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ABSTRACT Malignant tumors are complex structures composed of cancer cells and tumor microenvironmental cells. In this complex structure, cells 

cross-talk and interact, thus jointly promoting cancer development and metastasis. Recently, immunoregulatory molecule-based cancer 

immunotherapy has greatly improved treatment efficacy for solid cancers, thus enabling some patients to achieve persistent responses 

or cure. However, owing to the development of drug-resistance and the low response rate, immunotherapy against the available targets 

PD-1/PD-L1 or CTLA-4 has limited benefits. Although combination therapies have been proposed to enhance the response rate, severe 

adverse effects are observed. Thus, alternative immune checkpoints must be identified. The SIGLECs are a family of immunoregulatory 

receptors (known as glyco-immune checkpoints) discovered in recent years. This review systematically describes the molecular 

characteristics of the SIGLECs, and discusses recent progress in areas including synthetic ligands, monoclonal antibody inhibitors, and 

Chimeric antigen receptor T (CAR-T) cells, with a focus on available strategies for blocking the sialylated glycan-SIGLEC axis. Targeting 

glyco-immune checkpoints can expand the scope of immune checkpoints and provide multiple options for new drug development.
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Introduction

Malignant tumors are complex structures composed of can-

cer cells and various microenvironmental cells1,2, more than 

50% of which are tumor-associated macrophages3. Cross-talk 

between cancer cells and microenvironmental cells facilitates 

cancer development and metastasis. Therefore, to conquer 

cancer, the biological behavior of cancer cells and the com-

ponents of the tumor microenvironment (TME) cells, which 

greatly enhance treatment efficacy, must be considered.

In recent years, oncologists have recognized the biological 

importance of the TME in the progression of malignancies, 

particularly immune cells, and have attempted to amelio-

rate the immunosuppressive microenvironment of cancers 

caused by immune checkpoints4,5. Several monoclonal anti-

bodies have been developed to block the PD-1/PD-L1 and 

CTLA-4 immune checkpoints. According to clinical treatment 

reports, use of an immunotherapeutic paradigm instead of 

traditional cytotoxic drugs can effectively reactivate immune 

cells. Thus, immune checkpoint inhibitors not only pro-

tect healthy cells against non-specific killing, but also ena-

ble durable response or even cure in patients6,7. Anti-cancer 

immunotherapies are a promising approach that has brought 

hope to patients. However, only limited patients show positive  

responses to PD-1/PD-L1 blockade therapy, owing to the  

variable expression of PD-1/PD-L1 among human popula-

tions and the development of drug-resistance after treatment. 

To date, the mechanism of primary or secondary resistance is 

not well understood8,9. Additional immunoregulatory path-

ways, such as T cell immune checkpoints, are likely to exist10. 

Consequently, combination strategies have been developed 

to target multiple immune checkpoints to enhance treatment 

efficacy11. Among them, sialic acid (Sia)-binding immuno-

globulin-like lectins (SIGLECs) have attracted substantial 

attention as a potential alternative12. Here, we summarize 

recent progress in targeting the sialylated glycan-SIGLEC axis 

for cancer immunotherapy.
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SIGLEC classification and molecular 
characteristics

SIGLECs belong to the immunoglobulin superfamily, and 

are expressed on most immune cells. To date, 15 members 

of SIGLECs have been identified in humans. According to 

sequence similarity and evolutionary conservation, SIGLECs 

are classified into 2 categories. The first category is highly 

conserved among multiple vertebrate lineages and has low 

sequence similarity, and comprises SIGLEC1 (CD169, sia-

loadhesin), SIGLEC2 (CD22), SIGLEC4 (myelin associ-

ated glycoprotein, MAG), and SIGLEC15 (CD33L3). The 

second category lacks evolutionary conservation (i.e., has 

been identified in humans but not mice) and comprises the 

SIGLEC3 (CD33) related SIGLECs (CD33rSIGLECs), com-

prising SIGLEC3, SIGLEC5 (CD170), SIGLEC6 (CD327), 

SIGLEC7 (CD328), SIGLEC8, SIGLEC9 (CD329), SIGLEC10, 

SIGLEC11, SIGLEC12, SIGLEC14, and SIGLEC1613-15. The 

extracellular structure of SIGLECs consists of 1–16 Ig con-

stant-2 set (C2) domains with an additional Ig variable set 

(V-set) domain at the N terminus, which is responsible for 

binding sialylated glycan (sialoside) ligands (Figure 1). In 

the cytoplasmic domain, most CD33rSIGLECs contain 

either an immunoreceptor tyrosine-based inhibitory motif 

(ITIM) or immunoreceptor tyrosine-based switch motif 

(ITSM). After binding sialoside ligands, the ITIM or ITSM 

recruits SRC homology region 2 domain-containing tyrosine 

phosphatase-1 and -2 (SHP-1 and SHP-2), and inhibits the 

 activation of tyrosine kinase, thereby participating in immu-

nosuppressive regulation. Several SIGLECs, such as SIGLECs 

14, 15, and 16, have positively charged amino acid residues 

in their transmembrane domains, which interact with DAP12 

(also known as transmembrane immune signaling adaptor 

TYROBP) on immune cells. The intracellular domain of 

DAP12 contains an immunoreceptor tyrosine-based activa-

tion motif (ITAM), which activates spleen tyrosine kinase 

(SYK) and further catalyzes a downstream immune cascade. 

