelogenous leukemia, gastric, and colorectal carcino-
mas. HDACs responsible for removing acetyl groups
from histones were organized into three different classes
based on their similarity to yeast HDAC proteins[60,61].
HDAC1-3 and 8 of the class I HDACs were localized in
the nucleus. HDAC4-7, 9 and 10 of the class II HDACs
were localized both in the nucleus and cytoplasm. SIRT1-
7 of the Sir2-like class III HDACs, show sequence
similarity to yeast transcriptional repressor Sir2[62].
HDACs bind to and deacetylate various target genes
that play an important role in the control of cell growth,
differentiation, and apoptosis. Alteration of HDAC genes
in cancer seems to be common. The current study found
that prostate cancer cells over express HDAC1 compared
with their normal counterparts[63,64], with corresponding
decrease in p21 expression. HDAC2 were over expressed

in gastric carcinomas, colorectal carcinomas, cervical
dysplasias, and endometrial stromal sarcomas[65,66].
HDAC3 was over expressed in colon cancer and also
inhibited p21 expression[67]. The upregulation of HDACs
resulted in chromatin compaction and inactivation of
some growth suppressive genes, leading to the rapid
proliferation of cancer cells.

Although losing histone acetylation was the primary
event in gene silencing, the increased level of histone H3
methylation also played a critical role. Widespread
changes in H3K9 methylation patterns were associated
with aberrant gene silencing in various types of
cancer[68,69]. G9a, a specific histone H3 lysine 9 methyl-
transferase, had been found over expressed in liver and
lung cancer and was implicated in uncontrolled prolif-
eration possibly through the modulation of chromatin
structure and transcriptional silencing[70–72]. Down-
regulation of G9a results in chromosome instability and
centrosome disruption in cancer cells. Furthermore, G9a
knockout mice showed widespread genomic instability
and increased incidence of lymphomas, suggesting the
importance of H3K9me3 in maintaining chromosomal
environments[70, 73].

The deregulation of H3K4me3 is also associated with
cancer development. Both overexpression and abnormal
mutations of chromosomal translocations of the MLL
genes, which encoded the most thoroughly studied H3K4
methyltransferases, have also been reported in cancer.
Rearrangement of the methyltransferase MLL1 led to the
down-regulation of HOX genes and was responsible for
the various forms of acute leukaemia by blocking
hematopoietic differentiation[74]. MLL4 (KMT2D), which
is involved in hepatitis B virus is dependent on liver
carcinogenesis[75]. In addition, SMYD3, another H3K4
methyltransferase, was frequently found to be upregu-
lated in colorectal, hepatocellular, and breast cancer,
enhancing cell growth and promoting transformation[76,77].
Losing the responsiveness to PRMT1-mediated signals

Fig.3. Combinatorial histone modification patterns in normal and cancer cells. A, In normal cells, the promoters of active
tumor-suppressor genes (TSG) are enriched with combinatorial histone modification markers including acetylation of histone
tails, methylation of lysine 4 on histone H3 (H3K4), and DNA repeats and transposons are associated with repressive markers
including methylation of K27 and K9 of H3. B, In transformed cells, the promoters of TSG genes lose the ’active’ histone marks
and gain repressive methylation marks, such as lysine 9 or 27 on histone H3. On the other hand, DNA repeats and transposons
are characterized by active marks, thus initiate unexpected transcription.
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contributed more broadly to leukemogenesis because
PRMT1 is a key component of the Mixed Lineage
Leukaemia (MLL) oncogenic transcriptional complex[78].
The activity of PRMT1 was usually found to be dysregu-
lated in numerous types of cancer, including bladder,
prostate, gastric, colon, colorectal, and breast cancer.

In addition to HMTs, histone demethylases (HDMs)
that work together with HMTs to coordinate the global
histone methylation patterns were also believed to
contribute to tumorigenesis in various cancer types[79].
HDMs can be grouped in two families: the LSD family
and the JMJC family. The LSD family can effectively
remove mono- or di-methylated histone marker, such as
H3K4 and H3K9 methylation; thus, acting as a co-
repressor or a co-activator in gene regulation and
involving in the cancer progression. The JMJC family
proteins can also perform both activating and repressive
functions by demethylating H3K27 or H3K4, respec-
tively. Anomalous expression or activity of various
members of the JARID1 family, specifically H3K4
demethylases, was found to have implications in cancer
progression. Furthermore, certain mutations that inacti-
vated histone H3K27 demethylase UTX were linked to
different types of human cancer, whereas, low UTX
activity tends to be a poor indicator of prognosis[80].

