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ABSTRACT Objective: Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy 

in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth 

receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses 

has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and 

therapeutic responses during NAT administration.

Methods: Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine 

learning algorithms were applied to the feature selection and model construction processes, respectively.

Results: Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T 

cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The 

post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on 

the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random 

forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733).

Conclusions: Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A 

random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.
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Introduction

Breast cancer (BC) is the most common malignancy in women 

and has become an important global public health issue. The 

diagnosis and treatment of BC have become major clini-

cal goals in recent decades1; however, advances in immuno-

therapy for BC have stalled despite the promising results of 

immune checkpoint inhibitors in melanoma, non-small cell 

lung cancer, and bladder carcinoma2-4. Although the mutation 

load and immunogenicity of BC cells are low, several clinical 

trials of immunotherapy for BC have achieved satisfactory 

results5,6, suggesting that BC is not an isolated zone of immu-

notherapy. A comprehensive understanding of the changes in 

immune status during BC progression and treatment is lack-

ing. Accordingly, solid evidence for the effective application of 

immunotherapy in BC remains insufficient.

Neoadjuvant therapy (NAT) is an important part of the 

comprehensive treatment for BC. NAT downgrade the stage 
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in patients with locally-advanced cancer and renders inop-

erable tumors operable. The curative effect of NAT is more 

intuitive than traditional therapies, thus physicians can adjust 

the treatment strategy in the early stage and make adjuvant 

treatment decisions based on the efficacy of NAT. Additionally, 

NAT provides time for genetic testing of patients and is an 

active platform for drug research and development. Therefore, 

evaluation of the efficacy of NAT should not be overlooked. 

A promising immunotherapy for patients with BC is based 

on the cytotoxic effects of chemotherapy. Specifically, dam-

aged tumor cells release neoantigens, which increase immu-

nogenicity and transform “cold” tumors with a poor response 

to immunotherapy into “hot” tumors6. Indicators related to 

the outcomes of neoadjuvant chemotherapy (NAC) have been 

identified. An analysis combining ECOG 2197 and ECOG 

1199 confirmed that a higher number of stromal tumor-in-

filtrating lymphocytes (TILs) yields better disease-free sur-

vival (DFS), distant recurrence–free interval (DRFI), and 

overall survival (OS) in triple-negative breast cancer (TNBC) 

patients who underwent adjuvant chemotherapy7. A pooled 

analysis of 3771 patients with BC demonstrated that quan-

tifying TILs before NAT predicts therapeutic efficacy and is 

related to patient survival, with the exception of patients with 

luminal HER2- BC8; however, the simple single status ‘before 

NAT’ does not precisely describe patient immune character-

istics. The effects of immune status variation on the efficacy 

of NAT caused by chemotherapy and targeted-therapy agents 

could provide clues for immunotherapy, but have not been 

established.

In a previous study we evaluated the prognostic effect of 

dynamic changes in immune indices by dividing the immune 

indicator value after NAT by the immune indicator value 

before NAT. The following post-NAT/pre-NAT immune 

indicator values were related to the long-term prognosis 

of patients: CD4+:CD8+ T cell ratio; CD3+CD8+ T cell per-

centage; CD16+CD56+ natural killer (NK) cell absolute value 

(Abs); CD3+CD4+ helper T cell percentage; and summation 

of T, B, and NK cell percentages [lymphosum (T+B+NK)]. 

We then used the support vector machine (SVM) to train the 

prediction model9. In this study we focused on the efficacy 

of NAT and optimized the prediction model using machine 

learning (ML).

This study retrospectively enrolled 134 women with HER2+ 

BC and TNBC and recorded immune function indices before 

and after NAT. We performed univariate and multivariate 

logistic regression (LR) to select independent indicators. Ten 

ML methods were used to construct and optimize the final 

model that described the relationship between these indicators 

and NAT efficacy.