Thus, DAP12-paired SIGLECs may participate in the activa-

tion of immune cells16.

SIGLECs are expressed on both innate and adaptive immune 

cells, such as monocytes, neutrophils, natural killer (NK) 

cells, and B cells. A recent article has indicated that adaptive 

immune cells such as T lymphocytes also express SIGLECs. 

Vuchkovska et al.17 have reported that SIGLEC5 is expressed 

on most activated T cells after antigen receptor stimulation, 

whereas SIGLEC5 overexpression abrogates the activation of 

NFAT and AP-1 induced by antigen receptor. The SIGLECs 

on human or murine leucocytes have diverse functions. Cells 

expressing SIGLECs are listed in Table 1.
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Figure 1 The 15 SIGLECs identified in humans. SIGLEC1, SIGLEC2, SIGLEC4, and SIGLEC15 are evolutionarily conserved, and the others are 
evolutionary non-conserved. SIGLEC1 is the longest SIGLEC without intracellular signaling motif, and human SIGLEC12 has lost the ability to 
bind Sias.
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Natural ligands of SIGLECs

Sias are enriched on the surfaces of mammalian cells, bacteria 

and viruses, as well as on mucin proteins produced by cancer 

cells53,54. Sias are a family of sugar derivatives comprising a 

nine-carbon backbone with a carboxyl group at the C-1 posi-

tion. The most common Sias in the mammalian glycome are 

N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid 

(Neu5Gc), and the deaminated neuraminic acid 2-keto-3-de-

oxy-D-glycero-D-galacto-nononic acid (Kdn) (Figure 2A)55. 

Sias are frequently attached to the penultimate galactose (Gal) or 

N-acetyl galactosamine (GalNAc) residue through either an α2,3- 

or an α2,6-linkage. Sias can conjugate to the C-8 or C-9 posi-

tions, thus forming α2,8- or α2,9-linked sialosides (Figure2B). 

Sialylation, an important glycosylation reaction, is accomplished 

by the transfer of Sias to the underlying glycan chain by a com-

bination of cytidine monophosphate-Sia synthetases (CMP-Sia 

synthetases, CSSs) and sialyltransferases (STs). The linkage types 

are cell- and tissue-specific, and are dynamically regulated by 

the expression patterns of STs. Sialylated glycans are frequently 

Table 1 Expression spectrum of SIGLECs on human or murine cells

SIGLECs Other names Expressing cells Refs

SIGLEC1 CD169 Macrophage, Dendritic cell 14,18,19

SIGLEC2 CD22 B cell, cDC*, Mast cell 14,18

SIGLEC3 CD33 Diverse myeloid-derived cells, NK cell, T cell 14,18,20

SIGLEC4 MAG Oligodendrocyte, Schwann cell 14,18

SIGLEC5 CD170 Diverse myeloid-derived cells, T cell, B cell 14,17,18,21,22

SIGLEC6 CD327 Trophoblast, Mast cell, Basophil, B cell, Myeloid leukemia 14,17,18,23

SIGLEC7 CD328 Diverse myeloid-derived cells, NK cell, T cell 14,18,24,25

SIGLEC8 – Eosinophil, Basophil, Mast cell 14,18

SIGLEC9 CD329 Diverse myeloid-derived cells, T cell, NK cell 14,18,26

SIGLEC10 – Macrophage, NK cell, Eosinophil, B cell, T cell 14,18,27

SIGLEC11 – Microglia, Macrophage, Ovarian stromal cell 14,18,28

SIGLEC12 Pseudogene Macrophage, Unknown 14,18,29

SIGLEC14 – Diverse myeloid-derived cells 14,18,30

SIGLEC15 CD33L3 Macrophage, Osteoclast 14,18,31

SIGLEC16 – Macrophage, Microglia 14,18,21

mSiglec1# mCD169 Macrophage, Dendritic cell 14,18,19,32

mSiglec2 mCD22 B cell, cDC*, Mast cell 14,18,33

mSiglec4 mMAG Oligodendrocyte, Schwann cell 14,18,34

mSiglec15 mCD33L3 Macrophage, Osteoclast 14,18,31

mSiglec3 mCD33 Neutrophil, Macrophage, Microglia 35,36

mSiglecE Homolog of SIGLEC9 Diverse myeloid-derived cells, NK cell, Dendritic cell 37-42

mSiglecF Homolog of SIGLEC8 Immature cells of myeloid lineage, Eosinophil, Neutrophil 35,43-49

mSiglecG Homolog of SIGLEC10 Eosinophil 34,43,44

mSiglecH Possible human homolog of SIGLEC14 
and SIGLEC16?