Epigenetic therapy of cancer

Tumorigenesis is associated with genetic and epigenetic
alterations. Unlike mutations, the unique reversible
property of epigenetic states provided exciting opportu-
nities to develop novel epigenetic target drug to
reactivate the expression of the epigenetically silenced
cancer-related genes, such as tumor suppression genes,
DNA mismatch repair genes, and cell cycle-related genes
during tumorigenesis[81–84]. Five decades after covalent
chromatin modifications were first discovered, two
classes of epigenetic drugs that targets cellular epigenetic
machinery, namely, DNMT inhibitors and HDAC inhi-
bitors, which can effectively reverse aberrant DNA
methylation and histone modification in cancer, respec-
tively, have been discovered recently.

DNA methylation inhibitors

Among the epigenetic drugs, DNA methylation inhibi-
tors were first proposed for cancer therapy. Two types of
DNA methylation inhibitors, including nucleoside ana-
logues and non-nucleoside analogues (Table 1), were
utilized and characterized. Nucleoside analogues
required DNA incorporation to function, whereas non-
nucleoside analogues can directly block the DNA
methyltransferase activity without DNA incorporation.
5-azacytidine (5-Aza-CR or azacitidine) and 5-aza-29-
deoxycytidine (5-Aza-CdR or decitabine), were the most
widely studied nucleoside analogue DNMT inhibitors
that were incorporated into the DNA in place of natural
base cytosine during DNA replication in the S phase.
Binding with the active sites of DNMTs, these drugs
covalently trap these enzymes, which resulted in global
DNA demethylation. 5-azacytidine was the first FDA-
approved epigenetics-based drug for clinical use in the
treatment of myelodysplastic syndromes and other
hematological malignancies (Fig.4). Another cytidine
analog that is stable in aqueous solution, 5-fluoro-2-
deoxycytidine, is currently undergoing phase II study
combined with other agents, such as cytindine deami-
nase inhibitor tetrahydrouridine, for the treatment of
various tumors[85]. Zebularine, a novel DNMT inhibitor,
is currently being investigated as an epigenetic therapy
for cancer[86,87]. Unlike 5-azacytidine and 5-aza-29-deox-
ycytidine, zebularine is more stable, which enables the
drug to be delivered orally[88]. Although these properties
make zebularine a promising candidate for cancer
treatment, the requirement of higher dosage (1 g/1 kg
body weight in mice) compared with 5-azacytidine and
5-aza-29-deoxycytidine kept it from being used for
clinical trials. Although these agents show promising
anti-cancer efficacy, the toxicity associated with the
incorporation of these nucleoside analogs into DNA
resulted in the search for non-nucleoside DNMT
inhibitors[2].

In the recent years, an increasing number of putative
non-nucleoside inhibitors of DNMTs have been examined
for their demethylating activity; and some of them were
evaluated in pre-clinical models and in clinical trials[89,90].
These non-nucleoside inhibitors might be more promising

Table 1. DNMTs inhibitors in clinical development.

DNA methyltransferase
inhibitors

Alias Target Development stage

Nucleoside analogues 5-Azacytidine Vidaza,Azacitidine Celgene FDA approved 05-2004
5-Aza-2’-deoxycytidine Decitabine, dacogen Johnson & Johnson FDA approved 05-2006
5-Fluoro-2’-deoxycytidine Fazarabine Phase I
5,6-Dihydro-5-azacytidine DHAC Phase I, II
Zebularine Preclinical

Non-nucleoside analogues EGX30P Oligonucleotide NA
Epigallocatechin-3-Gallate EGCG Preclinical
MG98 DNMT1 antisense Phase I
RG108 NA Preclinical
Procainamide Pronestyl Preclinical
Hydralazine Apresoline Phase I
Psammaplin A NA Preclinical
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than the nucleoside analogues for clinical use because
they inhibit DNA methylation by binding directly to the
catalytic region of the enzyme without being incorporated
into the DNA[91,92]. For example, procainamide inhibited
the DNMTs by disrupting the interaction between
DNMTs and its target sites[93,94]. Epigallocatechin-3-
Gallate, a natural product from green tea, and RG108
specifically binded to the catalytic pocket of the human
DNMT1 and rendered the enzyme inactive[91,95]. MG98, a
phosphorothioate antisense oligonucleotide of the human
DNMT1, which prevented the translation of DNMT1
mRNA, is currently being tested for clinical trials[96]. Other
non-nucleoside analogue DNA-methylation inhibitors
such as hydralazine, psammaplin A, and procaine are
still undergoing studies[93, 97–100].

