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ABSTRACT Many patients have achieved a favorable overall survival rate since allogenic hematopoietic stem cell transplantation (allo-HSCT) 

has been widely implemented to treat hematologic malignancies. However, graft-versus-host disease (GVHD) and complications 

of immunosuppressive drugs after allo-HSCT are the main causes of non-relapse mortality and a poor quality of life. In addition, 

GVHD and infusion-induced toxicity still occur with donor lymphocyte infusions (DLIs) and chimeric antigen receptor (CAR) T-cell 

therapy. Because of the special immune tolerance characteristics and anti-tumor ability of universal immune cells, universal immune 

cell therapy may strongly reduce GVHD, while simultaneously reducing tumor burden. Nevertheless, widespread application of 

universal immune cell therapy is mainly restricted by poor expansion and persistence efficacy. Many strategies have been applied to 

improve universal immune cell proliferation and persistence efficacy, including the use of universal cell lines, signaling regulation and 

CAR technology. In this review we have summarized current advances in universal immune cell therapy for hematologic malignancies 

with a discussion of future perspectives.
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Introduction

Hematopoietic stem cell transplantation (HSCT) has provided 

hope for patients with hematologic malignancies since 19571. 

Indeed, HSCT maintains the final therapy status for most 

intractable hematologic malignancies. Implanted hematopoi-

etic stem cells reconstruct the host’s immune system through 

development and differentiation, and generate effector killer 

cells that target leukemia cells. Allogeneic HSCT was the 

first cell therapy applied for treating hematologic malignan-

cies; however, due to the lack of knowledge involving human 

leukocyte antigen (HLA) matching, the first trial failed. The 

protocol revolution, the maturation of haploid-identical allo-

genic (allo)-HSCT, and the establishment of a registry for 

umbilical cord blood stem cells have made allo-HSCT possible 

for many patients. Currently, allo-HSCT is the most effective 

and widely recognized cell therapy for hematologic malignan-

cies. Owing to severe graft-versus-host disease (GVHD) and 

complications from immunosuppressive drugs, patients have 

significantly compromised quality of life after allo-HSCT, and 

relapse after allo-HSCT remains the major cause for treatment 

failure. Indeed, approximately 40% of patients relapse after 

allo-HSCT2.

GVHD poses a major challenge for patients undergoing allo-

HSCT. Chimeric antigen receptor (CAR)-T cells have a major 

role in hematologic malignancies. With the design of different 

CAR structures, applications of CAR-T therapies have been 

expanded from B-cell to other hematologic malignancies3; 

however, cytokine release syndrome (CRS) in patients under-

going autologous CAR-T-cell therapy and GVHD to allogenic 

CAR-T cells limit for further application4,5.

After allo-HSCT, donor-derived effector T cells have the 

capacity to induce both graft-versus-leukemia (GVL) and 

GVHD. Allogenic T cells recognize residual tumor cells, pos-

sibly via tumor-specific antigens, and induce apoptosis of 

tumor cells to reduce the risk of relapse, which is referred 

to as the GVL effect6. In contrast, the graft directly activates 

host antigen presenting cells (APCs) because of mismatched 
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HLAs. Donor T cells are stimulated by APCs to act as effec-

tors and target normal tissues, resulting in GVHD7. The high 

cytotoxicity of effector T cells leads to simultaneous rejection 

of residual tumors and normal tissue cells, but the immuno-

suppressive agents used for GVHD treatment increase relapse 

risk. The key problem of current cell therapies is that GVL and 

GVHD are both influenced by traditional immune suppres-

sion, and therefore both a low relapse rate and low incidence 

of GVHD cannot be achieved.

The advent of universal immune cells brings the hope to 

integrate high GVL and low GVHD. Universal immune cells 

are a composite of cells that are capable of evading immune 

surveillance8, and include intrinsic immune cells [natural 

killer (NK) cells, virus-specific T (VST) cells, NKT cells, yδ T 

cells, and macrophages], and edited universal cells. Universal 

immune cells can distinguish tumor cells from both donor- 

and host-derived normal cells and evade immune detection of 

the host without being attacked by the immune system of the 

recipient (transplantation tolerance). All universal immune 

cells are stimulated in a major histocompatibility complex 

(MHC)-independent manner. When universal immune cells 

are exposed to tumor cells, universal immune cells become 

activated for tumor rejection and do not target normal cells 

regardless of derivation.

As allogenic cells, universal immune cells are rarely rejected 

by the host immune system and always lead to transplanta-

tion tolerance; thus, universal immune cells are possible can-

didates for allogenic transplantation. This ability is superior to 

the ‘typical’ immune tolerance (self-tolerance), which allows 

intrinsic cells to be distinguished from extrinsic cells. Such 

special tolerance ability confers universal immune cells with 

the capacity to avoid recognition of host APCs, with reduced 

potential for GVHD.

Universal immune cells are important in the field of 

cell therapy. Most patients tolerate VST-cell infusion after 

HSCT9,10, as well as haploidentical NK cell infusion after 

HSCT11. Thus, universal immune cell infusions may cause less 

or even no GVHD. Overall, with a strong anti-tumor ability 

and low GVHD occurrence because of low immunogenic-

ity, universal immune cell therapy may be utilized. Universal 

immune cells are currently being developed. Because of the 

diverse characteristics of universal immune cells, development 

phases differ (Figure 1). We have summarized the published 

clinical trials of universal immune cell therapies in Table 1; 

however, unsatisfactory proliferative and persistent efficacy 

of universal cells are two significant problems that hinder the 

rapid development of universal immune cell therapy. Various 

strategies have been developed to comprehensively enhance 

efficacy, expansion, and persistence. Herein we have reviewed 

the immune tolerance mechanisms underlying various uni-

versal immune cells, discussed strategies to improve efficacy, 

and presented clinical perspectives.