Plasmacytoid dendritic cell (pDC), Macrophage 43,50-52

#The “m” prefix indicates murine origin. *myeloid-derived DC.
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attached to proteins (N-/O-linked glycoproteins) and lipids (gly-

colipids) involved in various biological processes, such as path-

ogen recognition, inflammation, immune responses, and cancer 

development (Figure 2C).

Owing to the attachment to the non-reducing end of glycan 

chains, Sias serve as ligands for certain cell membrane recep-

tors, including SIGLECs56. However, SIGLECs have distinct 

binding specificity depending on the linkage type of Sias and 
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Figure 2 Diversity of sialoside structures. (A) Chemical structures of Neu5Ac, Neu5Gc, and Kdn. (B) Common linkage types of sialosides. 
(C) Underlying glycan backbones for sialylation, including glycoproteins (N-/O-glycan, Tn-, and T-antigen), as well as glycolipids. N-glycan is 
covalently attached to the amide side chain of the asparagine (Asn) residue, whereas O-glycan is attached to the hydroxyl groups of threo-
nine/serine (Thr/Ser). Glycolipid is linked to the C-1 hydroxyl group of the ceramide. Structures are presented with SNFG symbol nomenclature 
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https://www.ncbi.nlm.nih.gov/glycans/snfg.html
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the underlying sugar. A conserved arginine residue in the V-set 

domain is believed to ligate the carboxylate group of Sias via 

a salt bridge57. When essential arginine is mutated, Sia recog-

nition ability is lost58. Further contacts have been observed 

between SIGLECs and the 4-OH, 5-NAc, and glycerol side 

chain of Sias. A variable C-C′ loop in the binding site is 

responsible for recognizing the underlying glycan59. Through 

interaction with the sialoside ligand, SIGLECs can distinguish 

“self” and “non-self” molecules, thus preventing unwanted 

inflammatory responses under homeostatic conditions.

The natural ligands of SIGLECs are sialylated glycans. 

However, recent studies have shown that lipophilic molecules 

and proteins mediate binding to SIGLEC receptors in a Sia-

independent manner. Suematsu et al.60 have reported that fun-

gal alkanes and triacylglycerols extracted from Trichophyton 

show ligand activity for SIGLEC5 and SIGLEC14. The lipophilic 

ligands suppress interleukin-8 (IL-8) production in SIGLEC5-

expressing human monocytic cells, whereas the endogenous 

lipids induce IL-8 production in SIGLEC14-expressing human 

monocytic cells. These findings suggest that lipophilic lig-

ands modulate innate immune responses, thus expanding 

understanding of the biological functions and importance of 

SIGLECs in innate immunity. In addition, Fong et al.61 have 

found that secreted heat-shock protein 70 (HSP70) acts as 

a ligand for SIGLEC5 and SIGLEC14, thus inducing either 

anti- inflammatory signal or pro-inflammatory signals, respec-

tively. Moreover, Nizet and co-workers62 have demonstrated 

that human neonatal pathogen group B streptococcus engages 

SIGLEC5 and SIGLEC763 via β protein, thus impairing human 

leukocytes, increasing bacterial resistance to neutrophil phago-

cytosis, and suppressing the pyroptosis activity of NK cells. A 

recent study has suggested that SIGLEC10 interacts with both 

amino acids and sialic acids of CD24, a protein overexpressed 

on tumor cells, thus inducing tumor immune escape64.

Association of SIGLECs with cancers

Cancer development is regulated by the crosstalk between 

cancer cells and other components in the TME, such as can-

cer-associated fibroblasts, blood vessels, and immune cells. 

Although numerous immune cells are recruited to the local 

TME for targeting cancer cells, these abilities are inhibited by 

cancer-derived suppressive signals. Under suppressive condi-

tions, immune effector cells, such as macrophages, dendritic 

cells, and T cells, do not have anti-cancer activity but instead 

facilitate cancer development.

The abnormal expression of some STs in cancer cells signif-

icantly affects Sia content and type. For example, a change in 

ST6GALNAC4 expression has been found to increase the con-

tent of disialyl-T antigen [Neu5Acα2,3Galβ1,3(Neu5Acα2,6)

GalNAcα–]65. Moreover, hypoxia up-regulates the expression 

of both STs and the transporter SLC17A5, which transports 

external Sias into cells66,67. Thus, the cancer cell surface is cov-

ered by a dense layer of sialylated glycans, such as polysialic 

acid, sialylated Lewis antigens, and sialylated Tn/T antigens. 

