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ABSTRACT	 Objective: Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression; however, the intricate 

interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer remain elusive. It is important to 

decipher the comprehensive epigenetic regulatory network in breast cancer cells to identify master epigenetic regulators and potential 

therapeutic targets.

Methods: We employed high-throughput sequencing-based high-throughput screening (HTS2) to effectively detect changes in the 

expression of 2,986 genes following the knockdown of 400 epigenetic regulators. Then, bioinformatics analysis tools were used for 

the resulting gene expression signatures to investigate the epigenetic regulations in breast cancer.

Results: Utilizing these gene expression signatures, we classified the epigenetic regulators into five distinct clusters, each characterized 

by specific functions. We discovered functional similarities between BAZ2B and SETMAR, as well as CLOCK and CBX3. Moreover, 

we observed that CLOCK functions in a manner opposite to that of HDAC8 in downstream gene regulation. Notably, we constructed 

an epigenetic regulatory network based on the gene expression signatures, which revealed 8 distinct modules and identified 10 master 

epigenetic regulators in breast cancer.

Conclusions: Our work deciphered the extensive regulation among hundreds of epigenetic regulators. The identification of 10 

master epigenetic regulators offers promising therapeutic targets for breast cancer treatment.
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Introduction

Epigenetics refers to the stable and heritable modifications 

that occur on chromosomes without changes in the DNA 

sequence. These modifications primarily involve covalent 

changes in histones and nucleic acids through processes, 

such as DNA methylation and histone modification. By uti-

lizing these mechanisms, epigenetics govern gene expression 

through the initiation of transcriptional reprogramming, 

*These authors contributed equally to this work.
Correspondence to: Shasha Li and Dong Wang
E-mail: lishsh85@mail.sysu.edu.cn and dwang@cdutcm.edu.cn
ORCID ID: https://orcid.org/0000-0003-1835-8927 and  
https://orcid.org/0000-0001-7877-7440
Received July 27, 2023; accepted October 26, 2023;  
published online December 7, 2023.
Available at www.cancerbiomed.org
©2024 Cancer Biology & Medicine. Creative Commons  
Attribution-NonCommercial 4.0 International License

mailto:lishsh85@mail.sysu.edu.cn
mailto:dwang@cdutcm.edu.cn
https://orcid.org/0000-0003-1835-8927
https://orcid.org/0000-0001-7877-7440
http://www.cancerbiomed.org


84� Wang et al. Large-scale loss-of-function perturbations reveal epigenetic regulatory network in BRCA

thereby assuming a vital role in cancer progression1-3. It is 

important to note that epigenetic modifications are dynamic 

and reversible that were initially identified by specialized chro-

matin-modifying enzymes known as “reader,” introduced by 

“writers” and subsequently removed by “erasers”. Dysfunction 

of these epigenetic modification-related enzymes serves as 

the molecular basis for various diseases. Fortunately, many of 

these enzymes can be targeted by drugs, and small-molecule 

inhibitors have shown the potential to reverse epigenetic mod-

ifications, thus improving patient outcomes4. For example, 

the histone deacetylase inhibitor, entinostat, has been shown 

to substantially reduce tumor formation and lung metasta-

sis5. Another example is fisetin, a natural flavonoid that alters 

epigenetic modifications via the PTEN/AKT/GSK-3β path-

way, leading to the inhibition of primary breast cancer tumor 

growth and a reduction in breast cancer lung metastasis6. 

These findings highlight the therapeutic potential of targeting 

epigenetic modifications for cancer treatment.

Extensive evidence has highlighted the intricate interplay 

between epigenetic modifications, particularly DNA methyl-

ation and histone modifications, in regulating various patho-

physiologic processes. Both DNA methylation and histone 

deacetylation can repress gene transcription to some extent, 

whereas histone deacetylation can promote DNA methylation, 

thereby influencing the expression of atherosclerosis-related 

genes7. Histone methylation plays a crucial role in guiding 

DNA methylation patterns, and DNA methylation serves as 

a template for the re-establishment of histone modifications 

following DNA replication8. For instance, NSD1-mediated 

H3K26me2 is essential for recruiting DNMT3A, which sub-

sequently maintains DNA methylation in intergenic regions9. 

The interplay between DNA methylation and histone acetyl-

ation promotes the overexpression of GDNF and contributes 

to the development of glioblastoma10. Abnormal DNA meth-

ylation and histone modification downregulates DLL3 and 

affects cell apoptosis via the Notch signaling pathway in hepa-

tocellular carcinoma11. During breast cancer tumorigenesis, 

the downregulation of ESR1 [estrogen receptor alpha (ERα)], 

which induces tumor growth and metabolic reprogramming, 

is influenced by changes in the acetylation of the ERα pro-

moter region and miRNA expression profiles12.