Materials and methods

Study design and setting

We conducted a retrospective study in the Department of 

Breast Surgery (Cancer Hospital of China Medical University, 

Shenyang, China) involving 134 patients diagnosed with 

HER2+ BC and TNBC who had received NAT between 

2014 and 2021. The immune indices of patients before 

and after NAT were collected. This study was approved 

by the Research Ethics Review Committee of the Cancer 

Hospital of China Medical University [IRB No. (2019) 

2019-72-2, AF-SOP-07-1.1-01]. A total of 17 immune indi-

ces were collected as follows: lymphosum (T+B+NK); CD4+ 

helper T cell:CD8+ T cell ratio (CD4+:CD8+ T cell ratio); 

CD16+CD56+ NK cell percentage (NK cell percentage); 

CD16+CD56+ NK cell Abs (NK cell Abs); CD19+ B cell per-

centage (B cell percentage); CD19+ B cell Abs (B cell Abs); 

CD3+ T cell percentage; CD3+ T cell Abs; CD3+CD4+ helper T 

cell percentage (CD4+ Th cell percentage); CD3+CD4+ helper 

T cell Abs (CD4+ Th cell Abs); CD3+CD8+ T cell percentage 

(CD8+ T cell percentage); CD3+CD8+ T cell Abs (CD8+ T cell 

Abs); CD45+ cell Abs; total events; reagent lot ID; G2; and 

lymph events. The Appendix figures out the abbreviations of 

the specific terms in the text and the figures. To clarify, the 

immune indices noted as “B-” were collected before NAT (B, 

baseline) and the immune indices noted as “T-” were collected 

after NAT (T, treated). All patients signed an ethical consent 

form and approval from the Ethics Committee was received. 

To comprehensively investigate whether the dynamic changes 

in the immune indices affected the therapeutic outcome,  

T-/ B- immune indices were calculated by dividing the B- by 

T- immune indices.

The following clinical and pathologic information were 

collected as follows: therapeutic response; Miller–Payne (MP) 

grade; Ki67 percentage before NAT; HER2 status; molecu-

lar subtype; pathologic N stage at surgery (ypN); clinical 

primary tumor stage (cT) at diagnosis; and NAT regimen. 

Histopathologic examinations were performed on tumor 

biopsy specimens before NAT and the tumor specimens 

obtained during surgery after NAT. The TNM stages of the 

patients were defined according to the 8th edition of the AJCC 
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on Cancer TNM staging. Pathological complete response 

(pCR) was defined as no residual invasive cancer detected 

by microscopic examination of the excised tumor or lymph 

nodes after NAT and was used as the prediction target in this 

study10. The flow chart is shown in Figure 1.

Statistical analysis

Missing values and balancing outcomes
There were several immune indices with <20% missing val-

ues, such as G2 and lymph events, which were imputed using 

multiple imputation technique based on mice R package11-13 

(version 3.13.0). Due to the imbalance in our data set, the 

synthetic minority oversampling technique (SMOTE) in the 

DMwR R package14 (version 0.4.1) was utilized to generate a 

new dataset for subsequent analysis. SMOTE is a well-known 

technique used to handle unbalanced classification problems 

by artificially generating new examples of minority classes 

using the nearest neighbors of these cases.

Feature selection
To select the essential variables for predicting therapeutic effi-

cacy, univariate LR was used to screen among the 51 immune 

indices (B, 17; T, 17; and T/B, 17) by setting the cut-off point 

P value at 0.05. Multivariate LR was performed to select the 

independent predictive peripheral immune indices.

ML algorithms and model development

ML has been widely applied in biomedicine and clinical med-

icine for gene discovery, image analysis, and construction 

of prediction models using heterogeneous data15. Based on 

the ML algorithms supplied by caret16 (version 6.0.88), 10 

methods were utilized to construct and optimize the final 

prediction model, including random forest (RF), k-near-

est neighbors (KNNs), SVMs, classification and regression 

tree (CART), linear discriminant analysis (LDA), stochastic 

gradient boosting (GBM), deepboost, multivariate adaptive 

regression splines (gcvearth), neural network (nnet), and 

multi-layer perceptron (MLP) with 5-fold cross-validation. 

Eighty percent of the data was divided into the training set, 

while the remaining 20% was used as the internal valida-

tion set. Box and whisker plots were plotted to evaluate the 

accuracy and unweighted kappa statistics. The parallel plots 

visualized high-dimensional data, where each observation 

was represented by a sequence of its coordinate values drawn 

according to the coordinate indices. By comparing the accu-

racy and kappa statistics, we chose the RF estimate as the final 

Patients collection

Data processing including removing NAs and
getting balanced dataset by SMOTE

Training set

Features selection by univariate logistic
regression

Internal validation set External test set

Training, tuning and evaluation Final performance estimate

Model selection and construction by comparing 10 ML algorithms

Figure 1 Flowchart describing the study design. Logistic regression (LR) was used in feature selection and machine learning (ML) were per-
formed to construct the model. SMOTE, synthetic minority oversampling technique; NAs, not available values.
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model. The number of variables randomly sampled as can-

didates at each split (mtry) was set to one and the number of 

trees to grow was set to 100. Receiver operating characteristic 

(ROC) curves and the area under the ROC curves (AUCs) 

were generated to analyze and calculate the predictive perfor-

mance of the final model. The importance of the variables 

was measured based on the Importance R function from the 

randomForest R package17 (version 4.6.14).