Immune tolerance – special immune 
surveillance mechanisms

Natural killer cells

As one of the key components of the innate immune sys-

tem, NK cells quickly respond to the presence of defective 

cells without the antigen-presenting process and actively lyse 

tumor or infected cells. The fate of NK cells is determined by 

integration of stimulatory and inhibitory signals from the 

immune microenvironment rather than relying on the anti-

gen-presenting process. The ‘missing-self ’ model is used to 

illustrate the fate-determining mechanisms underlying NK 

cells29. MHC-binding killer cell immunoglobulin-like recep-

tors (KIRs) of NK cells bind various MHC class I molecules 

on healthy cells to sustain a silent NK cell state. In some tumor 

cells MHC class I molecules are downregulated on cell surfaces 

to evade effector T cell cytotoxicity, decreasing inhibitory sig-

nals in the immune microenvironment. A balance is induced 

to skew stimulatory signals by tumors so that the advantageous 

stimulatory signals driving NK cells are activated and respond 

to tumors30. Thus, NK cells recognize normal and tumor cells 

when MHC molecules are mismatched, rendering NK cells a 

possible source of universal immune cell therapies.

After introducing allo-NK cells into a host, the mismatched 

KIR epitopes between the host and donor may break the bal-

ance between stimulatory and inhibitory signals and unex-

pectedly activate infused NK cells to cause GVHD; however, 

the occurrence of GVHD is much less than estimated31. In 

one study, all children with acute myeloid leukemia (AML) 

treated with KIR-mismatched NK cells remained in remission 

without GVHD for at least 3 years post-infusion12. A subse-

quent study showed that alloreactive NK cells contribute to 

suppression of GVHD development rather than inducing 

GVHD development32 due to secreted depression factors, such 

as TGF-β33,34. The high frequency of NK cell-induced lysis and 

the absence of GVHD indicate that alloreactive NK cells have 

potential as universal immune cells. Similar immune tolerance 



Cancer Biol Med Vol 20, No 4 April 2023 231

characteristics have been observed in NK cell lines. Among 15 

patients with treatment-resistant malignancies (13 with solid 

tumors and 2 with leukemia or a lymphoma), all tolerated 

NK-92-cell-line infusion17. Moreover, no dose-limiting toxic-

ity was observed in 7 refractory/relapsed (R/R) AML patients 

treated with activated NK-92 cell lines (3 treated with 1 × 109 

cells/m2 and 4 treated with 3 × 109 cells/m2)35. The low GVHD 

of allo-NK-cell therapy and the safety of an allo-NK-cell infu-

sion demonstrated that NK cells are powerful universal killers.

Specifically, adaptive NK cells comprise a subset of NK cells 

marked by NK group 2 member C (NKG2C), which are induced 

by cytomegalovirus (CMV) infection and exhibit a memory- 

like phenotype36,37. The higher quantum and better expansion 

ability of NKG2C+ NK cells in the grafts following haplo- 

identical transplantation and donor lymphocyte infusions 

(DLIs) are significantly associated with a lower risk of disease 

progression without compromising GVL, which demonstrated 

that NKG2C+ NK cells have the potential to dissociate GVL 

and GVH effects38. As reported, CMV-seronegative patients 

who underwent HSCT with CMV-seropositive adult unrelated 

adult donors (URDs) or sibling fully HLA-matched donors 

showed a much higher proportion of NKG2C+ NK cells 

than patients who underwent HSCT with CMV-seronegative 

donors36. In the same clinical trial, NKG2C+ NK cells became 

highly expanded [23% ± 5% in peripheral blood mononuclear 

cells (PBMCs)] and produced significantly more IFN-γ in 

CMV-reactive recipients at 3 months after HSCT, but NKG2C+ 

NK cells comprised only 6% of PBMCs in patients without 

CMV reactivity at 1 year after HSCT. These results show that 

NKG2C+ NK cells have a high expansion ability and cytotox-

icity in response to CMV. Moreover, after CMV reactivity, 

cytotoxic NKG2C+ NK cells have been detected at 1 year post-

HSCT, even without continuous CMV stimulation37,39. The 

functional long-term characteristics make NKG2C+ NK cells 

good candidates for universal immune cell therapy. In vitro- 

stimulated NKG2C+ NK cells exhibit high cytotoxicity effi-

ciency against HLA-C-mismatched primary ALL, AML, and 

myelodysplastic syndrome (MDS) blasts ex vivo40-42, demon-

strating the strong alloreactivity of NKG2C+ NK cells. Superior 

to conventional NK cells, NKG2C+ NK cells are intrinsically 

Universal immune
cell type

Under
development

Pre-clinical
trials

Clinical trials

NK cell

Primed virus antigen

Unconventional T cell

δγ TCR αβ TCR/CD52 KO

Macrophage
CAR-edited universal

immune cell

CAR CAR CAR

VST NKT δγ T

Edited
conventional αβ T

CAR-NK CAR-VST

CAR-macrophage

Figure 1 Development phases of universal immune cell therapy in hematologic malignancies. The development process of each universal 
immune cell therapy in hematological malignancies is divided into three phases (under development, pre-clinical trials, and clinical trials). All 
types of universal immune cells have been proved to maintain immuno-tolerance and have the ability to target tumor cells in vitro, as marked 
by phase 1: under development. Phase 2 (pre-clinical trials) indicates that the efficacy of universal immune cells has been tested in vivo. The 
last stage to achieve universal immune cell therapy is clinical trials. The red ticks in the figure denote that the development of specific universal 
immune cells has reached the indicated phase. NK, natural killer; VST, virus-specific T; NKT, natural killer T; TCR, T-cell receptor; KO, knockout; 
CAR, chimeric antigen receptor. The figure was created with BioRender (BioRender.com).
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resistant to regulatory T (Treg) cell suppression; thus, NKG2C+ 

NK cells in the tumor microenvironment (TME) are able to 

maintain strong cytotoxicity. Despite no completed clini-

cal trials involving NKG2C+ NK cell therapies, these cells are 

expected to serve as efficient universal immune cells for treat-

ing hematologic malignancies.