Breast cancer is the most prevalent cancer and poses a 

considerable threat to women’s health, as reported by the 

International Agency for Research on Cancer (IARC) of the 

World Health Organization. Epigenetic regulation plays an 

important role in the progression and development of breast 

cancer. For example, the EZH2 gene encodes a histone-

lysine N-methyltransferase and its epigenetic modification 

(H3K27me3) collaborates with DNMT1-mediated CpG 

island methylation in the wwc1 promoter, participating in 

the invasion and migration of breast cancer13. EZH2 inhibi-

tors promote the epigenetic modification of the downstream 

target gene, FOSB promoter, from H3K27me3-to-H3K27ac 

and recruit the C/EBPβ transcription factor to activate the 

transcription of the FOSB gene, thereby achieving anti-breast 

cancer effects14. Luteolin affects H3K27ac and H3K56ac in 

the MMP9 promoter region via the AKT/mTOR signaling 

pathway to regulate the expression of MMP9, thereby inhib-

iting the proliferation and metastasis of androgen receptor-

positive breast cancer cells15. Consequently, a comprehensive 

exploration of the mutual regulation of epigenetic mecha-

nisms and identification of potential epigenetic drug tar-

gets represent crucial areas of investigation in breast cancer 

epigenetic research. However, given the involvement of up 

to 400 epigenetic regulators, comprehensively studying the 

intricate interplay among the epigenetic regulators remains 

challenging.

High-throughput sequencing-based high-throughput 

screening (HTS2) is an emerging technology in the realm of 

high-throughput drug screening. HTS2 effectively incorpo-

rates high-throughput sequencing techniques to construct 

gene expression signatures under various experimental 

conditions16,17. HTS2 is particularly well-suited for large-

scale research in the field of epigenetic regulation. This tech-

nology possesses three key characteristics. First, HTS2 offers 

high-throughput capabilities. A single HTS2 assay enables 

simultaneous detection of gene expression for approximately 

3,000 genes under 20,000 different conditions. Second, HTS2 

minimizes human errors. By using a robotic automated plat-

form, this assay reduces human errors and ensures the accu-

racy and consistency of results. Third, HTS2 has been shown 

to be a cost-effective solution. The cost is significantly lower 

than RNA sequencing (RNA-seq) and biochip technologies, 

amounting to < 1/10 of the total cost. This cost advantage 

translates to substantial savings in both time and resources17. 

Overall, HTS2 represents a powerful tool for investigating 

large-scale epigenetic regulation.

Building upon the aforementioned findings, we combined 

small interfering RNA (siRNA) knockdown and an HTS2 assay 

to construct gene expression signatures representing 400 epi-

genetic regulator perturbations in breast cancer. The epige-

netic regulators were classified into five functionally-specific 
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clusters. We also observed a positive association between 

CLOCK and CBX3 with respect to gene regulation, whereas 

CLOCK displayed a contrasting relationship with HDAC8. 

More importantly, we constructed a regulatory network of 299 

epigenetic regulators, which revealed 8 modules and uncov-

ered 10 master epigenetic regulators in breast cancer. This 

work not only facilitated a deeper understanding of the com-

prehensive regulatory mechanisms involving 299 epigenetic 

regulators but also provided crucial insight into the specific 

roles within the context of breast cancer.

Materials and methods

Cell culture

MDA-MB-231 cells were acquired from the China 

Infrastructure of Cell Line Resources (Beijing, China). The cells 

were cultured in RPMI-1640 medium (Gibco, Waltham, MA, 

USA) supplemented with 10% fetal bovine serum (Gemini, 

West Sacramento, CA, USA) and 100 units/mL of streptomy-

cin and penicillin (Gibco). The cells were maintained in a 5% 

CO2 atmosphere at 37°C. The cell lines underwent authentica-

tion based on PCR analysis of short tandem repeats and were 

verified to be free of Mycoplasma contamination.

siRNA library

A total of 400 epigenetic regulators were selected based on 

text mining (Supplementary Table S1). These regulators 

encompassed proteins and their co-factors involved in various 

epigenetic modifications, such as histone methylation, acetyl-

ation, phosphorylation, erasure, and reading. Additionally, 

we included enzymes and co-factors associated with DNA 

and RNA modifications, as well as proteins harboring spe-

cific domains known to participate in epigenetic regulation, 

such as bromo, SET, tudor, PR, and PWWP domains18-22. The 

siRNA sequences targeting 400 epigenetic regulators were pro-

cured from Dharmacon (Lafayette, CO, USA) because of the 

availability of high knockdown efficiency and minimal off-

target effects.

siRNA library reverse transfection

High-throughput screening of the siRNA library was performed 

in 384-well plates. The library used for screening included 

siRNA oligos targeting 400 epigenetic genes (4 pooled siRNA 

oligos per gene, G-OLIBRARY440-329121542; Dharmacon), 

siRNA oligos of a negative, non-targeting control siRNA (neg-

ative siRNA control, D-001206-13-05-29120912; Dharmacon), 

a positive control siRNA pool (GAPDH, D-001144-01-05-

29120909; Dharmacon), and a positive control siRNA pool 

(GFP, A08008; Genepharma, Lafayette, CO, USA). The negative 

siRNA control, positive control siRNA (GAPDH), and positive 

control siRNA (GFP) were included in five replicates for each 

plate. siRNA (10 μL per well) of each oligo pool was added at 

a concentration of 120 nM at the bottom of the 384-well plates 

using an Agilent automatic handler (Santa Clara, CA, USA). 