Aberrant sialylation is associated with cancer progression and 

metastasis, and is a hallmark of several cancers including those 

of the lung, breast, pancreatic, and prostate68. These tumor- 

associated sialosides have been identified as biomarkers for 

certain cancers, and used for cancer diagnosis and monitor-

ing. Among them, CA19-9 (also called carbohydrate antigen 

19-9 or sialylated Lewis A antigen) is the most commonly used 

serum marker for pancreatic cancer diagnosis69.

Overexpressed sialosides on cancer cells interact with 

SIGLECs on immune cells providing an immunosuppres-

sive TME just like the PD-1 does. Therefore, in recent years, 

SIGLECs have become a new target of anti-cancer immu-

nity70,71. Stanczak et al.12 have reported the upregulation of 

SIGLECs including SIGLEC9 on tumor-infiltrating T cells 

from non-small cell lung cancer, colorectal cancer, and ovar-

ian cancer. SIGLEC9-expressing T cells in patients with non-

small cell lung cancer correlate with diminished survival, 

whereas SIGLEC9 polymorphisms are associated with the 

risk of developing lung and colorectal cancer. Targeting the 

sialoside-SIGLEC pathway increases anticancer immunity 

in vitro and in vivo. Moreover, Zhang et al.72 have reported 

that gastric cancer-specific exitrons significantly increase 

the expression of PD-1, SIGLEC1, SIGLEC2, SIGLEC3, and 

SIGLEC7 with high neoantigen load. The exitrons are clini-

cally relevant to sex, age, Lauren classification, tumor stage, 

and prognosis. Wang et al.73 have constructed a comprehen-

sive immune scoring system including 6 immunosuppressive 

genes (NECTIN2, CEACAM1, HMGB1, SIGLEC6, CD44, and 

CD155) to improve prognosis after adjuvant chemotherapy in 

gastric cancer by supplementing TNM staging. In addition, an 

interaction of SIGLEC7 and SIGLEC9 from myeloid cells with 

the elevated Sia in cancer cells has been found in a pancreatic 

cancer study70.

In our recent studies, we have analyzed the pangenomic 

characteristics of gastric cancer and identified a set of genes 

(GSTM1, ACOT1, SIGLEC14, and UGT2B17) with high- 

frequency absence variation at the whole genome level74-76. 
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Through comparison with whole genome sequencing data for 

multiracial populations in public databases, we determined 

that the frequency of absence of the above 4 genes (41%–71%) 

in the gastric cancer population was much higher than that 

in European and American healthy populations (4.6%–46%). 

The absence of SIGLEC14 was first proposed in gastric can-

cer76. Because SIGLEC14 is an innate immune cell activation 

receptor, the integrity of the SIGLEC14 gene provides a mole-

cular basis for ensuring the M1 polarization of macrophages 

or tumor-arresting polarization of neutrophils. Deletion of 

this gene in cancer is expected to worsen the tumor immu-

nosuppressive microenvironment. A bioinformatic analysis of 

lung adenocarcinoma has indicated that the expression levels 

of SIGLEC3, SIGLEC5, SIGLEC7, SIGLEC9, SIGLEC11, and 

SIGLEC14 correlate with macrophage, neutrophil, and den-

dritic cell infiltration77.

Strategies to block the sialoside-
SIGLEC axis

The above studies have indicated that SIGLECs are involved 

in the immune evasion of cancers and are potential targets to 

alleviate the immunosuppressive TME in cancer immunother-

apy. In the SIGLEC family, 8 members, SIGLEC3, SIGLEC5, 

SIGLEC6, SIGLEC7, SIGLEC8, SIGLEC9, SIGLEC10, and 

SIGLEC11, contain immunosuppressive functional domains 

in their intracellular domains, which are similar to PD-110,17. 

Sequence alignment studies have demonstrated that PD-1 

shares conserved amino acids in the ITIM and ITSM domains 

with SIGLEC5, SIGLEC7, and SIGLEC9. The interaction of 

SIGLECs with sialoside ligands results in inhibitory signaling 

as does the interaction between PD-1 and PD-L110. Similarly 

to PD-1 based immunotherapies, blockade of the sialoside-SI-

GLEC axis provides benefits in cancer treatment.

Multivalent presentation of natural ligands for 
targeting SIGLECs

Given that SIGLECs are glyco-immune checkpoints, the lig-

ands or monoclonal antibodies targeting SIGLECs have 

therapeutic potential. Generally, natural sialosides on glyco-

proteins and glycolipids exhibit weak monovalent binding 

affinity toward SIGLECs (Kd = 0.1–3 mM), and this affinity 

can be increased by presentation of multiple copies to clus-

ter of the SIGLECs78. To mimic the multivalent presentation 

of sialosides on the cell surface, researchers have prepared 

libraries of sialosides immobilized on glass slides (sialoside 

microarrays). Through high-throughput screening with the 

sialoside microarrays, natural ligands for SIGLECs have been 

identified (Table 2)56. As the sialylated glycans on traditional 

biochips cannot fully recapitulate their conformations on the 

cell surface, and the arrays are expensive, a mammalian living 

cell screening system has been developed79.