Unconventional T cells

VST cells
Before infusion, VST cells are stimulated to proliferate and 

differentiate into virus-specific effectors. When re-exposed 

to viral antigens in vivo, VST cells rapidly become reacti-

vated and target infectious cells. VST cell therapy was ini-

tially applied to treat viral infections and reactivation after 

HSCT. Eighty-five percent (11/13) of patients with proven or 

probable Epstein–Barr virus (EBV)-positive lymphoprolif-

erative disease (EBV-LPD) achieve complete remission after 

EBV-specific T-cell infusion; no patients have been shown to 

develop de novo GVHD18. Hence, VST cell therapy is highly 

effective and safe for preventing and treating viral infection. 

Moreover, although the response rate of patients in the EBV-

VST cell therapy group is equivalent to patients in the DLI 

group, the VST cell therapy group had a higher complete 

remission rate (68% vs. 57%) and a much lower acute (a)

GVHD incident rate (0% vs. 17%)19. Bao et al.43 success-

fully stimulated donor-derived VST cells with CMV peptides 

and infused the CMV-VST cells into patients with persistent 

CMV infection after HSCT; no infusion-induced GVHD 

was observed. CMV-infected patients who received donor- 

derived CMV-VST cells did not have an increased occurrence 

of GVHD but did have less potential for re-treatment with 

anti-CMV pharmacotherapies44. Therefore, VST cells may 

have immune tolerance characteristics and serve as a source 

for universal immune cell therapy. Nevertheless, the mecha-

nisms by which VST cells recognize virus antigens and quickly 

develop into effectors have not been established.

Among patients receiving VST cell infusions, 44% were 

treated with donor-derived VST cells and 19% with third-

party VST cells45. Although donor-derived VST cell therapy 

has high efficacy in inhibiting viral reactions and reconstruct-

ing antiviral immunity, restrictive sources, intensive labor and 

long-term procedures are barriers to widespread application. 

To overcome these barriers, third-party VST cells have been 

selected to treat severe infections after HSCT46. No GVHD 

associated with VST cell infusions was observed, suggesting 

the high safety of third-party VST cell therapy. Moreover, a 

third-party VST-cell bank with 32 virus-specific lines was 

built by several transplantation centers for treatment of 

EBV, CMV, and adenovirus (AdV) infections after HSCT47. 

Seventy-four percent of patients achieved complete or partial 

remission 6 weeks post-infusion, and only 2 of 50 patients 

developed de novo GVHD. Tzannou et al.9 successfully con-

structed a VST cell bank recognizing five viral pathogens [EBV, 

AdV, CMV, BK virus (BKV) and human herpesvirus (HHV)-

6]. The overall cumulative complete or partial response rate 

after a single infusion was 92% and 100% for BKV and EBV, 

respectively. For both virus infections, patients who received 

two types of VST cells had clinical improvement. Among 38 

patients receiving VST cells, only 2 had de novo GVHD, which 

was controlled by corticosteroids9. Moreover, patients with 

B-cell EBV-associated lymphomas achieved a 2-year overall 

survival of 80% after VST cell therapy, strongly increasing the 

published post-transplantation 2-year overall survival rate of 

30%20. These results showed that the construction of third-

party VST-cell banks accelerate the production process and 

guarantee timely treatment of an infection, constituting an 

efficient strategy to treat severe infections after HSCT.

Multi-VST cells have enabled treating multiple infections 

through a single infusion and reducing infusion times and 

costs48. EBV-, CMV- and AdV- trispecific T cells were infused 

into 10 recipients with single or multiple infections after 

HSCT49. All of the patients achieved a complete response to 

VST-cell therapy, with the absence of immediate or delayed 

infusion-related toxicity. Papadopoulou et al.50 generated a sin-

gle donor-derived VST cell culture targeting 12 antigens from 

5 viruses (AdV, EBV, CMV, BKV, and HHV-6) and infused the 

culture into 11 patients as prophylaxis or treatment for virus 

infections after HSCT50. Ninety-four percent of the recipients 

achieved partial or complete response, and de novo GVHD was 

observed in only one patient, confirming the feasibility of multi- 

VST cells to prevent viral infection after HSCT. Future work 

should involve building broad-spectrum viral banks and pro-

ducing integrated VST cell cultures specific for multiple viruses. 

This effort will contribute to large-scale production and rapid 

infection prophylaxis and treatment; however, the efficacy of 

VST-cell therapy is restricted in virus-dependent diseases, with 

limited expansion ability in virus-independent diseases.

NKT cells
NKT cells are considered as a specific type of αβ T cell, 

accounting for < 1% of T cells in the peripheral blood (PB)51. 
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NKT cells develop in the thymus and mature to express CD3 

through the same selection as conventional T cells. In contrast 

to conventional T cells, NKT cells possess characteristics of 

NK cells, including expression of NK cell markers (CD16 and 

CD56) and secretion of granzyme and perforin. As a bridge 

between the innate and adaptive immune systems, NKT cells 

have various roles, including direct cytolysis, cytokine secre-

tion, and immune regulation. NKT cells are divided into two 

subtypes based on the diversity of the T-cell receptor (TCR) α 

chain [invariant NKT (iNKT) and variant NKT cells]. iNKT 

cells are the major subtype used for cell therapy and are dis-

cussed in detail herein.

iNKT cells express a single invariant antigen receptor to 

recognize the α glycolipid ligand [α-galactosylceramide 

( α-GalCer)] presented by CD1d in professional APCs52. 

The molecule CD1d is similar to MHC class-I molecules, 

but monomorphic in humans; thus, CD1d overcomes MHC 

incompatibility53. Donor iNKT cells have been infused into 

post-HSCT mice and were shown to infiltrate GVHD-targeted 

tissues, but did not cause GVHD54. As the infusion dose of 

donor iNKT cells increased, GVHD burden decreased; simul-

taneously. At the same time, tumor clearance by conventional 

T cells was not affected54. Moreover, iNKT cells promote pro-

liferation of regulatory T cells, which are mainly responsible 

for immune suppression55. Thus, iNKT cells inhibit GVHDs 

experimentally and simultaneously maintain GVL effects. 