Opti-MEM (10 μL) containing 0.1 μL of INTERFER in trans-

fection reagent (409-10; Polyplus, Beijing, China) was dispensed 

in each well and incubated for 30 min at room temperature 

(RT). MDA-MB-231 cells were plated on 384-well plates at 3000 

cells per well and reverse-transfected with siRNA oligo mix. The 

final concentration of siRNA oligos in the medium was 20 nM. 

After 72 h at 37°C, cells were lysed for further detection.

Real-time quantitative PCR

Total RNA was extracted using the RNA isolation kit (Vazyme 

Biotech Co., Ltd., Nanjing, China), following the standard 

protocol provided by the manufacturer. Full-length cDNA was 

synthesized using the HiScript II Q RT SuperMix for qPCR 

kit (Vazyme Biotech Co., Ltd.). Real-time quantitative PCR 

was performed using ChamQ Universal SYBR qPCR Master 

Mix (Vazyme Biotech Co., Ltd.) with GAPDH serving as the 

reference gene. Data analysis was performed using the 2−ΔΔCT 

method. The related primers in this study are listed in Table 1.

Table 1  Primer sequences used in this study

Gene   Forward sequence   Reverse sequence

GAPDH  GAGTCAACGGATTTGGTCGT   TTGATTTTGGAGGGATCTCG

KAT5   GGAACTCACCACATTGCCTGTC   CTCATTGCCTGGAGGATGTCGT

HDA8   TGTGCTGGAAATCACGCCAAGC  ACCACTCCTCAGCTCTGGAAAC
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HTS2 assay

HTS2 represents a powerful high-throughput screening plat-

form that utilizes gene expression signatures to quantitatively 

analyze cellular transcriptional profiles on a large scale. The 

HTS2 procedure is as follows: cells were treated with knock-

ing down perturbations in 384-well plates; the cells were lysed, 

and the mRNA in the lysate was bound to biotin-labeled 

oligo-dT and joined with streptavidin-coated magnetic beads; 

upstream oligos consisting of a 5′ universal primer site and 

20  nt gene-specific sequences and downstream oligos con-

taining another 20 nt gene-specific sequences adjacent to an 

upstream and 3′ universal primer site were annealed to the 

mRNA template and ligated with T4 ligase; the ligated prod-

ucts with 40 nt gene-specific sequences were used as templates 

and subjected to PCR amplification; the PCR primers con-

tained an adapter and a barcode site, which identified sam-

ples; different genes from the same sample shared the same 

barcode; and the amplicons, including the barcode and 40 nt 

ligated oligo regions, were sequenced using next-generation 

sequencing technology (Supplementary Figure S1)17.

In this study we used the HTS2 assay to facilitate 

high-throughput and comprehensive detection of expression 

changes in 2,986 genes in the cell sample following the knock-

down of each epigenetic regulator. The 2,986 genes were 

selected based on involvement in 77 signaling pathways associ-

ated with major human diseases, such as tumor, immune, and 

metabolism pathways (Supplementary Table S2). We were 

therefore able to gather valuable insight into the transcrip-

tional landscape and shed light on the impact of epigenetic 

regulatory modulation on gene expression.

Bioinformatics analysis for HTS2 data 
processing

The HTS2 assay generates read data, which can then be 

mapped to probe sequences to obtain counts. Using R lan-

guage, we calculated the counts per million (CPM) for each 

gene in every sample. Considering the spatiotemporal speci-

ficity of gene expression, we applied a filtering step to retain 

samples with a knockdown efficiency of > 50%, resulting in a 

final selection of 299 epigenetic regulators for further analy-

sis. Guided by existing knowledge, we performed functional 

annotation for these 299 regulators, encompassing chroma-

tin remodeling, DNA-binding, demethylation, methylation, 

histone acetylation, deacetylation, methylation, demethyl-

ation, RNA binding, and ubiquitination (Supplementary 

Table S3). To identify differentially-expressed genes (DEGs), 

DEseq2 and edgeR packages were used and compared to the 

siNC control. Genes displaying a fold-change > 2 and a P 

value < 0.05 after DESeq2 or edgeR analysis were considered 

to be DEGs23,24.

Next, we utilized the Rtsne package to cluster the 299 epi-

genetic regulators based on the expression of 2,986 genes 

following the knockdown of the epigenetic regulators25. 

Subsequently, the cluster-specific DEGs were obtained by 

comparing the gene expression signature profiles of the clus-

ter to those of other clusters using DESeq2. The functions 

of the cluster were the functions enriched by the cluster-

specific DEGs by the clusterProfiler package. Subsequently, 

the corrplot package was used to perform correlation anal-

yses based on the fold-changes of 2,986 genes following 

knockdown of the epigenetic regulators26. The positive 

correlations had an R > 0.56, and the negative correlations 

had an R < −0.2. The clusterProfiler package was used for 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analyses. To visualize the 

results, we utilized R packages, such as pheatmap, barplot, 

and ggstatsplot27-29.