Histone deacetylase inhibitor

Aberrant tumor-suppressor gene silencing was tightly
coupled with the loss of histone acetylation in cancer.
Various compounds that inhibit HDACs and re-establish
normal histone acetylation patterns, had demonstrated
anti-tumor growth, proapoptotic, and prodifferentiation
properties[101]. According to their chemical nature and
mechanism of inhibition, HDAC inhibitors were classi-
fied into the following four groups: short-chain fatty
acids, hydroxamic acids, cyclic tetrapeptides, and ben-
zamides[81,102–104] (Table 2). Currently, two HDAC inhibi-
tors (Fig.4), have been approved by the US Food and
Drug Administration (FDA) for clinical use in the

Fig.4. Epigenetic drug for cancer treatment. DNA methyla-
tion and histone deacetylation-mediated aberrant gene
silencing in cancer involves recruitment of transcriptional
repressive complexes in the gene promoter region. Four FDA
approved DMNT inhibitors and HDAC inhibitors are effec-
tively against cancer cells by inhibiting components of the
epigenetic machineries leading to reactivation of critical
genes. HAT: histone acetylase. Pol II: RNA polymerase II.

Table 2. HDAC inhibitors in clinical development.

Histone deacetylase
inhibitors

Alias Company Development stage Target specificity

Short-chain
fatty acids

Valproic acid Depakote,
Depakene

Phase I, II FDA
approved
Anti-Seizure Drug

HDAC classes I, IIa

Butyrates Phase I, II HDAC classes I, IIa
Hydroxamic
acids

m-Carboxycinnamic
acid bis-Hydroxamide

CBHA NA N/A

PXD101 Belinostat Topotarget Phase I, II pan-HDAC
Oxamflatin Phase I N/A
LAQ824 Phase I HDAC 1 & 2
Suberoylanilide
Hydroxamic Acid

SAHA, Zolinza Merck FDA approved
10-2006

pan-HDAC

Trichostatin A TSA NA pan-HDAC
LBH589 Panobinostat Novartis Phase II, III pan-HDAC
NVP-LAQ824 Phase II N/A
Pyroxamide Phase I, II HDAC Class I

Cyclic
tetrapeptides

Apicidin Preclinical HDAC 1 & 3

Depsipeptide FK228 Celgene FDA approved
11-2009

HDAC 1 & 2

Cyclic hydroxamic-acid-
containing peptide 1

CHAP1 NA HDAC Class I

Depudecin Epoxide NA HDAC Class I
Trapoxin A NA HDAC classes I, IIa

Benzamides MS-275 Entinostat,
Benzamidine

Syndax
Pharmaceuticals

Phase II HDAC 1 & 3

CI-994 (N-acetyl
dinaline)

Tacedinaline,
Acetyldinaline

Pfizer Phase II, III HDAC 1 & 3

MGCD0103 Mocetinostat MethylGene Phase II HDAC 1 &3
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treatment of T cell cutaneous lymphoma: vorinostat and
romidepsin (SAHA and FK-228 formerly, respectively).
The first generation of HDAC inhibitors was the small
chain fatty acids, including sodium butyrate, arginine
butyrate, sodium pheylbutyrate, and valproic acid.
Short-chain fatty acids generally are not very potent in
HDAC inhibition due to their short side chains, which
limited their capability of binding with the catalytic
pocket of HDACs[105–108]. However, short-chain fatty acids
became a useful tool in studying the epigenetic regula-
tion in tumorigenesis. Butyrate, the first known HDAC
inhibitor, was synthesized in 1949. Trybutyrin, a stable
and rapidly absorbed prodrug of natural bytyrate, was
reported to be a potential preventive agent against
cancer, including colon and gastric cancers[109]. Valproic
acid, an anti-epileptic drug, was shown to selectively
inhibit the HDAC1 catalytic activity in vitro at millimolar
concentrations, and induce the degradation of HDAC2
through proteasomal pathway[110]. Valproic acid can be
used in combination with other anticancer agents, and
showed promise in combination therapy for cancer.
Combination of valproic acid with oral hydroxyurea or
6-mercaptopurin was proven to be safe and effective in
patients with advanced acute myeloid leukaemia[111], and
has also been successfully used in combination with all-
trans retinoic acid or decitabine in elderly patients with
acute myelogenous leukaemia[112].

TSA, initially derived from Streptomyces hygroscopi-
cus, was the first natural product that has been discovered
to possess the HDAC inhibitor activity in 1990 and was
widely used in research. The hydroxamic acid function
group of TSA chelated a zinc ion in the active-site pocket
of HDACs, thus, blocking their catalytic activity. TSA was
shown to synergize with 5-Aza-CdR to inhibit tumor
growth in a mouse cancer model[113]. However, its toxicity
and low efficiency prevented it from being used for
clinical trial and motivated the search for better molecules.
Through quantitative structure-activity relationship and
high-throughput transcriptional screening of a compound
library, several novel and potent HDAC inhibitors, such
as LAQ824, LBH589, and PXD101, were indentified and
are currently under clinical trials[114–118]. The other member
of the hydroxamic acid group, suberoyl anilide hydro-
xamic acid (SAHA), is the first HDAC inhibitor to get an
FDA approval for clinical use in the treatment of T cell
cutaneous lymphoma given orally or intravenously[119].