Software packages

All statistical analyses were performed using R (version: R 

4.0.2). The model construction, comparison, and validation 

were calculated based on caret and pROC18 (version 1.17.0.1) 

R packages. The SMOTE algorithm was performed in DWwR 

R package. Univariate and multivariate LR were implemented 

in the rms19 (version 6.2.0) and SimDesign R packages20 (ver-

sion 2.8). The P-value cut-off for screening predictors was set 

at 0.05.

Results

Patient characteristics

A total of 101 patients were included in the training and 

internal validation sets in this study, including 88 (87.13%) 

patients achieving a non-pathologic complete response 

(pCR) and 13 (12.87%) achieving a pCR. Data from an 

additional 33 patients were collected as the external test set 

(Table 1). Among the patients in the training set, 46% were 

diagnosed with HER2+ BC and 51% were diagnosed with 

TNBC. Approximately 50% of the HER2+ BC patients in the 

training set received neoadjuvant anti-HER2 targeted ther-

apy, while all HER2+ patients in the external test set received 

targeted therapy. With respect to the therapeutic response of 

the lymph nodes, no pathologic lymph nodes were detected 

in > 50% of the patients.

Selected variables

The LR results identified several reliable immune predictors 

(Figure 2). After setting 0.05 as the threshold for the P value, 

the B-CD3+ T cell percentage (HR = 1.069; P = 0.021) and 

B-lymphosum (T+B+NK) (HR = 9.904; P = 0.049) were 

shown to be positively correlated with pCR. Additionally, 

Figure 2B shows the summary statistics for the significance 

of the immune indices after NAT. The T-CD3+ T cell per-

centage (HR = 1.07; P = 0.026) and T-CD8+ T cell percentage 

(HR = 1.09; P = 0.002) were positively correlated with the 

pCR, whereas a negative correlation was noted between the 

T-CD4+:CD8+ T cell ratio (HR = 0.347; P = 0.009), T-CD4+ 

Th cell Abs (HR = 0.997; P = 0.008), T-NK cell percentage/

Abs (HR = 0.936; P = 0.024; HR = 0.996, P = 0.008), and 

pCR. The univariate LR of T/B immune indices (Figure 2C) 

showed that T/B-NK cell Abs (HR = 0.13; P = 0.008) and 

T/B-CD45+ cell Abs (HR = 0.229; P = 0.039) were negatively 

correlated with pCR, revealing an evident decrease in NK and 

CD45+ cells that could predict a greater probability of achiev-

ing a pCR. Taken together, these results show the importance 

of dynamic changes in peripheral blood lymphocytes, spe-

cifically the dynamic depletion of NK cells, adequate reserve 

of adaptive immune components, and functional activation 

status of CD8+ T cells (lower T-CD4+:CD8+ T cell ratio) in 

predicting a pCR. To fully investigate the distinct linear rela-

tionship between the immune indices and pCR at different 

NAT time points, the results of multivariate LR confirmed 

the solid predictive value of NK cells. T/B-NK cells exhib-

ited a distinct negative relationship with pCR, indicating 

that persistent consumption of NK cells throughout NAT 

was essential for achieving a pCR. Finally, 14 variables were 

selected for the next model construction based on the results 

of univariate LR. The dynamic landscape of the significantly 

predictive immune features is shown in Supplementary 

Figure S1.