These results show that iNKT cells may be a good candidate 

as a source for universal immune cell therapy. Clinically, a low 

post-transplantation iNKT:T ratio and iNKT cell dose were 

both shown to be independent risk factors associated with 

aGVHD56,57. As the ratio increases, the potential for aGVHD 

occurrence deceases56. iNKT cells have a pivotal role in disso-

ciating GVL effects and GVHD58. Because of the integration 

of special tolerance mechanisms and tumor lysis ability, NKT 

cells have the potential to be good tumor killers. Low-grade 

(grade 1 or 2) GVHD has been observed in patients with 

metastatic melanoma receiving iNKT infusions21. Although 

two neuroblastoma patients maintained stable disease after 

anti-GD2 CAR-NKT cell infusions, all three recipients toler-

ated the treatment well, without CRS or neurotoxicity27. These 

results demonstrated that highly immune tolerant NKT cells 

may lack strong efficacy in tumor killing.

Most ongoing clinical trials on NKT cell therapy involve 

solid tumor treatment59, but no completed clinical trials have 

been reported. The very small amounts of NKT cells, approx-

imately 1% in the liver and 0.008%–1.176% of cells in PB59, 

make it difficult to obtain sufficient circulating NKT cells. 

Although tissue-specific NKT cells have been reported to be 

critical in GVHD inhibition60, the roles of circulating NKT 

cells are unclear, suggesting that the local immune microen-

vironment may be critical for NKT cells to function and the 

actual tumor-damage ability of circulating NKT cells may be 

small. The effects of NKT cells in solid tumors are possibly 

much better than the effects in hematologic malignancies. 

Because CD1d is expressed in acute lymphoblastic leukemia 

(ALL), AML, B-cell chronic lymphoblastic leukemia (CLL), 

juvenile myelomonocytic leukemia, and non-Hodgkin lym-

phoma (NHL)61, NKT cell therapy may be applied to treat 

CD1d-expressing hematologic malignancies.

yδ T cells
yδ T cells account for 1%–5% of circulating T cells59 and are 

mainly responsible for innate immune responses. yδ T cells 

are located in non-lymphocyte tissues and epithelial surfaces, 

such as the intestine and skin. yδ T cells are mainly involved 

in inflammation, autoimmunity, memory cell generation, and 

damaged tissue healing62,63.

There are two main mechanisms for underlying yδ T cell 

activation. The TCR-dependent mechanism involves yδ TCRs 

binding to non-peptide prenyl-pyrophosphate metabolites of 

isoprenoid biosynthesis64 or CD27765, which are not restricted 

by recognition of MHC class-I molecules. Another mechanism 

involves binding to MHC class I-related chain A/B (MICA/B), 

UL16 binding protein (ULBP), and polyoma virus receptor 

(PVR) on tumor cells through DNAX accessory molecule 1 

(DNAM1) and natural killer cell receptors (NKRs), NKG2D, 

NKp30 and NKp44 on yδ T-cell membranes66,67. Thus, the fate 

of yδ T cells depends on the network of receptor-ligand inter-

actions rather than TCR-MHC stimulation. The mechanism 

reduces the possibility of MHC compatibility-induced GVHD. 

Among 9 patients with relapsed/refractory low-grade NHL or 

multiple myeloma (MM), significant in vivo activation and 

proliferation of yδ T cells were observed in 55% (5/9) of the 

patients after yδ T-cell infusions22. An objective response was 

achieved in 33% (3/9) of patients, prompting the possible 

anti-tumor efficacy of yδ T cells. None of the six patients with 

MM had serious treatment-related adverse events after zole-

dronate-activated Vy9 yδ T-cell infusions68. Moreover, no signs 

of aGVHD or chronic GVHD were observed among patients 

with advanced refractory hematologic malignancies [one each 

with T cell NHL (T-NHL), AML, and secondary plasma cell 

leukemia, and one with MM]23. These results confirm that 
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yδ T-cell therapy is highly safe; however, the unstable phe-

notype and poor expansion of yδ T cells pose problems for 

large-scale production and wide application. Clinical trials 

concentrating on yδ T-cell therapy for treating hematologic 

malignancies are ongoing to test the efficacy and explore good 

manufacturing practice (GMP).

Edited conventional αβ T cells
Conventional αβ T cells are activated in an MHC class mole-

cule- and TCRαβ-dependent manner. Immune responses are 

stimulated by MHC mismatch between a donor and host, thus 

causing donor T cell-induced damage to normal tissues. MHC 

class II molecules have been confirmed to be associated with 

GVHDs69,70. No aGVHD was observed after injecting PBMCs 

into MHC class I- and/or II-deficient mice71. Downregulation 

of MHC class II molecules may achieve tolerance and knock-

ing out TCRαβ may effectively prevent GVHD caused by an 

MHC mismatch. Approximately 20% of CD3∈ molecules can 

be eliminated using the zinc finger nuclease (ZFN) pair tar-

geting the TCR α constant region (TRAC)72, but transcription 

activator-like effector nucleases (TALENs) achieved > 70% 

CD52 knockout (KO) with < 1% CD3 expression73. Indeed, 

KO efficacy should be continuously improved. Because of 

the easier design method, reduced cost, and higher targeting 

efficiency, clustered regularly interspaced short palindromic 

repeats and CRISPR-associated protein 9 (CRISPR/Cas9) 

technology has the potential to achieve higher TCR-KO effi-

ciency. The HLA-B-KO inducible pluripotent stem cell (iPSC) 

model has been successfully established based on the CRISPR/

Cas9 system74, 92% of TCRαβ was eliminated75, which is supe-

rior to TALENs76. Furthermore, HLA class I, class II, and TCR 

triple-KO T cells show similar anti-leukemia efficacy without 

inducing GVHD, and HLAnull T cells exhibit prolonged per-

sistence77; however, no clinical trials have been conducted out 

to determines the potential of edited conventional αβ T-cell 

therapy, indicating a hurdle to clinical application.

