В Glycolysis 4 Α Changing folds Glycolysis pca 2 + BLCA BRCA COAD ESCA HNSC KICH KIRC KIRP LIHC LUAD LUSC READ STAD THCA UCEC PRAD 5 PACKAR PROPAGA 0 PC2 TCA 3 Changing folds 2 -5 1 0 -10 -1 2 CAA1 IDH1 IDHC NDH2 CLG2 -15 -10 -5 0 5 10 PC1 Control Tumor С Enrichment plot: KEGG_OXIDATIVE_PHOSPHORYLATION D Ε MPC2 in TCGA 6.0 (E 400 0.5 0.4 300 0.3 FPKM 200 100 None tail Meanona Lungalue area Thyfold 0 vead and ned tomach with A construction of the cons Jethan and and au and all are envirances VICON GIRE AND CALLER Liver cancer Penal aner End die and and Le dis Cancer 5,000 7,500 10,000 12,000 15,000 17,500 20,500 TCGA F MPC1 MPC2 150 200 Normal Cancer Normal Cancer 150 100 FPKM

Supplementary materials

50

0.

Prostate LUNG Liver Renal Breast Colon

Figure S1 Related to Figure 1. Metabolic changes in prostate cancer and MPC expression. (A) Changes in glycolysis and TCA cycle associated mRNA in prostate cancer (relative to Figure 1A). (B) Different expression of glycolysis and TCA cycle associated mRNA levels. The fold change

FPKM 100

50

0

Prostate e ung Liver Renal Breast Colon is shown by the ratio of PCa to benign tissue. (C) RNA-Seq data for pyruvate metabolism associated genes in prostate cancer (the black arrow indicates MPC2) and MPC2 expression in different tissues. (D) GSEA of MPC2 mRNA levels and OXPHOS. (E) MPC2 levels in different types of cancers, according to TCGA data. (F) MPC1 and 2 levels in tumor and non-tumor tissues from different types of cancers, according TCGA data. The data are represented as mean \pm SEM. **P < 0.01, compared with the control group. The data from A-D are from group A.

Figure S2 Related to **Figure 1**. Glucose associated metabolic profiling data of prostate cancer and benign prostate tissue. The data are represented as mean \pm SEM. **P* < 0.05; ***P* < 0.01, compared with the control group.

Figure S3 Related to **Figure 1**. (A) Different expression of glycolysis associated mRNA in different groups of patients. (B) Different expression of mitochondrially associated mRNA in different groups of patients.

Figure S4 Related to **Figure 1**. Different expression of glycolysis associated mRNA in different groups of patients according to the clinical prognosis, including TNM stages, Gleason score (GS), and BCR. In the GS, TNM stage 1 = T1-2N0M0, stage 2 = T3-4N0M0, stage 3 = TxN1M0.

Figure S5 Related to **Figure 1**. (A–E) Different expression of MPC according to different clinical characteristics in group A patients. (F, G) Co-expression between MPC1/2 and the oncogenes AKT and ERG in PCa. The data are from the RNA-Seq data (group B, n = 125) or TMA data (n = 210) as indicated. The data are represented as the mean \pm SEM. **P < 0.01.

Figure S6 Related to **Figure 2**. Different effects of transient blockage of mitochondrial pyruvate influx in benign prostate cells and prostate cancer cells. (A) Wound healing analysis of LNCaP and C4-2B cell lines with C, UK1, and UK2 treatment. (B) Transwell study of DU145, LNCaP, and C4-2B cell lines with C, UK1, and UK2 treatment. *P < 0.05, *#P < 0.01.

Figure S7 Related to **Figure 2**. (A, B) MPC expression after siRNA treatment. (C) Growth curve of UK5099 treated C4-2B cells. (D) Growth curve of MPC overexpressing C4-2B cells. MPC: MPC overexpression. (E) Cell cycle analysis of different cell lines after treatment with UK5099. The data are represented as mean \pm SEM. **P* < 0.05, ***P* < 0.01, compared with the control group, ##*P* < 0.01, compared with the UK1 group, UK1: 10 µm UK5099, UK2: 100 µm UK5099, EV: empty vector, MPC: MPC1/2 overexpression. All experiments were performed in more than 3 replicates. The bars are 10 µm.

Figure S8 Related to **Figure 2**. Apoptosis, measured by flow cytometry analysis of control, UK1, and UK2 treated cell lines. *P < 0.05, **P < 0.01, compared with the control group, $^{\#P} < 0.01$, compared with the UK1 group, UK1: 10 µm UK5099, UK2: 100 µm UK5099, EV: empty vector, MPC: MPC1/2 overexpression. All experiments were performed in more than 3 replicates. The bars are 10 µm.