Construction and analysis of the epigenetic 
regulatory network

The regulatory network was constructed based on the gene 

expression signatures of 299 epigenetic regulators. Specifically, 

if one epigenetic regulator showed significant differential 

expression after the knockdown of another epigenetic regu-

lator, we considered that there was a regulatory relationship 

between these two epigenetic regulators and established the 

edge between the epigenetic regulators in the network. Then, 

the network was displayed and analyzed using Cytoscape, 

which enables a comprehensive exploration of the regulatory 

landscape and interconnections among the identified genes30. 

The MCODE Cytoscape plugin was used to identify functional 

modules in the regulatory network. Modules are highly inter-

connected regions within the network that are functionally 

related.

The topology of the network was obtained by the Analyze 

Network tool of Cytoscape. The edge count was the number of 

edges in a node. The indegree and outdegree were the number 
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of edges going into a node and the number of edges going 

out of a node, respectively. The average ShortestPathLength 

was defined as the average number of steps along the short-

est paths for all possible pairs of network nodes. The 

BetweennessCentrality was a way of detecting the amount of 

influence a node that has over the flow of information in the 

network. ClosenessCentrality and ClusteringCoefficient were 

measures of centrality and of the degree to which nodes in a 

network, respectively. The eccentricity of a node, v, was the 

maximum distance from v to all other nodes in the network. 

NeighborhoodConnectivity was defined as the average con-

nectivity of all nearest neighbors of the node.

Online platforms

We obtained the gene expression RNA-seq data, as well as the 

corresponding survival data and phenotypes, from the TCGA 

Breast Cancer dataset, which was accessed through UCSC 

Xena (https://xenabrowser.net/). To perform survival and dif-

ferential expression analyses of the 10 master epigenetic reg-

ulators, we utilized the Sangerbox tool, a free online platform 

for data analysis (http://sangerbox.com/home). For protein 

expression data, we accessed the online database known as 

The Human Protein Atlas (https://www.proteinatlas.org/)31. 

To generate Kaplan-Meier (KM) plots for the 10 master epige-

netic regulators, we utilized the Kaplan-Meier Plotter website 

(http://kmplot.com/analysis/)32. By leveraging these online 

platforms, we were able to conduct comprehensive analyses 

and visualize the survival, differential expression, and protein 

expression patterns associated with the identified master epi-

genetic regulators.

ChIP-seq data analysis and visualization

We retrieved the ChIP-seq data of CBX3, CLOCK, HDAC8, 

and H3K9ac from the ChIP-Atlas database33. These data-

sets provided valuable insight into the binding patterns and 

genomic locations of the epigenetic regulators. To visualize 

the identified peaks on the respective targets, we employed the 

Integrative Genomics Viewer (IGV) software34. This widely 

used tool allowed us to examine the precise locations and dis-

tribution of the binding sites, which facilitated a comprehen-

sive understanding of the regulatory roles. Furthermore, we 

performed detailed feature analysis of CLOCK, HDAC8, and 

H3K9ac peaks using the ChIPseeker package35.

Results

Profiling gene expression signatures through 
the HTS2 assay for knockdown of 400 
epigenetic regulators in breast cancer cells

To comprehensively investigate the role of epigenetic regula-

tors, we profiled gene expression signatures of 400 epigenetic 

regulators by using the HTS2 assay. Initially, MDA-MB-231 

cells were transfected in 384-well plates with the siRNAs. As a 

positive control, we seeded GFP-MDA-MB-231 cells in 3 wells 

for each 384-well plate. After transfection with siRNAs target-

ing GFP, the GFP fluorescence signal was significantly reduced, 

which indicated that the knocking down process of the 384-

well plates was successful (Figure 1A). Subsequently, we per-

formed the HTS2 assay to detect changes in the expression 

of 2,986 genes with these 400 epigenetic regulators knocking 

down samples (Figure 1B and Supplementary Table S4). 

We assessed the expression changes across 1,264 cell samples 

(400 × 3 replicates + 64 siNC) obtained from the knockdown 

of the 400 epigenetic regulators, along with siNC samples serv-

ing as negative controls. As expected, we observed a significant 

reduction in the expression of each epigenetic regulator in the 

siRNA knockdown samples specifically targeting this gene 

compared to samples in which other epigenetic regulators 

were knocked down (Figure 1C and Supplementary Figure 

S2). Additionally, we performed RT-qPCR experiments on 

cell samples of siHADC8 and siKAT5, which were randomly 

selected. The results showed that the knockdown efficiencies 

were > 80% for both siHDAC8 and siKAT5 (Figure 1D), sug-

gesting highly efficient of siRNA knockdown among all the 

epigenetic regulators.

To further validate the gene expression signatures gen-

erated from HTS2, we performed RNA-seq on cell samples 

of siNC and siKAT5, which were randomly selected. The 

analysis revealed a substantial overlap between the upreg-

ulated genes identified through KAT5 knockdown in HTS2 

data and those observed in RNA-seq data following KAT5 

knockdown [normalized enrichment score (NES) = 1.87, 

P < 0.001, false discovery rate (FDR) < 0.001; Figure 1E]. 