Physiologically, SIGLECs are masked by endogenous cis- 

ligands, thus aiding in maintenance of cell homeostasis; how-

ever, malignant cells show elevated interaction with inhibitory 

SIGLECs through hypersialylation, and dampened immune 

surveillance80,81. To block the sialoside-SIGLEC axis, natu-

ral sialosides have been incorporated into various polymeric 

scaffolds to mimic the multivalent presentation of sialosides 

on glycoproteins and glycolipids82-85. Glycopolymers with a 

high density of Sia moieties can outcompete the natural sia-

losides in cancer cells for SIGLEC binding. Thus, sialoside gly-

copolymers can be used as inhibitors to perturb SIGLECs. To 

validate early models of hypersialylation-mediated immuno-

evasion, Bertozzi and coworkers82 have incorporated sialoside- 

functionalized glycopolymers onto cancer cell surfaces. The 

results suggest that hypersialylation of cancer cells elicits NK 

inhibition, and SIGLEC7 can tune the cytotoxicity activation 

of NK cells according to cancer cell sialylation status82. These 

results indicate that SIGLEC7 may be a potential therapeutic 

target for cancer therapy.

Because SIGLECs bind natural ligands with overlapping 

specificity and lower affinity than synthetic ligands, their reg-

ulatory mechanisms may be misinterpreted. Therefore, high 

affinity synthetic ligands with better specificity for SIGLECs 

must be developed.

Development of synthetic ligands for SIGLECs

In the past 20 years, various strategies have been used to 

introduce novel substituents to Sias as synthetic ligands, thus 

increasing binding affinity to SIGLECs in the sub-micromolar 

range (Table 2)86.

Because of the lack of an intracellular signaling motif, 

SIGLEC1 (sialoadhesin, Sn) is an ideal receptor for targeted 

delivery of antigens to macrophages, thereby eliciting a robust 

humoral response. The crystal structures of murine Sn have 

been determined, thus providing structural insights into 

the key features of Sia recognition. A high affinity and spec-

ificity ligand TCCNeu5Ac sialoside (1), with sub-micromolar 
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Table 2 Developed synthetic ligands for corresponding SIGLECs

SIGLECs Natural ligands High affinity synthetic ligands Refs

SIGLEC1 Neu5Acα2,3LacNAc
Modest

TCCNeu5Ac (1)
(R = α2,3-LacNAc, IC50 = 0.38 μM)

87

hCD22* Neu5Acα2,6LacNAc
Strong

BPCNeu5Ac (2)
(R = α2,6-LacNAc, IC50 = 0.20 μM)

99

MPBNeu5AcF (3)
(R = α2,6-Lac, IC50 = 0.20 μM)

100

mCD22** Neu5Gcα2,6LacNAc
Strong

BPANeu5Gc (4)
(R = α2,6-LacNAc, IC50 = 0.80 μM)

99

hCD33*** Neu5Acα2,6LacNAc
Weak

(5)
(R = α2,6-Lac, IC50 = 11.00 μM)

100

SIGLEC7 Neu5Acα2,8Neu5Acα2,3LacNAc
Strong

FTMCNeu5Ac (6)
(R = α2,6-Lac, unknown affinity)

89

SIGLEC9 Neu5Acα2,3Galβ1,4(Fucα1,3)-(6-O-
SO3)GlcNAc
Strong [Ref. 101]

(7)
(R = α2,6-Lac, unknown affinity)

102
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binding affinity (IC50 = 0.38 μM), has been developed87. 

Through screening with a sialoside analog microarray, several 

high affinity ligands for SIGLEC2/CD22 have been identified, 

such as the BPCNeu5Ac (2) and MPBNeu5AcF (3) sialosides 

for human CD22, and BPANeu5Gc (4) sialoside for murine 

CD2288. Through the same strategy, FTMCNeu5Ac (6) has been 

discovered as a high affinity ligand for SIGLEC7, an inhibi-

tory receptor on NK cells89. Moreover, cell-based glycan arrays 

have been developed to directly probe interactions of glycans 

with glycan-binding protein on the Chinese hamster ovary 

cell surface. With this platform, high-affinity glycan ligand 8 

was discovered for SIGLEC1590,91. A panel of synthetic ligands 

has been developed. Examples are listed in Table 2, includ-

ing SIGLEC1, SIGLEC2, SIGLEC3, SIGLEC7, SIGLEC9, and 

SIGLEC15.