Macrophages

In addition to the above-described universal immune cells, 

macrophages have become increasingly popular as a part of 

universal immune cell therapy. Macrophages have diverse 

functions, including regulating development, maintaining a 

tissue-specific immune environment, clearing injured cells, 

eliminating pathogens and participating in inflammatory 

responses78. Macrophages are separated into two main types 

(M1 and M2 macrophages). M1 macrophages are critical in 

inflammatory regulation and adaptive immune-response 

stimulation with potential anti-tumor ability79. M2 mac-

rophages [tumor-associated macrophages (TAMs)] enhance 

tumor progression, promote tumor metastasis, and suppress 

anti-tumor immunity in the TME80. Many strategies have 

been reported to combat TAMs79,81. In patients with aggres-

sive and indolent NHL, a macrophage checkpoint inhibitor 

combined with rituximab achieved promising outcomes, with 

high safety82; however, current clinical trials have mainly con-

centrated on solid tumors, perhaps due to the strong roles of 

tissue-specific macrophages. Undoubtedly, further clinical tri-

als focusing on hematologic malignancies are warranted.

Strategies to improve the efficacy 
of universal immune cells

Special tolerance mechanisms of universal immune cells 

 contribute to the low GVHD occurrence; however, poor expan-

sion and weak persistence render this difficult. The infused 

NK-cell density in vivo peaks in adult AML patients on day 

24 post- infusion, but is much less than the baseline frequency 

of 26 × 109/L13. The unsatisfactory expansion efficacy of NK 

cells in vivo may cause persistent disease in 80% (4/5) of recipi-

ents. Although VST cells can achieve 13-fold expansion in vitro, 

the maximum is only 82.5 × 107 cells50. Similarly, the yδ T-cell 

frequency only reaches 68-fold (4.3 × 107/L) after in vivo 

 expansion23. The total number of expanded iNKT cells in vitro 

ranges from 1.1 × 107–1.26 × 109, which indicates unstable pro-

liferative efficacy21. Although the frequency of circulating NKT 

cells was shown to increase over baseline in vivo, the frequency 

rapidly decreased in 67% (2/3) of patients in week 4 post-in-

fusion before complete tumor clearance27. The lack of in vivo 

CMV-specific T-cell expansion by day 21 was shown to always 

be associated with the absence of an anti-CMV response83. 

Moreover, CMVs were reactivated in 7 of 34 patients9. The 

insufficient durability of VST cells may be associated with loss 

of viral antigens. The unsatisfactory expansion and persistence 

of universal immune cells cause refractory problems and restrict 

applications, both of which need to be improved (Figure 2).

NK cell line

Because NK cell activation is dependent on the signaling net-

work in the immune environment and lacks pivotal stimulatory 
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signals, the proliferation efficacy of infused NK cells is difficult 

to control, which leads to diverse clinical outcomes. Indeed, 

it is difficult to achieve clinical-scale production of NK cells 

with stable proliferation. NK cell lines may be ideal sources to 

fulfill standard production procedures on a large scale. Several 

NK cell lines from NK cell leukemias/lymphomas have been 

reported to have stronger proliferation efficacy, including the 

KHYG-184, NKL85, YT86, and NK-92 cell lines87. Fine-quality 

granules form in all of cell lines, but only the KHYG-1 and 

NK-92 cell lines have significant cytotoxicity88. Moreover, the 

NK-92 cell line has stronger cytolytic ability and a lower IL-2 

content requirement for proliferation than the KHYG-1 cell 

line89. Currently, the NK-92 cell line is one of most popular 

candidates for universal immune cell therapy and the sole 

platform exploited for clinical trials among NK cell lines. 

The frequency of NK-92 cells reached approximately 1 × 109 

cells/culture bag over 15–17 days by culturing with recombi-

nant human interleukin-2 (rhIL-2) and 500 U/mL of proleu-

kin90. Furthermore, a nearly 35-fold expansion was achieved 

within 216 h with 1,000 U/mL of proleukin17. After infusing 

ex vivo-cultured NK-92 cell lines, low toxicity to PBMCs and 

bone marrow hematologic cells was observed; however, possi-

ble virus positivity and the tumorgenicity of NK-92 cell lines 

are problematic. Although no viral particles, bacteria, fungi 

or mycoplasmas have been reported in the NK-92 cell lines91, 

Matsuo and Drexler88 detected EBV in the NK-92 cell line via 

a polymerase chain reaction (PCR) with EBV nuclear anti-

gen (EBNA)-1 specific primers. Thus, multi-virus positivity 
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Figure 2 Development flow of universal immune cell therapy. On the basis of special immune tolerance, the main characteristic of universal 
immune cells, GVHD can be overcome. The three main types of universal immune cells are NK cells, unconventional T cells and macrophages. 
Through four strategies, the efficacy of universal immune cells is improved. Universal immune cell therapy may have the potential to achieve 
complete leukemia clearance and help the host with immune recovery. NK, natural killer; mIL, membrane IL; PEBL, protein expression blocker; 
NKG2A, NK group 2 member A; PD-1, programmed cell death protein 1; KO, knockout; PD-L1, programmed cell death protein 1 ligand; CAR, 
chimeric antigen receptor. The figure was created with BioRender (BioRender.com).
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should be further assessed and the NK-92 cell line must be 

evaluated for multi-virus loads before infusion. Furthermore, 

the NK-92 cell line must be irradiated before infusion because 

of tumor derivation. The genetic instability of the NK-92 cell 

line probably contributes to the lack of long-term antitumor 

efficacy, even with the maintenance of IL-7 and IL-1287. Thus, 

it is necessary to incorporate the following strategies to pro-

mote the efficacy of the NK-92 cell line.