Similarly, a consistent pattern was observed for the down-

regulated genes, wherein the genes identified as downreg-

ulated in HTS2 data upon KAT5 knockdown also exhibited 

significant downregulation in the RNA-seq data (NES = 

−1.76, P < 0.001, FDR < 0.001; Figure  1F). Furthermore, 

https://xenabrowser.net/
http://sangerbox.com/home
https://www.proteinatlas.org/
http://kmplot.com/analysis/
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we compared gene expression signatures resulting from the 

knockdown of HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, 

HDAC8, and HDAC9 generated by HTS2 with in-house 

HTS2 data for PCI-34051, a small-molecule inhibitor spe-

cifically targeting HDAC8. As expected, the gene expression 

regulated by HDAC8 was most similar to the gene expres-

sion regulated by PCI-34051 (Figure 1G). Additionally, the 

upregulated genes of HDAC8 showed significant enrichment 

among the upregulated genes affected by PCI-34051 (NES = 

1.69, P = 0.001), while the downregulated genes of HDAC8 

were significantly enriched among the downregulated genes 

influenced by PCI-34051 (NES = −1.49, P = 0.0149; Figure 

1H). These findings provided compelling evidence support-

ing the reliability of the gene expression signatures derived 

from siRNA knockdown of 299 epigenetic regulators using 

the HTS2 assay.

Identification of functional clusters of 
epigenetic regulators based on gene expression 
signatures

Due to the spatiotemporal specificity of gene expression, we 

selected 299 epigenetic regulators with a knockdown effi-

ciency of > 50% for further analysis. Utilizing these gene 

expression signatures comprising 299 epigenetic regulators, 

we classified these regulators into 5 clusters (Figure 2A and 

Supplementary Table S3). Notably, cluster 5 emerged as the 

only cluster encompassing regulators involved in all nine func-

tional categories (Figure 2B). Clusters 1 and 3 lacked RNA 

binding-related epigenetic regulators, while cluster 2 exhibited 

no involvement of DNA demethylation or ubiquitin-related 

regulators. Furthermore, statistical analysis was performed 

for each epigenetic modification. We observed an enrichment 
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of epigenetic regulators associated with histone acetylation 

and deacetylation in clusters 3 and 4, respectively. Cluster 1 

was characterized by epigenetic regulators linked to histone 

demethylation and clusters 4 and 5 harbored epigenetic regu-

lators involved in histone methylation (Figure 2C).

Additionally, we performed functional annotation on the 

common DEGs that were defined as genes exhibiting differ-

ential expression in at least one-half of the epigenetic regu-

lator perturbations within a specific cluster. Intriguingly, the 

functions of the common DEGs within each cluster were 

significantly distinct, indicating distinct functional roles for 

each cluster (Figure 2D-2H). For example, cluster 1 pre-

dominantly contributed to endocrine system development 

and myeloid leukocyte differentiation (Figure 2D). Cluster 2 

was primarily associated with glucocorticoid metabolic pro-

cesses (Figure  2E). Cluster 3 exhibited regulation related to 

immune regulation, particularly T-cell regulation (Figure 2F). 

Epigenetic regulators in cluster 4 played a role in apoptosis reg-

ulation, while cluster 5 was predominantly involved in histone 

deacetylation (Figure 2G, 2H). These findings underscored 

the existence of intricate interactions among different epige-

netic modifications and suggested that epigenetic regulators 

within the same class of modifications exhibit diverse func-

tional roles.

Significant gene expression similarities exist 
between BAZ2B and SETMAR, as well as 
between CLOCK and CBX3

Previous studies have primarily focused on the interaction 

of a limited number of epigenetic regulators in regulating 

gene expression. In this study we constructed gene expres-

sion signatures for 299 known epigenetic regulators, which 

facilitated a comprehensive exploration of the intrinsic rela-

tionships. Correlation analysis of 299 epigenetic regulators 

based on gene expression signatures revealed that there were 

21 epigenetic regulators with significant positive correla-

tions (R > 0.56; Figure 3A). In addition, the 21 epigenetic 

regulators also exhibited mutual regulation based on the 

gene expression signatures (Figure 3B). Of the 21 epigenetic 
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regulators, the second strongest correlation (R = 0.6237) 

was between BAZ2B and SETMAR, both of which belong to 

cluster 4 (Supplementary Table S3). Furthermore, BAZ2B 

and SETMAR shared as many as 402 DEGs, accounting for 

49.14% (402/818) and 71.40% (402/811) of the DEGs reg-

ulated by BAZ2B and SETMAR, respectively. More impor-

tantly, the fold-changes in the 402 DEGs were significantly 

positively correlated between siBAZ2B and siSETMAR 

samples (P = 4.45e-145, R = 0.9; Figure 3C). Notably, by 

analyzing multiple gene expression datasets from the pub-

lic domain (GTEx and TCGA Pan-Cancer), the average 

co-expression coefficients of BAZ2B and SETMAR in can-

cers and tissues were as high as 0.75 and 0.74, respectively 

(Figure 3D).
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Figure 1  Gene expression signatures of knocking down 400 epigenetic regulators. (A) Successful knockdown of GFP protein as a positive 
control. The images were captured with a 10× objective fluorescence microscope at a total magnification of 100×. (B) The heatmap of gene 
expression signatures. (C) Fold-change of epigenetic regulators in all epigenetic regulators knockdown cell samples. (D) RT-qPCR results 
demonstrating significant knockdown of HDAC8 and KAT5. (E-F) GSEA analysis displaying the high consistency of DEGs between HTS2 and 
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The strongest positive correlation was observed between 

CLOCK and CBX3, both of which belonged to cluster 

2 (R  =  0.637; Figure 3A and Supplementary Table S3). 