However, these synthetic ligands alone remain insufficient to 

unmask the binding sites of endogenous target cell cis-ligands 

on SIGLECs. Targeting specific SIGLEC on cells requires multi-

valent presentation of high affinity ligands on various scaffolds, 

including nanoparticles and polymers92-94. For example, lipos-

omal nanoparticles coated with the high affinity CD22-ligand 

BPC-Neu5Ac sialoside have been generated to target human 

malignant B cells92. After binding and endocytosis into acidic 

endosomes, liposomes are broken, and the encapsulated tox-

ins are released, thus achieving CD22-dependent cytotoxicity 

in in vitro and in vivo studies. In addition, through metabolic 

engineering or a chemoenzymatic approach, the high affinity 

CD22-ligand MPB-Neu5Ac has been incorporated on NK-92 

cells and found to enhance anti-tumor activity95,96. Glyco-

engineered NK-92 cells exhibit CD22-dependent cytotoxic-

ity to lymphoma cell lines and primary lymphoma cells from 

human patients. In recent studies, Bertozzi and  coworkers97 

have incorporated the SIGLEC9 high affinity ligand into a syn-

thetic polypeptide. The artificial glycopeptide serves as a mem-

brane-tethered cis-binding agonist that inhibits macrophage 

phagocytosis and induces neutrophil apoptosis98.

The above studies have highlighted the potential applica-

tions of synthetic SIGLEC ligands as immune modulators with 

great medicinal value in cancer treatment.

Progress in monoclonal antibodies for 
SIGLECs

Because cancer cells inhibit immune cell activity and evade 

immunosurveillance via the sialoside-SIGLEC axis, scientists 

have developed monoclonal antibodies targeting these inhib-

itory SIGLECs. By immunizing mice with SIGLEC9-encoding 

DNA and SIGLEC9 protein, Choi et al.42 have developed 

the high specificity and functionality monoclonal antibody 

(8A1E9) against SIGLEC9. The humanized antibody shows 

anti-tumor immune activity toward ovarian cancer in vitro and 

in vivo. Similarly, Cyr et al.104 have developed an anti- SIGLEC6 

monoclonal antibody achieving highly potent and specific 

elimination of SIGLEC6 positive leukemic and healthy B cells, 

thus indicating the potential for cancer immunotherapy.

SIGLEC15 has recently been identified as a critical immune 

suppressor. Chen and coworkers31 have identified the 

SIGLEC15 immune suppressor through a genome-scale T-cell 

activity array. They have found that SIGLEC15 is broadly 

upregulated on human cancer cells and tumor-infiltrating 

myeloid cells. Importantly, the expression of SIGLEC15 is 

mutually exclusive to PD-L1. By binding unknown ligands, 

SIGLECs Natural ligands High affinity synthetic ligands Refs

SIGLEC15 Neu5Acα2,6GalNAcαThr/Ser
(To be further evaluated) [Ref. 103]

(8)
(R = α2,6-LacNAc, unknown affinity)

90

LacNAc, Galβ1,4GlcNAc; Lac, Galβ1,4Glc; IC50, half maximal inhibitory concentration. *hCD22, human SIGLEC2/CD22. **mCD22, mouse 
SIGLEC2/CD22. ***hCD33, human SIGLEC3/CD33.

Table 2 Continued
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SIGLEC15 suppresses antigen-specific T-cell responses in vitro 

and in vivo. Genetic ablation or antibody (clone m03) blockade 

of SIGLEC15 amplifies anti-tumor immunity in the TME and 

inhibits tumor growth in some mouse models31. Xiao et al.105 

have reported a monoclonal antibody against SIGLEC15 (S15-

4E6A), and evaluated its antitumor effectiveness and mod-

ulatory role in macrophages in vitro and in vivo. They have 

found that S15-4E6A promotes macrophage M1 polarization 

while inhibiting M2 polarization both in vitro and in vivo, and 

exerts an efficacious tumor-inhibitory effect on lung adeno-

carcinoma cells and xenografts. He et al.106 have developed a 

monoclonal antibody against SIGLEC15 (3D6), which blocks 

SIGLEC15-mediated suppression of T cell and moderately 

prevents tumor growth. Wu et al.107 have conducted mono-

clonal antibody screening on SIGLEC15 and have found that 

the 3F1 clone antibody has high receptor blocking activity 

and significantly reverses the inhibitory effect of SIGLEC15 

on  lymphocyte proliferation. In mouse experiments, the 3F1 

monoclonal antibody has shown significant antitumor effi-

cacy when applied alone or in combination with the Erbitux 

drug. These results have demonstrated that SIGLEC15 is a 

potential target for normalizing tumor immunity as an alter-

native to anti-PD-1 therapy.

AMG 330 is a dual specific antibody for CD3 and SIGLEC3/

CD33. CD33 is frequently expressed on the surfaces of blasts 

and leukemic stem cells in acute myelogenous leukemia. AMG 

330 binds with low nanomolar affinity to CD33 and CD3ε of 

both human and cynomolgus monkey origin. In an ex vivo 

experiment, AMG 330 has been found to mediate autologous 

depletion of CD33-positive cells from cynomolgus monkey 

bone marrow aspirates. Thus, AMG 330 is a potential anti- 

tumor reagent for acute myelogenous leukemia108.