Figure S9 Related to Figure 2. EdU measurement in control, UK1, and UK2 treated cell lines.

Figure S10 Related to **Figure 2**. Clone formation study. (A) Clone formation study of UK5099 treated different cell lines. (B) Clone formation study of MPC overexpression in different cell lines. (C) Analysis of clone formation study above. *P < 0.05, **P < 0.01, compared with the control group, $^{\#}P < 0.01$, compared with the UK1 group, UK1: 10 µm UK5099, UK2: 100 µm UK5099, EV: empty vector, MPC: MPC1/2 over-expression. $^{\$}P < 0.01$.

Figure S11 Related to **Figure 3**. D-[U-¹³C] glucose tracer for the metabolic process in BPH-1 and C4-2B cell lines. *P < 0.05, **P < 0.01, compared with the control group, UK1: 10 µm UK5099, UK2: 100 µm UK5099, EV: empty vector, MPC: MPC1/2 overexpression.

Figure S12 Related to **Figure 4**. *In vivo* study and the application of MPC transient block. (A) UK5099 increases the radiosensitivity of the PCa cells. When treated with UK5099, C4-2B and DU145 present more sensitivity to RT than the BPH-1 cells. (B) The growth curve of a DU145-MPC overexpressing subcutaneous tumor. (C) Analysis of IHC staining of BCL2 and Ki67. The data are represented as mean \pm SEM. **P* < 0.05, ***P* < 0.01, compared with the control group, UK5099: mice treated with UK5099 (6 mg/kg BW), MPC: MPC1/2 overexpression. All experiments were performed in more than 3 replicates. **P* < 0.05, ***P* < 0.01, compared with the UK1 group; §*P* < 0.05, §*P* < 0.01.

Figure S13 Related to **Figure 5**. Effects of mitochondrial pyruvate influx on mitochondrial homeostasis. (A) Western blot analysis of the screened glycolysis associated key enzymes. (B) Western blot analysis of VDAC1 and HK1 changes after VDAC1 or HK1 downregulation. (C) Epigenetic analysis results from the public database Washu Epigenome Browser. Two high peaks were observed in LNCaP and C4-2B but not in normal prostate cell lines. We designed 2 primers for each zone (A-1, A-2, B-3, and B-4). (D) Western blot analysis of the efficiency of mitochondrial separation. (E) JC-1 fluorescence in BPH-1, C4-2B, and LNCaP cell lines after UK5099 treatment. The data are represented as mean \pm SEM. UK1: 10 µm UK5099, UK2: 100 µm UK5099, MPC: MPC1/2 overexpression. All experiments were performed in more than 3 replicates. The bars are 10 µm.

Figure S14 Related to **Figure 5**. (A, B) HK1 and VDAC1 mRNA levels in different cell lines after UK5099 treatment. (C) Cytochrome c (white arrows) changes in C4-2B cell lines observed with immunofluorescence. (D) BCL2 changes in BPH-1 cells and C4-2B cells after low-dose UK5099 treatment. The data are represented as mean \pm SEM. ***P* < 0.01, compared with the control group, ^{##}*P* < 0.01, compared with the UK1 group, UK1: 10 µm UK5099, UK2: 100 µm UK5099, MPC: MPC1/2 overexpression. All experiments were performed in more than 3 replicates. The bars are 10 µm.

 Table S1
 Glycolysis associated genes

ALDH3B1	ALDOA
PFKP	DLAT
РКМ	G6PC2
ALDH3A2	PFKM
ENO1	ACSS1
PGM1	HKDC1
DLD	НК1
PCK2	ADPGK
PGK1	HK2
GPI	НКЗ
GAPDHS	PDHA2
GCK	PGAM2
MINPP1	ALDH7A1
ENO3	FBP1
ALDH3A1	LDHC
ALDOC	LDHAL6A
ALDH2	PDHB
GAPDH	PGM2
TPI1	PGK2
ENO2	PGAM1
LDHB	LDHAL6B
AKR1A1	BPGM
PCK1	ADH6
FBP2	ALDH1A3
ACSS2	ADH1A
G6PC	ADH7
PDHA1	ADH1B
ALDH3B2	ADH5
LDHA	ADH4
ALDOB	PGAM4
ALDH1B1	
G6PC3	
PFKL	
ALDH9A1	
PKLR	
GALM	