The expression changes of 187 shared DEGs regulated by 

siCLOCK and siCBX3 were significantly and positively corre-

lated (P = 2.97e-128, R = 0.98; Figure 3E). We also found that 

the average co-expression coefficients of CLOCK and CBX3 

in cancers and normal tissues were as high as 0.85 and 0.84, 

respectively (Figure 3F). Moreover, the analysis of ChIP-seq 

data of CLOCK and CBX3 revealed that these two epigenetic 

regulators co-localized with chromatins in breast cancer 

cells (MCF-7) and shared 162 target genes (Figure 3G, 3H). 

For instance, they both bound to the transcription start site 

(TSS) of shared target genes, such as BCAS3, FZD1, PFDN4, 

and PRKAB2 (Figure 3H). Collectively, these results strongly 

suggested that BAZ2B and SETMAR, as well as CLOCK and 

CBX3, worked closely to transcriptionally co-regulate a group 

of target genes. Furthermore, these findings highlighted the 

ability of gene expression signatures to identify functional 

correlations among epigenetic regulators.
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Figure 3  Function similarity between BAZ2B and SETMAR, as well as CLOCK and CBX3. (A) Correlation plot displaying the correlation coef-
ficients of 21 epigenetic regulators. (B) Regulatory network of the 21 epigenetic regulators. (C) Scatter plot showing the 402 shared DEGs 
regulated by SETMAR and BAZ2B. (D) Co-expression between SETMAR and BAZ2B in tissues and cancers. (E) Scatter plot depicting the 187 
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the shared targets of CLOCK and CBX3. (H) Peaks of targets regulated by CLOCK and CBX3.
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CLOCK and HDAC8 exhibit antagonism of 
gene expression signatures

In addition to positive correlations, negative correlations were 

also observed between epigenetic regulators based on gene 

expression signatures. We identified 17 epigenetic regulators 

with significant negative correlation (R < −0.2; Figure 4A). 

Interestingly, we found that CLOCK was also one of the 17 

epigenetic regulators. Moreover, we observed that CLOCK 

and HDAC8 exerted opposite effects on regulation of gene 

expression. Previous studies have reported that CLOCK pos-

sesses histone acetylation activity, whereas HDAC8 possesses 

NAD-dependent histone H3K9 deacetylase activity. Notably, 

we found that the binding peaks of CLOCK and HDAC8 in 

ChIP-seq results were predominantly located at the TSS, 

which was consistent with the known location of H3K9ac 

(Figure  4B, 4C). Analysis of the binding peak distribution 

patterns revealed striking similarities between CLOCK and 

Correlation for 17 epigenetic regulators
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Figure 4  Functional antagonism between CLOCK and HDAC8. (A) Correlation plot showing the correlation coefficients of 17 epigenetic 
regulators. (B) Peak frequency analysis of CLOCK, HDAC8, and H3K9ac. (C) Heatmap depicting the peak distribution of CLOCK, HDAC8, and 
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HDAC8, with peaks primarily enriched in distal intergenic 

regions, followed by promoters (Figure 4D). Furthermore, 

co-localization of HDAC8 and CLOCK in the chromatin was 

observed in the erythroleukemia cell line, K-562, and 44 target 

genes were shared (Figure 4E). By analyzing of the ChIP-seq 

data encompassing CLOCK, HDAC8, and H3K9ac, we found 

that all bound to the TSS or the promoter regions of the shared 

target genes, including KAT5, MRPL4, OPLAH, and UBE3C 

(Figure 4F).

Additionally, we identified 152 DEGs that were co-

regulated by CLOCK and HDAC8 based on gene expres-

sion signatures. Interestingly, the regulating direction of the 

152 DEGs by CLOCK was significantly opposite to that by 

HDAC8 (P = 2.15e-35, R = −0.80; Figure 4G). These 152 

co-regulated DEGs were involved in apoptosis, cell cycle 

regulation, and gene expression regulation (Figure 4H). 

Importantly, the pathways associated with the 152 DEGs 

were relevant to the occurrence and development of cancers 

(Figure 4I). Collectively, these findings indicated a negative 

correlation between CLOCK and HDAC8 in gene expression 

regulation, and the concerted actions play a role in cancer 

occurrence and progression.

Finding eight distinguishing modules by 
constructing a regulatory network

In addition to examining the relationships between the epi-

genetic regulators from the perspective of gene expression 

regulation, we constructed a regulatory network based on 

the gene expression signatures (Supplementary Figure S3). 