The above studies have indicated that antibodies against 

SIGLEC checkpoints provide an alternative treatment for 

patients with cancer refractory to the well-known PD-L1/

PD-1-targeting therapies.

Because of the selective expression and endocytosis proper-

ties, SIGLECs can be directly targeted to deliver toxic cargo into 

hematopoietic cancer cells. In 2000, Mylotarg (Gemtuzumab 

ozogamicin from Pfizer), an anti-CD33 antibody-calicheamicin 

conjugate, was the first antibody-drug conjugate approved by 

the U.S. Food and Drug Administration (U.S. FDA). Mylotarg 

was developed for the treatment of acute myeloid leukemia 

but was withdrawn because of its high toxicity and low effi-

cacy in 2010. However, with altered dosing, Mylotarg regained 

approval for treatment of acute myeloid leukemia in 2017109-111. 

Similarly, in 2017, another antibody-drug conjugate drug, 

Besponsa (Inotuzumab ozogamicin, Pfizer, NCT01564784), 

was approved by the U.S. FDA to treat CD22-positive B-cell 

precursor acute lymphoblastic leukemia112.

Progress in dual functional drugs for 
desialylation-targeted therapy

During cancer development, tumor cells acquire the ability to 

evade immunosurveillance; the sialoside-SIGLEC axis between 

cancer cells and immune cells in the TME plays an important 

role in this evasion. However, the binding of SIGLECs to Sias 

is dynamic and reversible. Sialidases (called neuraminidases, 

NEUs) are enzymes that cleave the terminal Sia resides from 

glycolipids and glycoproteins, and are involved in several 

human pathologies such as neurodegenerative disorders, can-

cers, and infectious and cardiovascular diseases113. The four 

types of mammalian sialidases, encoded by different genes, are 

NEU-1, NEU-2, NEU-3, and NEU-4. Mucins (MUCs) are the 

major substrates of sialidases114. Therefore, sialidase dissoci-

ates SIGLECs bound to their ligands. By chemically coupling 

recombinant sialidases to trastuzumab, human epidermal 

growth factor receptor 2 (HER2)-specific antibody-sialidase 

conjugates have been constructed to desialylate tumor cells in 

a HER2-dependent manner, thus disrupting the sialoside-SI-

GLEC axis and enhancing antibody-dependent cell-mediated 

cytotoxicity10,115. Single-cell RNA sequencing has revealed 

that desialylation repolarizes tumor-associated macrophages 

and enhances the efficacy of immune checkpoint blockade116. 

Antibody-sialidase conjugates are thus a promising modality 

for glyco-immune checkpoint therapy.

Macrophages are important innate immune cells that pro-

vide the first line of defense against the invasion of harmful 

foreign molecules (immune defense) and autologous damaged 

or dead cells (immune surveillance). Unlike T and B lympho-

cytes, macrophages can kill foreign microorganisms and tumor 

cells non-specifically. The polarization status and regulatory 

mechanisms of macrophages have become major research 

fields. Macrophages in the TME can polarize in 2 directions 

depending on external stimuli: M1-type polarization (classical 

activation of macrophages) and M2-type polarization (alter-

native activation of macrophages), similarly to Th1 and Th2 

activation of T lymphocytes. M1-polarized macrophages are 

pro-inflammatory cells, which secrete inflammatory factors 

such as TNF-α and IL-1β, and extend pseudopodia for active 

phagocytosis. M2-polarized macrophages secrete cytokines 
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such as IL-10 and TGF-β, which induce the production of Treg 

cells in the TME and promote tumor growth117-119.

Similarly, neutrophils can have either tumor-arresting or 

tumor-promoting functions40. Recently, new knowledge has 

been highlighted regarding tumor-infiltrating neutrophils. 

Xue et al.120 have found that CCL4 and PD-L1 positive tumor- 

associated neutrophils have a tumor-promoting function in 

liver cancer. Moreover, the cytokines and chemokines secreted 

by neutrophils influence innate and adaptive immunity. IL-12, 

TNF-α, GM-CSF, CXCL10, CCL7, CCL2, and CCL3 are proin-

flammatory cytokines that serve as T cell and macrophage 

chemo-attractants. However, CCL17 and CXCL14 are pro- 

tumor cytokines121. Ligands on pathogens or tumor cells bind 

SIGLEC9 on neutrophils and limit neutrophil activation122. 