16

Table S2 Primers			Table S2 Continued
Primers		Primers	
HK1		MPC2	
Forward primer	GCTCTCCGATGAAACTCTCATAG	Primer pair 1-1	
Reverse primer	GGACCTTACGAATGTTGGCAA	Forward primer	GGAAGTCATTCCAAAAATGTCCT
		Reverse primer	GGAATTGAAGGGTTCACTGACT
VDAC1			
Forward primer	ACGTATGCCGATCTTGGCAAA	Primer pair 1-2	
Reverse primer	TCAGGCCGTACTCAGTCCATC	Forward primer	GGAAGTCATTCCAAAAATGTCCTA
		Reverse primer	GGAATTGAAGGGTTCACTGACTA
MPC1 Fwd1	(GTGCGGAAAGCGGCGGACTA)		
MPC1 Rev1	(GGCAGCAATGGGAAGACCCCA)	Pair 2-1	
		Forward primer	GCTGAAGTAACTGAACCAAAAGAA
MPC2 Fwd	(TACCACCGGCTCCTCGATAAA)	Reverse primer	GGTCCTTTATCTCAGTTGGACA
MPC2 Rev	(TATCAGCCAATCCAGCACACA)		
		Pair 2-2	
OPA1-1 forward primer	TGTGAGGTCTGCCAGTCTTTA	Forward primer	TAGCTGAAGTAACTGAACCAAAAGA
OPA1-1 reverse primer	TGTCCTTAATTGGGGTCGTTG	Reverse primer	TTTGGTCCTTTATCTCAGTTGGAC
AR binding sequence:		Primer pair 3-1	
MPC1		Forward primer	TTAGTTGACTCGGGCGTGAC
Primer pair 1-1		Reverse primer	CCCCTGGAAAACACACTTGG
Forward primer	GTCCCTATGCACAATGAGTAGC		
Reverse primer	ATGGTGCATCCGTTTAGTGGA	Primer pair 3-2	
		Forward primer	TTTTAGTTGACTCGGGCGTGA
Primer pair 1-2		Reverse primer	ACCTTCAGTACTTGGGGGAAC
Forward primer	GTCCCTATGCACAATGAGTAGCA		
Reverse primer	TGGTGCATCCGTTTAGTGGATT	Primer pair 4-1	
		Forward primer	ACGTGAAACCCTACACCACC
Primer pair 2-1		Reverse primer	TAAACTGTTTTTGCGGCGCT
Forward primer	GAGGGTCGCGTGCTAATGAT		
Reverse primer	AGCGTGACTGCTTACGTGTT	Primer pair 4-2	
		Forward primer	CGTGAAACCCTACACCACCTT
Primer pair 2-2		Reverse primer	TGTAAACTGTTTTTGCGGCG
Forward primer	ATACTCCTAGGCGAGGGTCG		
Reverse primer	AAGCGTGACTGCTTACGTGT		