Stimulation cytokines

Regulatory cytokines, such as IL-2, IL-12, IL-15, IL-18, and 

IL-21, have significant roles in activating and maintaining uni-

versal immune cells. Early clinical trials focused on the stimu-

lation efficacy of IL-2 on universal immune cells. The role of 

IL-2 in expansion enhancement and cancer drainage has been 

confirmed92. NKT cells were isolated from IL-2-cultured and 

α-GalCer-pulsed PBMCs. Low-dose IL-2 was also used in vivo 

to stimulate the expansion of yδ T cells22,23,68. Moreover, a 

GMP-grade protocol for NK cells has been published based on 

IL-2. Purified NK cells were cultured with 1,000 U/mL recom-

binant human (rh) IL-2 for 12 days. The NK-cell expansion 

rate was vigorous (30-fold) in 11.8% (2/17) of donors but 

varied93. On average, a 5-fold expansion was achieved94. The 

infusion priming content of IL-2 should be considered. A high 

dose of IL-2 leads to severe side effects, whereas low-dose IL-2 

enhances expansion ability but has no influence on anti-tumor 

capacity. This finding may be caused by Treg-cell activation95 

because Treg cells express high-affinity IL-2 receptors96. Thus, 

low-dose IL-2 potently upregulates immunosuppression and 

inhibits anti-tumor responses.

IL-15 is thought to be a substitute for IL-2 in stimulation 

of universal immune cells. IL-15 exhibits stimulatory efficacy 

in lymphocytes similar to that of IL-2 through the IL-15—IL-

15Rα—IL-2Rβ—γc complex axis97. Despite different intracel-

lular signals, immune cells cultured with IL-15 and IL-2 share 

highly analogous gene expression profiles97. IL-15 is critical 

for proliferation and activation of NK cells and CD8+ T cells, 

leading to stronger tumor-clearance efficacy98,99. Moreover, 

IL-15 has the capacity to trigger the NK-92 cell line without 

IL-2100. Compared to rhIL-2, rhIL-15 has a better anti-tumor 

effect and more significant enhancing ability on cytotoxic T 

and NK cells101, with the expansion rate and lifetime of rhIL-

15-induced NK cells being significantly higher14. Thirty-five 

percent of patients with refractory AML achieved remis-

sion after treatment with a NK cell infusion and rhIL-15; 

however, cytokine release syndrome (CRS) and neurotoxic-

ity occurred14, which may be associated with IL-15-induced 

prolonged drug accumulation and exposure. Compared with 

IL-2, systemic IL-15 promotes proliferation and activation of 

CD8+ T cells so that allo-rejection responses are accelerated102, 

demonstrating that the IL-15 infusion dose and period must 

be accurately controlled.

Application of cytokine panels has the potential to enhance 

the antitumor efficacy and expansion ability of universal 

immune cells. A combination of these cytokines does not con-

tribute to a large increase in number but regulates the universal 

immune cell phenotype and enhances cytotoxicity103. IL-12, 

IL-15, and IL-18 together induce memory-like NK cells, lead-

ing to higher cytotoxicity when re-stimulated16. A 55% overall 

response rate and 45% complete remission (CR)/incomplete 

count recovery (CRi) have been achieved in relapsed/refrac-

tory AML patients with infusion of active memory-like NK 

cells16. Memory-like NK cells may be another important uni-

versal immune-cell source in the future.

Although exogenous soluble cytokines are immediately 

effective after infusion, exogenous soluble cytokines do not 

offer continuous stimulatory signals. Thus, soluble cytokines 

should be injected several times, with possible life- threatening 

side effects. Membrane cytokines have been designed to 

achieve long-term stimulation and reduce infusion times. 

Inserting IL-15 into the NK cell membrane maintains stim-

ulation signals. NK cells with mIL-15 maintain self-survival 

and -expansion capacity without additional IL-2 infusions, 

achieving stronger antitumor ability104.

Over recent decades, co-culturing with feeder cell lines has 

been a promising method to induce activation and prolifera-

tion of universal immune cells. Feeder cells stimulate universal 

immune cells via activated cytokines and cell-cell communica-

tions. Feeder cell lines for NK cells include HFWT, K562, RPMI 

1866, Daudi, KL-1, MM-170, and EBV-transformed lympho-

blastoid cell lines (EBV-LCLs)103. Following the same strategy 

of feeder cells, PBMCs have been cultured with GM-CSF and 

IL-2 and pulsed with α-GalCer to generate APCs as NKT-cell 

feeder cells105. After co-culturing with ex vivo-generated APCs, 

a > 10-fold expansion of iNKT cells was achieved, and the 

increasing trend remained for at least 1 week.

Integration of feeder cells and membrane cytokines offers 

novel platforms to culture universal immune cells. Genetically 

engineered K562 cells with membrane-bound IL-15 and 41BB 

ligands are more effective in stimulating NK cells than IL-2, 

IL-12, IL-15, and/or IL-21106. Furthermore, K562 cells modified 
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with mIL-21 exhibit stronger promotion efficacy against NK 

cells than K562 cells modified with mIL-15107-109. Feeder cells 

modified with membrane cytokines support clinical-grade 

expansion of highly cytotoxic universal immune cells. Further 

research involving the mechanisms of the interplay between 

cytokines and universal immune cells is worthwhile.

Upregulating activated receptors is also a good strat-

egy. iPSC-derived NK cells have been induced to generate a 

point mutation of CD16a. CD16a is well known as the stim-

ulatory receptor for NK cells and is required to maintain an 

active state110. A high-affinity non-cleavable variant of CD16a 

(hnCD16)-NK cells exhibits stronger antibody-dependent 

cell-mediated cytotoxicity (ADCC) against multiple tumor 

lines than PB-derived NK cells. Thus, iPSC-derived NK cells 

may be a source of universal immune cells.