This network included 299 epigenetic regulators and 6,765 

edges. As shown in Supplementary Table S5, the maximum 

EdgeCount value was 309, corresponding to the epigenetic 

regulator TADA2A, which also exhibited the highest indegree 

value (239) among all nodes. Simultaneously, the two nodes 

with the maximum outdegree were KDM5B and BAZ2B (106 

and 103, respectively; Supplementary Table S5). However, it 

is noteworthy that the two epigenetic regulators had relatively 

low indegree values (3 and 2, respectively). This finding sug-

gested that these two epigenetic regulators have the capacity to 

regulate a large number of other epigenetic regulators, while 

being regulated by only a few.

More importantly, we found eight distinguishing mod-

ules (M1, M2, M3, M4, M5, M6, M7, and M8) in this regu-

latory network (Figure 5). Module M1 had the most nodes 

(52), module M5 had the least nodes (6), module M3 had 

the most edges (230), and module M8 had the least edges 

(10). Like clusters, we performed functional annotation 

on the common DEGs, which were defined as genes exhib-

iting differential expression in at least one-half of the epi-

genetic regulators within each module. The results showed 

that the distinct functions of DEGs regulated by epigenetic 

regulators within each module (Supplementary Figure S4). 

For example, module M1 was primarily associated with 

hypoxia, while module M3 was related to fat cell differen-

tiation (Supplementary Figure S4A, S4C). The function of 

module M6 was the regulation of cysteine-type endopepti-

dase activity, while module M7 was associated with the reg-

ulation of peptidyl-serine phosphorylation (Supplementary 

Figure S4F, S4G). Furthermore, module M8 was shown to 

be related to neuroinflammation (Supplementary Figure 

S4H). Despite the significant enrichment of apoptotic sig-

naling pathway in modules M2, M4, and M5, module M5 

exhibited involvement in other functions, including drug 

response, histone modification, and cell cycle regulation 

(Supplementary Figure S4E). These results suggested that 

the network we constructed facilitated the discovery of direct 

interaction among the epigenetic regulators.

Identification of master epigenetic regulators 
in breast cancer

In addition to uncovering the interactions of hundreds of epi-

genetic regulators, we also focused on identifying key epige-

netic regulators that play an important role in breast cancers. 

Based on the outdegree values of the nodes in the network, 

we identified 10 epigenetic regulators, including KDM5B, 

BAZ2B, ITIH4, KAT5, YTHDF2, SMN1, TADA2A, SETMAR, 

ALKBH5, and HDAC8 (Figure 6A and Supplementary Table 

S5). These epigenetic regulators were selected as master epi-

genetic regulators, indicating their position at the top of the 

regulatory hierarchy. We also observed mutual regulation 

among the 10 master regulators (Figure 6B). Notably, all 10 

master epigenetic regulators exhibited significant differen-

tial expression in breast cancer compared to normal breast 

tissue (Figure 6C). Immunohistochemical staining con-

firmed the upregulation of KDM5B, YTHDF2, SMN1, and 

ALKBH5 proteins in BRCA, consistent with mRNA expres-

sion (Figure 6D). Conversely, BAZ2B, KAT5, and ITIH4 pro-

teins were downregulated in BRCA, which was also consistent 

with the mRNA levels (Figure 6D). More importantly, we 

found that six master epigenetic regulators were significantly 
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associated with the overall survival in patients with breast 

cancer (P < 0.05; Figure 6E).

Pan-cancer analysis of TCGA datasets encompassing 34 

cancer types demonstrated significant differential expres-

sion of the master epigenetic regulators across multiple can-

cers (Supplementary Figure S5 and Table S6). For example, 

KDM5B exhibited significant upregulation in as many as 24 

cancer types, while BAZ2B displayed high expression in 10 

cancer types and low expression in 20 cancer types. ITIH4, 

KAT5, and SETMAR followed a pattern like BAZ2B and were 

significantly downregulated in most cancers. In contrast, 

SMN1, YTHDF2, HDAC8, and KDM5B were predominantly 

upregulated in most cancers. However, the differential expres-

sion of TADA2A and ALKBH5 in cancers lacked specificity, 

with one-half exhibiting high expression and the other half 

showing low expression. Prognostic analysis conducted across 

various cancer types indicated varying associations between 

the expression of the 10 master epigenetic regulators and 

patient outcomes (Supplementary Figure S6). KDM5B was a 

risk factor in most cancers, whereas BAZ2B exhibited a protec-

tive effect. These findings emphasized these master epigenetic 

regulators function in breast cancer as well as in multiple other 

cancer types.

Discussion

Aberrant epigenetic regulation is known to have a pivotal 

role in the development of various cancers, including breast 

Figure 5  Eight modules and their information. (A) Regulatory network of eight modules illustrated by Cytoscape. The module refers to a high 
interconnected region within this network that are functionally related. Each node represents an epigenetic regulator in this network. The edge 
represents a regulatory interaction between two epigenetic regulators. (B) The information of eight modules.
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cancer. However, although approximately 400 epigenetic reg-

ulators are involved in the intricate landscape of epigenetic 

regulation, the mutual regulatory mechanisms and master 

players remain poorly understood. In the present study, we 

used siRNA knockdown and the HTS2 assay to uncover the 

expression signatures representing 400 epigenetic regulators. 