Outcomes of the ML models and feature 
importance

After assessing the predictive performance of 10 ML models 

(Figure 3), the random forest was ultimately chosen because 

of greater robustness in terms of accuracy and kappa value 

(Figure 3A and 3B), which were validated in the validation 

set (AUC, 0.819; Figure 3C) and the external test set (AUC, 

0.73). To explore the predictive performance in different 

molecular subtypes, we divided the test set into two groups 

(TNBC and HER2+ BC). The AUC for the TNBC subtype 

was 0.84 (Figure 3D). The dot chart (Figure 3E) illustrates 

the variable importance as measured by the random forest 

model, visually displaying the specific importance of NK 

cell percentage/Abs both at surgery and baseline and in the 

T:B ratio. Notably, NK cells had a considerable role in the 

 random forest model.
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Table 1 Patient characteristics

 
 

Training set  
 

Test set  
 

Total

n   Percentage n   Percentage n   Percentage

Treatment response            

 Non-pCR   88   87.13%   22   66.67%   110  82.09%

 Achieved pCR   13   12.87%   11   33.33%   24   17.91%

Miller-Payne grade            

 G1-G3   62   61.39%   13   39.39%   75   55.97%

 G4   22   21.78%   8   24.24%   30   22.39%

 G5   17   16.83%   12   36.36%   29   21.64%

Ki-67 index (percent)            

 ≤ 20   17   16.83%   4   12.12%   21   15.67%

 > 20   84   83.17%   29   87.88%   113  84.33%

HER2 status            

 Positive   46   45.54%   23   69.70%   69   51.49%

 Negative   53   52.48%   10   30.30%   63   47.01%

 Unknown   2   1.98%   0   0.00%   2   1.49%

Subtype            

 TNBC   53   52.48%   10   30.30%   63   47.01%

 HR-HER2+   43   42.57%   22   66.67%   65   48.51%

 HR-HER2+ (at surgery)   3   2.97%   1   3.03%   4   2.99%

 HR-HER2 unknown   2   1.98%   0   0.00%   2   1.49%

ypN            

 ypN0   52   51.49%   19   57.58%   71   52.99%

 ypN1   21   20.79%   8   24.24%   29   21.64%

 ypN2   13   12.87%   2   6.06%   15   11.19%

 ypN3   15   14.85%   4   12.12%   19   14.18%

cT            

 cT1   7   6.93%   2   6.06%   9   6.72%

 cT2   72   71.29%   28   84.85%   100  74.63%

 cT3   20   19.80%   2   6.06%   22   16.42%

 Unknown   2   1.98%   1   3.03%   3   2.24%

Chemotherapy regimen            

 Chemo (TEC/TAC)   77   76.24%   10   30.30%   87   64.93%

 H/HP-chemo   24   23.76%   23   69.70%   47   35.07%

HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; pCR, pathologic complete response; ypN, pathologic 
N stage after NAT; H, trastuzumab; P, pertuzumab; T, taxanes; E, epirubicin; A, adriamycin; C, cyclophosphamide; chemo, chemotherapy 
(including TEC/TAC).
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Discussion

Greater than 290,000 BC cases are expected to be diagnosed 

in the US during 2022, resulting in approximately 43,000 

deaths. BC is the most common malignancy among women 

worldwide1. In the post-genomic era NATs continue to have a 

significant role by providing rapid, direct assessment of treat-

ment effects based on imaging examinations of tumors, as well 

as research opportunities by comparative studies of tumor 

biology before, during, and after treatment. The stratifica-

tion based on tumor-intrinsic subtypes (ER, PR, and HER2) 

is another attractive strategy that can be incorporated into 

patient selection for treatment escalation or de-escalation. 

Based on the heterogeneous biological process in different 

molecular subtypes, translational research efforts have focused 

on identifying predictive biomarkers of the therapeutic 

response, focusing on the primary tumor foci, including 

aberrant gene expression of tumor cells, TILs, tumor muta-

tional burden, and mismatch repair deficiency. Unfortunately, 

none of these potential biomarkers have yet reached clinical 

utility. Therefore, finding biomarkers capable of predicting 

the response to the diverse innovative treatment approaches, 

particularly immunotherapy, combined with conventional 

chemotherapy and pinpointing the change in the immune 

system during NAT remains extremely difficult tasks. From a 

mechanistic perspective in cellular biology, most chemothera-

peutic agents applied in the clinic eventually affect tumor pro-

gression by triggering the pro-apoptotic suicidal machinery 

Variables

Variables Variables

Variables

HR (95% CI)

HR (95% CI)

HR (95% CI)