Cyclic tetrapeptides, one of the most structurally
complex groups of HDAC inhibitor, were initially
isolated from microorganisms. This group of HDAC
inhibitors contained trifluoromethyl and pentafluor-
oethyl ketone, which served as a zinc binding functional
group to inhibit HDAC activity. The natural product
FK228, also known as depsipeptide, was derived from
chromobacterium and displayed potent anti-tumor
effects[120]. FK228 is the second FDA-approved drug from
the nucleoside analog family. Trapoxin (a fungal
product), binds covalently with HDACs via the epox-
ides, and irreversibly inhibited HDACs activity[121].
However, due to its instability and toxicity, it has not
been used clinically. Apicidin, a novel cyclic tetrapep-
tide, is a potent fungal metabolite with broad spectrum
of antiprotozoal activity against apicomplexan parasites

via the inhibition of histone deacetylase (HDAC)[122]. Its
clinical utility is currently being evaluated in anti-cancer
clinical trials.

The benzamide-based HDAC inhibitors, which in
general are less active than hydroxamic acids or cyclic
peptides type of inhibitors, also inhibited HDAC activity
selectively. MS-275 is a novel orally-active synthetic
benzamide derivative that showed HDAC inhibition
activity. It inhibited HDAC in vitro at micromolar
concentrations by binding with the catalytic zinc ion[123].
A phase I study has been completed in patients with
advanced acute leukemia[124]. MGCD0103 is an isotype-
selective orally available, benzamide HDAC inhibitor,
which primarily targets the human HDAC 1, 2, 3, and 11
but not other class of HDACs[125–127]. It has been evaluated
in multiple phase I/II clinical trials for patients with
advanced solid tumor or hematological cancers[128–130]. CI-
994 (Tacedinaline) is another orally active HDAC
inhibitor that has been tested in phase I/II studies in
advanced solid tumors, including renal cell carcinoma
and nonsmall cell[131]. However, the structurally detailed
mechanism of its action in HDAC inhibition was not yet
clearly understood. Additionally, CI-994 had demon-
strated combination activity with gemcitabine, capecita-
bine, paclitaxel, and carboplatin, in a phase I trial for
solid tumors[132–134].

Conclusion and Perspectives

Over the past twenty to thirty years, epigenetic drugs
have attracted a great deal of interests owing to their
potential as anti-cancer agents. These epigenetic drugs
can regulate the expression of certain cancer-related
genes, either by inhibiting the DNA methylation or by
increasing the histone acetylation level; thus, inhibiting
the proliferation of cancer cells and inducing apoptosis.
A number of specific DNA methylation and HDAC
inhibitors have been indentified and investigated; and
some of them have been applied for the clinical
treatment of various cancers. These inhibitors have also
been applied to combinational therapy with other drugs
to enhance the efficacy of existing anti-cancer therapies
and reduce side effects, thereby improving the thera-
peutic index. The ultimate goal of the translational
research was to develop the best anti-cancer epigenetic
drug that will achieve high efficacy with minimal
toxicity. However, the challenge for drug development,
including epigenetic therapy, is the off-target effects of
these drugs that would associate with toxicities. Whether
HDACs or other chromatin-altering enzymes would
provide these epigenetic drugs target specificity for
particular DNMTs, remains a question that needs further
research for an answer. The similarity of different
catalytic site of the enzymes was the main reason of
non-specific targeting of inhibitors. The current study
found that the main difference among the enzymes was
the shallow grooves around the rim of enzyme pocket[135].
This discovery has aroused hopes to search new
epigenetic inhibitors that target the non-catalytic binding
pocket of the enzymes that may affect the conformation
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of the enzyme and inhibit the enzyme in a noncompe-
titive manner. Clearly, a well-established understanding
of the underlying mechanisms of epigenetic regulation is
extremely vital for the development of efficient and
specific epigenetic inhibitors for cancer treatment. In
addition to DNA methylation inhibitors and histone
acetylation inhibitors, histone methylation-based epige-
netic drugs are to be expected in the near future, which
may open a completely new field of epigenetic ther-
apeutics. The increasing understanding of epigenetic
mechanisms will provide a rational approach to optimize
drug efficacy, minimize toxicity, and further develop
new classes of epigenetic drugs. Overall, the develop-
ment of epigenetic drug is still in its early stage; thus, the
continued progress of research and new breakthroughs
in this field of study is expected in the future.
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