Leveraging the gene expression signatures, we classified the 

epigenetic regulators into five distinct clusters, each charac-

terized by its specific functions and encompassing various 

epigenetic modifications. Subsequently, we revealed the func-

tional similarity between BAZ2B and SETMAR, as well as 

between CLOCK and CBX3. We also found that even though 

CLOCK and HDAC8 demonstrated co-localization of gene 

binding in chromatin, CLOCK and HDAC8 exhibited an 

antagonistic relationship with gene expression. More impor-

tantly, we constructed a comprehensive regulatory network of 

the 299 epigenetic regulators, which revealed 8 distinguished 

modules. Notably, based on this regulatory network, we iden-

tified 10 master epigenetic regulators, which play crucial roles 

in breast cancer prognosis.

This is the first study to construct a regulatory network 

among 299 epigenetic regulators. Using this network, we suc-

cessfully identified eight distinct modules, wherein the epige-

netic regulators interacted and mutually regulated each other. 

These regulatory interactions of multiple epigenetic regulators 

collectively governed gene expression, leading to the mani-

festation of unique functional roles in each module. Notably, 

several of the regulatory interactions observed in our modules 

have been previously validated. For example, the interactions 

between HDAC2 and KDM1A, KDM1A and SFMBT1, and 

SFMBT1 and RCOR3, which were uncovered in module M7 

(Figure 5A), have already been reported36-38. Furthermore, 

previous studies have shown that SMYD2 regulates the tran-

scriptional activation of TACC239, which was consistent with 

our results within module M5 (Figure 5A). Additionally, our 

results also support the previously reported transcriptional 

regulation of SMYD2 and SETD840. Interestingly, all four 

members of the NuRD complex (MTA3, RBBP7, MBD3, and 

HDAC2) were within module M736,37. Another set of four 

members from the NuA4/Ti60-HAT complex (BRD8, EPC1, 
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Figure 6  Ten master epigenetic regulators in breast cancer. (A) Number of differentially-expressed epigenetic regulators regulated by knock-
ing down 10 master epigenetic regulators. (B) Regulatory network of epigenetic regulators. (C) RNA expression of the epigenetic regulators in 
BRCA and normal tissues. The dark turquoise represents the normal samples, and the goldenrod represents the tumor samples. the red star 
means the master epigenetic regulator was unregulated in BRCA, and the blue star means master epigenetic regulator was downregulated 
in BRCA. (D) Protein expression of master epigenetic regulators in BRCA and breast tissues. (E) Kaplan-Meier plot showing the relationship of 
expression of master epigenetic regulators with the survival of breast cancer patients.
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YEAST4, and KAT5) was found within module M3. More 

importantly, we also found several unrelated epigenetic regu-

lators (SMN2 and SMYD2) in the same module (M5), which 

showed unreported transcriptional regulations between these 

epigenetic regulators. Clearly, this network provides compre-

hensive and novel insight into the interactions among hun-

dreds of epigenetic regulators.

Our results showed that ATRX, SETDB1, and TRIM28 were 

all classified into cluster 5 (Supplementary Table S3). Previous 

research has already demonstrated that SETDB1 and TRIM28 

are members of the same protein complex, and TRIM28 

helped in recruiting SETDB1 to genomic loci41, which was 

consistent with our findings. SETDB1, an H3K9 methyltrans-

ferase, physically interacts with ZNF274/TRIM28/SETDB1 in 

chromatin and correlates with H3K9me3 enrichment, where 

ATRX is involved42. Taken together, these results further indi-

cated that the gene expression signatures of 299 epigenetic 

regulators and our bioinformatic analysis are reliable. More 

importantly, our data and analysis provided a novel approach 

to facilitate the discovery of unknown crosstalk between epi-

genetic regulators.

CLOCK, an important circadian clock gene, has been iden-

tified as a significant modifier of breast cancer43. In addition to 

its role in regulating circadian rhythms, the protein encoded by 

CLOCK is associated with histone acetyltransferase activity44. 

It is well known that HDAC8 serves as an epigenetic “eraser” 

and preferentially mediates the deacetylation of H3K9ac45,46. 

Our results revealed that CLOCK antagonizes HDAC8 in the 

regulation of downstream gene expression, which is clearly 

consistent with these reports. Based on these findings, we 

speculate that HDAC8 might specifically deacetylate the 

H3K9ac, which were modified by CLOCK. Experimental val-

idation is warranted to further understand the relationship 

between these regulators and elucidate the underlying molec-

ular mechanisms.

Conclusions

In summary, by utilizing the gene expression signatures gen-

erated by knocking down 400 epigenetic regulators and the 

HTS2 assay, we identified master epigenetic regulators and 

unveiled intrinsic relationships among the master epigenetic 

regulators in the context of breast cancer. In addition to pro-

viding a comprehensive transcriptional dataset on epigenetic 

regulation, our findings further offer valuable insight into the 

landscape of epigenetic regulation and provide potential drug 

targets for breast cancer treatment.
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