HR (95% CI)P value

P value P value

P valueA

C D

B
B-Reagent lot ID
B-CD3+T (%)
B-CD19+B (%)
B-CD3+CD4+Th (%)
B-CD3+CD8+T (%)
B-CD16+CD56+NK (%)
B-Lymphosum (T+B+NK)
B-Ratio_CD4+Th/CD8+T
B-G2
B-Lymph events
B-CD3+T Abs
B-CD19+B Abs
B-CD3+CD4+Th Abs
B-CD3+CD8+T Abs
B-CD16+CD56+NK Abs
B-CD45+ Abs
B-Total events

1.000
1.069
0.963
0.991
1.000
0.926
9.904
0.583
0.332
1.000
1.000
0.998
1.000
1.000
0.998
1.000
1.000

0.481
0.021
0.457
0.778
0.966
0.021
0.049
0.082
0.119
0.258
0.696
0.350
0.422
0.671
0.081
0.904
0.555

0.50 0.71 1.00 2.00

1.000
1.070
1.037
0.944
1.090
0.936
0.999
0.347
0.387
1.000
0.999
0.998
0.997
0.999
0.996
0.999
1.000

0.926
0.026
0.582
0.071
0.002
0.024
0.682
0.009
0.034
0.024
0.091
0.412
0.008
0.360
0.008
0.020
0.435

0.50 0.71 1.00

T-Reagent lot ID
T-CD3+T (%)
T-CD19+B (%)
T-CD3+CD4+Th (%)
T-CD3+CD8+T (%)
T-CD16+CD56+NK (%)
T-Lymphosum (T+B+NK)
T-Ratio_CD4+Th/CD8+T
T-G2
T-Lymph events
T-CD3+T Abs
T-CD19+B Abs
T-CD3+CD4+Th Abs
T-CD3+CD8+T Abs
T-CD16+CD56+NK Abs
T-CD45+ Abs
T-Total events

0.780
0.089
1.026
0.100
1.686
0.314
0.756
0.205
0.716
0.802
0.412
0.722
1.066
0.616
0.130
0.229
1.412

 

0.577
0.234
0.942
0.089
0.465
0.110
0.612
0.083
0.200
0.606
0.134
0.432
0.676
0.280
0.008
0.039
0.420

0.011 0.031 0.125 1.000

T/B-Reagent lot ID
T/B-CD3+T (%)
T/B-CD19+B (%)
T/B-CD3+CD4+Th (%)
T/B-CD3+CD8+T (%)
T/B-CD16+CD56+NK (%)
T/B-Lymphosum (T+B+NK)
T/B-Ratio_CD4+Th/CD8+T
T/B-G2
T/B-Lymph events
T/B-CD3+T Abs
T/B-CD19+B Abs
T/B-CD3+CD4+Th Abs
T/B-CD3+CD8+T Abs
T/B-CD16+CD56+NK Abs
T/B-CD45+ Abs
T/B-Total events

1.067
0.975
9.671
0.868
0.982
0.649
0.928
0.324
0.999
0.994
1.022
0.997
0.037
1.222

0.532
0.821
0.142
0.371
0.876
0.043
0.947
0.151
0.010
0.057
0.011
0.074
0.045
0.841

0.016 0.062 0.250 1.000 4.000

T-G2
T-Lymph events

T-CD3+T (%)
B-Lymphosum (T+B+NK)

B-CD3+T (%)

B-CD16+CD56+NK (%)

T-CD3+CD8+T (%)
T-CD16+CD56+NK (%)
T-Ratio_CD4+Th/CD8+T

T-CD3+CD4+Th Abs

T-CD16+CD56+NK Abs
T-CD45+Abs
T/B-CD16+CD56+NK Abs
T/B-CD45+ Abs

Figure 2 Forest plots showing the results of feature selection: (A) results of univariate LR for the B-immune function indices; (B) results of 
multivariate LR of the T-immune indices; (C) results of univariate LR for the T/B-immune indices; (D) results of significant multivariate features 
screened by univariate LR (P < 0.05). The forest plots showed the P value, hazard ratio (HR), and 95% confidence intervals (CIs) of the immune 
indices.
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of cancer cells. Despite chemotherapeutic potency, escape and 

resistance are still widely observed in the remaining malignant 

cells at tolerable doses. In the presence of sufficient leuko-

cyte populations with cytotoxic antitumor immune function, 

chemotherapy agents can enhance tumor antigen-induced 

immunogenic cell death. As a less invasive test, examinations 

of systemic immune components have been long neglected.