Thus, CD33rSIGLECs have been recognized as negative reg-

ulators of neutrophils. In addition, aberrant sialoglycans on 

the surfaces of tumor cells can shield potential tumor antigen 

epitopes and escape recognition, thereby suppressing immu-

nocyte activation. Desialylation on tumor cells can present 

tumor antigens with Gal/GalNAc residues and thus overcome  

glyco-immune checkpoints. Huang and colleagues123 have 

explored whether vaccination with desialylated whole-cell 

tumor vaccines (ID8 vaccine) might trigger anti-tumor immu-

nity in ovarian cancer. A desialylated tumor cell vaccine has been 

found to promote anti-tumor immunity and provide a strategy  

for ovarian cancer immunotherapy in a clinical setting123.

Chimeric antigen receptor T cell (CAR-T) 
and other approaches

CAR-T approach uses a genetically modified T cell receptor 

with improved recognition of specific cancer cell antigens 

and tumor cell killing. CD19 is by far the most targeted bio-

marker in cancer immunotherapy124. CD19 CAR-T has been 

used for B-cell acute lymphoblastic leukemia or lymphoma 

therapy. However, relapse occurs in some cases. Thus, CD22/

SIGLEC2 CAR-T and CD33/SIGLEC3 CAR-T were developed 

for the treatment of refractory leukemia or lymphoma125. A 

clinical trial has investigated patients with relapsed/refractory 

large B-cell lymphoma after CD19/22 dual-targeting CAR-T 

(AUTO3) plus pembrolizumab for relapsed/refractory large 

B-cell lymphoma (NCT03289455) and observed an overall 

response rate of 66% (48.9%, CR; 17%, PR)126. Because CD22 

is restricted to surfaces of B cells and B lymphoma cells, it is 

a commonly used target for the treatment of autoimmune 

diseases and B-cell malignancy. Currently, immunotherapy 

drugs targeting CD22 include monoclonal antibody drugs, 

antibody-drug conjugates, and CAR-T therapies. In addition, 

SIGLEC6 has been reported as a novel target for CAR T-cell 

therapy in acute myeloid leukemia23.

Given that hypersialylation of cancer cells together with 

significant upregulation of ST contributes to cancer progres-

sion and drug resistance127,128, scientists have designed and 

 constructed long-circulating, self-assembled core-shell nano-

particles carrying a transition state-based ST inhibitor, which 

inhibits sialoglycans in various cancer cells129. Recently, the 

Bertozzi group41 has found that the MYC oncogene controls 

expression of the sialyltransferase ST6GALNAC4 and induces 

sialosides, which function as a “do not eat me” signal by engag-

ing SIGLEC7 of macrophages, thus hindering cancer cell clear-

ance. Therefore, ST6GALNAC4 is a potential enzyme target 

for small molecule-mediated immune therapy41. Recently, 

Wang and coworkers80 have found that classical conventional 

DCs from cancer patient samples have high expression of sev-

eral inhibitory SIGLECs including SIGLEC7, SIGLEC9, and 

SIGLEC10. In subcutaneous murine tumor models, downregu-

lation of the inhibitory mSiglecE receptor on cancer-associated 

DCs has been found to enhance priming of antigen- specific T 

cells and induce proliferation. The above studies reveal a poten-

tial new target to improve cancer immunotherapy80.

In addition, soluble SIGLECs can function as immuno-

modulatory molecules, because binding to sialoside ligands 

interferes with the interaction between membrane SIGLECs 

and ligands. For example, Tomioka et al.130 have found that 

transgenic mice expressing the soluble form of mSiglecE show 

significant suppression of MUC1-expressing tumor prolifera-

tion. Related therapeutic interventions might potentially alter 

the outcomes of certain diseases. Tumor-associated MUC1 

binds SIGLEC9, thus mediating tumor cell growth and induc-

ing negative immunomodulation. Ono et al.131 have proposed 

that soluble SIGLEC9 (sSIGLEC9) competitively inhibits the 

binding of MUC1 to the receptor SIGLEC9, thus confer-

ring an antitumor benefit against MUC1-expressing tumors. 

Moreover, soluble SIGLEC14 in the blood has been found to 

dose-dependently suppress the pro-inflammatory responses 

of myeloid cells expressing membrane-bound SIGLEC14132.

Conclusions

In summary, to overcome the immunosuppressive state of 

malignancies, scientists have developed various strategies 
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to target the sialylated glycan-SIGLEC axis (Figure 3), 

although some strategies remain in the conceptual stage 

or pre-clinical research. As an alternative therapy or com-

bination strategy with immune checkpoint inhibitors, tar-

geting of the sialylated glycan-SIGLEC axis is expected to 

have a major role in cancer immunotherapy. At present, 

development of anti-SIGLEC drugs is rapidly progressing, 

 including high affinity ligands, monoclonal antibodies, 

dual functional reagents of desialylation molecular targeted 

drugs, and CAR-T cells. The physiological roles of SIGLECs, 

a new generation of immune checkpoint, continue to 

expand and are expected to attract greater attention in can-

cer immunotherapy.
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