Downregulating inhibitory signals

In general, the fate of universal immune cells depends on the 

balance between active and inhibitory signals in the TME. The 

purpose of methods for stimulating cytokines is to upregulate 

active signals; downregulating inhibitory signals is another 

good strategy. One of the mechanisms causing the unsat-

isfactory anti-tumor ability of NK cells is that tissues in the 

TME express non-classical HLA class-I molecule HLA-E, 

which binds to the NK inhibitory receptor, CD94/NKG2A, 

and inhibits NK cells111. A single-chain variable fragment 

derived from the anti-NKG2A antibody has been linked to 

endoplasmic reticulum-retention domains to form NKG2A 

protein expression blockers (PEBLs). These PEBLs block the 

NKG2A transport process from the endoplasmic reticulum 

to the cell  membrane, thus causing downregulation of inhibi-

tory receptors on NK cells. NKG2Anull NK cells exhibit higher 

cytotoxicity and increased ADCC activity and the potential 

to kill tumor cells expressing HLA-E or HLA-G; however, the 

proliferative capacity of NKG2Anull NK cells may be poor in 

 HLA-Enull tumor tissues because of strong inhibitory signals.

Tumors express immune checkpoint ligands to suppress 

immune responses in the TME to evade immune surveillance 

and build a tumor-friendly microenvironment, thus leading 

to relapse. The programmed cell death protein (PD-1)/pro-

grammed cell death 1 ligand 1 (PD-L1) pathway is an impor-

tant inhibitory pathway. Immune inhibitor blockade therapy 

targets PD-1 to downregulate immunosuppressive roles and 

yields significant clinical outcomes in cancer treatment112,113. 

PD-1 knockout is associated with enhanced persistence and 

antitumor ability of cytokine-induced killer cells114. The sta-

ble tumor burden is markedly decreased after administra-

tion of the anti-PD-1 antibody to the co-culture system of 

exhausted mesothelin-CAR-T cells and pleural mesothelioma 

cells115, thus showing that immune inhibitor blockade thera-

pies delay exhaustion of CAR-T cells. Compared with wild-

type CAR-T cells, the density of PD-1-deficient CAR-T cells is 

much larger, with higher levels of IFN-γ and IL-2 in PB, which 

indicates that PD-1 knockout strongly prolongs survival of 

CAR-T cells and simultaneously enhances cytokine secretion 

ability116. Li et al.117 genetically-modified CAR-T cells to con-

stitutively secrete PD-1 inhibitors. They effectively inhibited 

PD-1 expression on CAR-T cells and enhanced anti-tumor 

activity, as well as expansive efficacy. All modified CAR-T cells 

survived to day 80, which is much longer than non-modified 

CAR-T cells and the combination of anti-PD-1 antibody and 

non-modified CAR-T cells. Similarly, PD-1 molecules are 

expressed on tumor-infiltrating NK cells and suppress the 

anti-tumor cytotoxicity of NK cells118. The tumor burden was 

significantly decreased in the group receiving the triple com-

bination of iPSC-derived NK cells, activated CD3+ T cells, and 

anti-PD-1 antibody compared with the group given double 

combination therapies119. The obstacle of poor expansion and 

weak persistence of universal immune cells may be overcome 

by combination anti-PD-1/PD-L1 therapy.

In addition to the PD-1 molecule, cytokine-inducible Src 

homology 2–containing (CIS) protein, a key inhibitor of IL-15 

signaling, has been knocked out by the CRISPR/Cas9 system 

in CAR-NK cells to improve anti-tumor ability120. The modi-

fied CAR-NK cells secrete more IFN-γ and TNF-α and exhibit 

stronger cytotoxicity against CD19+ Raji lymphoma cells. Novel 

immune checkpoint molecules should be considered when 

enhancing the therapeutic efficacy of universal immune cells.

CAR

CAR directs cytotoxic cells to concisely lyse antigen-positive 

tumors. After recognizing specific antigens on tumor surfaces, 

the CAR intracellular domain stimulates downstream signal-

ing pathways according to the tumor burden. CAR-universal 

immune cells integrate the accurate target of CAR technology 

and the special tolerance mechanisms of universal immune 

cells. CAR-NK cells have been the most popular platform to 

explore the feasibility of CAR-universal immune cells. Notably, 

63% of patients [7/11 (4 with lymphoma and 3 with CLL)] 

achieved complete remission with high safety25. At the 27th 
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European Hematology Association (EHA) Congress, Zhang et al. 

reported that eighty percent (4/5) of R/R AML patients treated 

CD33 CAR-NK-cell therapy have achieved CR with minimal 

residual disease (MRD) negativity.

Currently, clinical trials concentrating on CD19-, CD22-, 

CD7-, and CD30-CARs are ongoing121. Novel CAR-target 

sites should include tumor antigens, and activate receptors 

and immune checkpoint blockade. The CAR construct was 

designed as NKG2D-DAP10-CD3ζ122 because the NKG2D-

DAP complex is critical in NK-cell activation123. After 

 activation by the K562-mbIL-15–4-1BBL cell line, NKG2D-

DAP10-CD3ζ NK cells were re-invigorated and showed high 

cytotoxicity against ALL cell lines. The engineered CAR-NK 

cells mitigated clinical symptoms and reduced tumor burden 

in metastatic cancer sites24; however, the clinical efficacy of 

NKG2D-DAP10-CD3ζ NK cells on hematologic malignancies 

needs to be determined. As both a tumor neoantigen and an 

immune checkpoint blockade, HLA-G was introduced into 

the CAR vector124. Anti-HLA-G-CAR-NK cells effectively 

destroyed several solid tumor lines and re-stimulated Syk/

Zap70, which was significantly downregulated in the immu-

nosuppressive microenvironment. Thus, the microenviron-

ment-regulating role of CARs should be considered when 

selecting neoantigens.