In the current study we collected the peripheral blood 

immune indices from 101 patients with BC before and after 

NAT, and data from 33 patients were retained as an external 

test set. Data processing, including k nearest neighbor impu-

tation and SMOTE+, the Wilson’s edited nearest neighbor-

hood (ENN), which is a comprehensive oversampling method 

proposed by Batista et al.21 in 2004, was used to remove not 

available values (NAs) and obtain balanced datasets. The train-

ing set was randomly divided into training and internal valida-

tion sets. All immune features in the training set were selected 

using the univariate and multivariate LR. Fourteen indicators 

significantly related to the pCR were included in the subse-

quent model construction. In a previous study, only the SVM 

was used to build the prediction model; however, to offset the 

bias caused by a single method and improve the accuracy, we 

performed KNN, RF, CART, and LDA, for a total of nine ML 

models, in addition to SVM, to select the best description of 

the relationship between immune status and NAT response. 

RF was finally used to construct the immune index model.
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Figure 3 Comparisons among the 10 ML algorithms based on comparing accuracy and kappa: (A) boxplots presenting the accuracies and 
kappa values of the 5 models; (B) correlation between kappa and accuracy in the 5 models; (C) receiver operating characteristic (ROC) curves 
when applying the random forest model in predicting the internal validation set; (D) ROC curves when applying the random forest model in 
predicting the external test sets; (E) importance of features in the random forest models. Mean decreases in accuracy and gini (sorted decreas-
ingly from top-to-bottom) of attributes were as assigned by the random forest. RF, random forest; KNNs, k-nearest neighbors; SVMs, support 
vector machines; CART, classification and regression tree; LDA, linear discriminant analysis; GBM, stochastic gradient boosting machine; 
gcvearth, multivariate adaptive regression splines; NNET, neural network; MLP, multi-layer perceptron.
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Using the above LR processes, NK cells marked as 

CD16+CD56+ were significantly related to the efficacy of 

NAT, whether NK cells were measured before NAT, after NAT, 

or the after and before NAT ratio. According to the results 

of the stability and ranking of predictors from the RF var-

iable importance measures, the extreme importance of T/B 

NK cells also confirmed the results of univariate and multi-

variate LR, as mentioned above. NK cells have a significant 

role in innate immunity as cytotoxic lymphocytes by directly 

killing viruses, bacteria, and cancer cells22,23. As illustrated in 

the current study, the higher the percentage of CD3+ T cells 

before NAT and CD8+ T cells after NAT, and the lower the 

number of T-NK and T/B-NK cells detected in the periph-

eral blood, the better the patients respond to NAT. Systemic 

immune status with more adaptive immune components 

is usually positively related to the pCR, which could be 

explained by the fact that immunogenic cell death enhanced 

by chemotherapy agents requires adequate T cell reserves. 

Interestingly, a decrease in innate immune components, such 

as NK cells during NAT, leads to a better response. Based 

on a review of the extant literature, short- and long-term 

depletion of the main peripheral blood monocyte subtypes 

(B, NK, and CD8+ T cells) were observed after chemother-

apy or radiotherapy, likely because the cytotoxic drugs kill 

tumor cells and at the same time affect the proliferation and 

survival abilities of systemic immune lymphocytes24. A pre-

vious study, however, identified tumor-infiltrating NK cells 

as an independent biomarker for pCR25. The contradiction 

suggests that NK cells infiltrated in the local tumor site oper-

ated in concert with T cells to target the tumor cells, while 

systemic NK cells were affected by chemotherapeutic agents 

and exhibited a depleted phenotype. The greater the NK cell 

decline during NAT, the greater the cell death induced by 

cytotoxic drugs, and the better the tumor response to chemo-

therapy and targeted therapy.

Immunotherapy has gradually become the most high- 

profile treatment strategy of the 21st century26. The success of 

immunotherapy has been widely reported in lung carcinomas, 

and head and neck cancers. Regarding the use of immuno-

therapy in BC, IMpassion031 provided evidence that immu-

notherapy was beneficial in the early stages of BC, not just the 

late stages5. Owing to the optimized results of KeyNote-522, 

the US FDA approved the use of pembrolizumab in combi-

nation with chemotherapy for NAT in patients with TNBC. 

Pembrolizumab monotherapy continues to be used as adju-

vant therapy after surgery on 26 July 202127. Additionally, 

PD-1 inhibitors combined with routine neoadjuvant chemo-

therapy are recommended for TNBC patients according to 

the Guidelines of the Chinese Society of Clinical Oncology 

(CSCO). This news undoubtedly brings light to further 

research on NAC combined with immunotherapy for BC. 

Moreover, accumulating evidence suggests that a competent 

immune function guarantees the patient response to adju-

vant biologic treatments, such as trastuzumab, raising the 

possibility that chemotherapy-induced immune dysfunction 

render patients less responsive to modern targeted therapies. 

Similarly, host immune function is critical to the various 

immunotherapies under development and should be consid-

ered if combined with cytotoxic chemotherapy. With respect 

to the potential application of NK cells in the future, immu-

notherapy targeting NK cells, including chimeric antigen 

receptor (CAR)-engineered NK (CAR-NK), adoptive NK cell 

transfer, and bi- and tri-specific killer cell engagers (BiKEs and 

TriKEs, respectively), are a promising strategy for hematologic 

malignancies28. Studies focusing on the key effects NK cells 

exert on BC have grown in number exponentially. Keratin-14-

positive BC cells have been shown to prompt NK cells to be 

less cytotoxic and quiescent, leading to decreased metastasis29. 

Yu et al.30 reported that microwave ablation of primary BC 

inhibits metastasis and prolongs survival via the macrophage/

IL-15/NK cell axis rather than CD4+ or CD8+ T cells. Among 

patients with advanced BC, the metabolic disorder of circu-

lar NK cells can be repaired when TGF-β is inhibited31. These 

results indicate that various NK cell products and related ther-

apeutics have broad applications in the future. To the best of 

our knowledge, this study extends the suggestions for NAT 

based on peripheral blood monocytes. The immune index 

model constructed in the current study may provide refer-

ences for predicting the efficacy of immunotherapy combined 

with NAC.

This study had certain limitations. First, evaluation of 

peripheral blood immune function has only been performed 

in recent years and is not part of routine care. Complete 

immune testing data before and after NAC are so valuable 

resources that large-scale validation is still lacking. Therefore, 

further prospective or large-scale studies are required to con-

firm these results. Second, the immune indices included in this 

study may not represent immune activation status within the 

tumor microenvironment. More primary tumor tissues corre-

sponding to immune indicators in the peripheral blood need 

to be collected to enrich the knowledge of immune-related 

predictive biomarkers.
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In this work we identified important indices that were signif-

icantly associated with the therapeutic response to NAT in BC 

and constructed an immune model that accurately described 

the association. Our research provides valuable information 

for understanding the panoramic profile of immune status in 

patients with BC who underwent NAT.

Conclusions

In the present study we analyzed the correlation between 

immune indices in the peripheral blood and response to NAT 

in TNBC and HER2+ patients. Adaptive immune compo-

nents detected in peripheral blood, including the B-CD3+ T 

cells percentage, T-CD3+ T cells percentage, and T-CD8+ T 

cells Abs were positively related to a pCR. As innate immune 

components, T-NK cells are negatively correlated with a pCR 

and patients with a significant decrease in peripheral blood 

NK cells during NAT have a better therapeutic response. We 

constructed an immune model with high accuracy and spec-

ificity based on a RF algorithm by comparing 10 ML models. 

These findings could lay the groundwork for the application 

of peripheral blood lymphocyte analysis to predict the thera-

peutic response of NAC or neoadjuvant targeted therapy com-

bined with immunotherapy in the future.
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Specific terms   Abbreviations in figures   Abbreviations in manuscript

Summation of T, B, NK cell percentages   Lymphosum (T+B+NK)   Lymphosum (T+B+NK)

CD4+ helper T cell:CD8+ T cells ratio   Ratio_CD4+Th/CD8+T   CD4+:CD8+ T cell ratio

CD16+CD56+ natural killer cell percentage   CD16+CD56+NK (%)   NK cell percentage

CD16+CD56+ NK cell absolute value   CD16+CD56+NK Abs   NK cell Abs

CD19+ B cell percentage   CD19+B (%)   B cell percentage

CD19+ B cell absolute value   CD19+B Abs   B cell Abs

CD3+ T cell percentage   CD3+T (%)   CD3+ T cell percentage

CD3+ T cell absolute value   CD3+T Abs   CD3+ T cell Abs

CD3+CD4+ helper T cell percentage   CD3+CD4+Th (%)   CD4+ Th cell percentage
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