The ectodomain of CAR is determined by the tumor of 

interest, and the endo-domain depends on the signaling 

pathway network in universal immune cells. CAR:4-1BB-NK 

cells killed 77.7% of MM cells in vitro and exhibited enhanced 

cytotoxicity compared to wild-type NK cells125. Although 

CD123-CAR-NK cells with 4-1BB or 2B4 both showed sig-

nificant cytotoxic efficacy against the CD123-positive AML 

cell line, 2B4 CAR-NK cells exhibited a long-term survival 

advantage126. After co-culturing with feeder cells, there was 

a dramatic increase in expression of NK-cell active mark-

ers (CD69, HLA-DR, and NKG2D) on 2B4 CD5-CAR-NK 

cells, whereas 4-1BB CD5-CAR-NK cells only showed a 

slight increase127. 2B4 has stronger stimulatory effects on 

NK cells and is superior to the intercellular domain of CAR. 

Moreover, the novel molecule DAP12 is a candidate inter-

cellular molecule for invigorating CAR-NK cells. Although 

DAP12 CAR-YT cells have similar cytotoxicity to CD3ζ 

CAR-YT cells at an E:T of 10:1, DAP12 CAR-YT cells exhibit 

stronger anti-tumor ability at lower ratios (1:2.5 and 1:5)128, 

demonstrating the slight advantage of DAP12 with regard to 

NK cell stimulation.

In addition, VST cells can serve as a platform or CAR tech-

nology. Six patients who experienced relapse after HSCT were 

infused with CD19-CAR-VST cells, and all of the patients 

tolerated the allogenic cell infusions well, showing tolerance 

of CAR-VST-T cells26. In patients with viral reactivation, 

 re-expansion of CAR-VST cells was observed simultaneously 

with increasing EBV loads in PB; however, a median survival 

time of 8 weeks revealed the poor persistence of CAR-VST 

cells. This unsatisfactory persistence should be improved, 

which may be overcome by continuous viral stimuli, such as 

planned vaccinations129,130. Moreover, iPSC-derived CAR-

macrophage-cell therapy exerts good phagocytosis activity in 

the K562 leukemia cell line131.

Conclusions and perspectives

Because of special immune tolerance, universal immune cell 

therapies break the HLA mismatch barrier and reduce GVHD 

risks. Universal immune cell therapies have become strongly 

attractive, with improved availability and reduced costs com-

pared to customized CAR-T-cell therapy.

The future of immune cell therapy does not include an 

alternation of CAR-T-cell therapy. The efficacy of all kinds of 

universal cell therapies must be improved, including expan-

sion and persistence. The above-mentioned methods are 

combined to resolve these problems; however, the prolifera-

tion ability and persistence efficacy of universal immune cells 

are still insufficient. The combination of activated cytokines, 

membrane cytokines, anti-CD52 antibodies, and PEBLs may 

improve the efficacy of universal immune cells.

The trend in combination therapy of universal immune cell 

therapy is linkage with monoclonal antibodies132 (Figure 3). 

For R/R CD20-positive malignant lymphoma, seven of nine 

patients treated with ex vivo-expanded auto-NK cells com-

bined with rituximab achieved a CR, with a median duration 

of 44 months15. Furthermore, with anti-CD52 monoclonal 

antibody (mAb) preconditioning, after infusion of anti-

BCMA CAR-NK cells, 3 of 5 patients with refractory/relapsed 

(R/R) MM in the high-dosage group at least achieved very 

good partial remission (GVPR). The limitation of prolifera-

tion efficacy and the management of side effects with the use 

of precondition drugs and stimulators need further explora-

tion. Compared with CAR-NK cell therapy, universal CAR-

T-cell therapy has more obstacles. Anti-CD52 monoclonal 

antibody has been shown to be efficient at improving the 
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persistence of allogenic CAR-T cells28. CD52 and cytoabla-

tive drugs, such as melphalan, have been applied in universal 

CAR-T-cell pre-treatment, and promising results of lower-

ing the tumor burden has been achieved. Moreover, tyros-

ine kinase inhibitors (TKIs) are believed to be involved in 

the development of tumors and regulate the TME. TKIs and 

other immune modulators warrant further study. CD28 is a 

well-known T-cell co-stimulation molecule, and CD28 block-

ade of CTLA-4 has been used for GVHD prevention. The 

T-cell co-stimulation blockade agent, abatacept (CTLA-4 Ig), 

significantly decreases GVHD severity133, probably by inhib-

iting conventional T-cell activation, promoting Treg function, 

and simultaneously augmenting the anti-leukemia effects of 

NK cells134-137. Abatacept-primed DLIs after haplo-identical 

transplantation have been used to treat advanced hemato-

logic malignancies. Only 3 of 12 patients with refractory 

aggressive B-cell lymphoma receiving abatacept-primed DLIs 

had disease progression 100 days post-transplant, and no 

patients had aGVHD138. In addition, no GVHD was reported 

in patients with refractory myeloma. The CD28-CD86 path-

way may be the target of abatacept in myeloma cells, which 

demonstrated that abatacept-primed DLI is possible as a novel 

approach for myeloma treatment139. Moreover, compared to 

the conventional DLI group, the abatacept- primed DLI group 

had a lower GVHD and progression- free survival140. Thus, 

CTLA-4 Ig may be a good drug to combine with universal 

immune cell therapies to efficiently guarantee extremely low 

GVHD occurrence.

TKIs

P
P

P
P

Conventional
T cells

Tregs

GVHD

CD52

NK cell
activation

T cell
activation

Activated cytokines

CTLA-4 Ig

Checkpoint inhibition
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Figure 3 Potential combination of target drugs and universal immune cells. Combination strategies for NK and T cells currently differ. 
Activated cytokines stimulate NK cells in vivo, such that NK cells have high expansion ability. Antibodies are used to downregulate inhibitory 
signals to activate universal immune cells. Checkpoint inhibitors and TKIs play similar roles by different mechanisms. CTLA-4 Ig inhibits con-
ventional T-cell activity and upregulates Tregs to downregulate GVHD risk. mAb, monoclonal antibody; TKI, tyrosine kinase inhibitors. The 
figure was created with BioRender (BioRender.com).
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