	Table S2 Continued		Table S2 Continued
Primers		Primers	
Primer pair 5-1		Primer pair 7	
Forward primer	CCGACACCTAAACCCTCTGG	Forward primer	GCAGCAATCCCAAGTAGTCCT
Reverse primer	CTTTTCCAGCGCGCTTTCC	Reverse primer	ACCAGTTTGGCAGCTCTTCA
Primer pair 5-2		Primer pair 8	
Forward primer	AGTCCCTGAGGGTGGTCAAC	Forward primer	TCCATGTGAAGAGCTGCCAAA
Reverse primer	CGCTCAGCCGAAGAACCTA	Reverse primer	ATGGGCCCAACTTTTCACAAAAC
Primers used for the VI	DAC1 enhancer sequence:	Table S3 Sequences of	of the regulated genes
Primer pair 1		VDAC1 and HK1 knock-	down plasmids were constructed with the
Forward primer	TTTGAGAGGCATCTGAGGCT	vector Y7823 pLKD-CM	V-Puro-U6-shRNA (NC, VDAC1, or HK1)
Reverse primer	TGAAGAGAGACTGTGTGGGGA	HK1 KD genes:	
		HK1 NM_000188 GCCTTTGGAGACGATGGAT	
Primer pair 2		HK1 NM_000188 CCGA	GAATGGTGACTTCTT
Forward primer	GGCGAAACAGTGGCATTAGA	HK1 NM_000188 GCACCTGCGATGACAGTAT	
Reverse primer	TCATACCTGCCCCTGTGAC	NC TTCTCCGAACGTGTC	CACGT
Primer pair 3		VDAC1 KD genes:	
Forward primer	GCTGTGGGATAGTGCAACCT	VDAC1 NM_003374 GC	GATACACTCAGACTCTAA
Reverse primer	GTACCACTGTGATGCAGCCT	VDAC1 NM_003374 GG	GATGGCAAGAACGTCAAT
		VDAC1 NM_003374 GG	GACTGGAATTTCAAGCAT
Primer pair 4		NC TTCTCCGAACGTGTC	CACGT
Forward primer	CTCATTCAGGTGCATGTGCG		
Reverse primer	GAGTATTTATTTCCCCACCTCCTA	MPC1/2 overexpressior	ו:
		pLenti-EF1a-EGFP-P2A- blasticidin -CMV-MCS	
Primer pair 5		pLenti-EF1a-EGFP-P2A	- blasticidin -CMV-MPC1
Forward primer	CGAATGGAATGGTCCTTCTGGT	pLenti-EF1a-EGFP-P2A	- blasticidin -CMV-MPC2
Reverse primer	CATTCCTGGAAGGCTTTGCTTT	pLenti-EF1a-EGFP-P2A	- blasticidin -CMV-MPC1-P2A-MPC2
		The sequences are as for	ollows:
Primer pair 6		MPC1 sequence: NM_0	16098 CDS
Forward primer	AGGTGCAGGAGATGAGGCTTT	MPC2 sequence: NM_0	15415 CDS
Reverse primer	GACTGTACATGGTGTGCTCTG		
		OPA1 overexpression:	
		pLenti-CMV-MCS-3FLA Puro	G-PGK-Puro and pLenti-CMV-OPA1-PGK-

The OPA1 sequence was NM_015560 CDS

Tal	ole	S4	Key	resource	table
-----	-----	-----------	-----	----------	-------

Reagent or resource	Source	Identifier
Chemicals, peptides, and recombinant proteins		
RPMI-1640 medium	Gibco	C11875500CP
Keratinocyte Serum Free Medium (KSFM)	Gibco	17005042
Cell Counting Kit-8	Dojindo	СК04
Fetal bovine serum (FBS)	Gibco	10099133
Dimethyl sulfoxide (DMSO)	Sigma-Aldrich	276855
Methyl jasmonate	MERCK	39924-52-2
Presto Blue Reagent	Invitrogen	A13261
EdU Cell Proliferation Assay Kit	Ribobio	C10310-1
DAPI (4',6-diamidino-2-phenylindole, dihydrochloride)	Invitrogen	D1306
Crystal violet staining solution	Sangon Biotech	E607309-0100
Cell Cycle Staining Kit	MultiSciences	CCS012
Annexin V-FITC/PI apoptosis kit	Multiscience	AP101
UK5099	MCE	PF-1005023
Luciferase-based ATP Assay Kit	Beyotime	S0026
¹³ C ₆ -glucose(D-GLUCOSE(1,2-13C2,99%))	Cambridge Isotope Laboratories	CLM-504-PK
JC-1	Thermo Scientific	M34152
Calcium Detection Kit	Bestbio	BB-48112-2
Pierce BCA Protein Assay Kit	Thermo Scientific	23225
TRIzol reagent	Invitrogen	15596026
Prime Script RT Reagent Kit	TaKaRa	RR037B
SYBR Green	TaKaRa	RR820B
Cell Mitochondria Isolation Kit	Beyotime	C3601
CellTiter-Blue Cell Viability Assay	Promega	G8080
Simple ChIP Enzymatic Chromatin IP Kit (Magnetic Beads)	CST	9003
Lipofectamine 3000 Reagent	Thermo Scientific	L3000001
2-Solution DAB Kit	Invitrogen	882014
Blasticidin	Selleck	S7419
Janus Green B	Solarbio	J8020
Antibodies		
Anti-MPC1	CST	14462
Anti-MPC2	CST	46141
Anti-MPC2	Proteintech	20049-1-AP
Anti-MFN1	Proteintech	13798-1-AP
Anti-MFN2	Proteintech	12186-1-AP

Reagent or resource	Source	Identifier
Anti-OPA1	Proteintech	27733-1-AP
Anti-DRP1	Proteintech	12957-1-AP
Anti-cytochrome C	Proteintech	10993-1-AP
Anti-VDAC1/Porin	Proteintech	55259-1-AP
Anti-OMA1	Proteintech	17116-1-AP
YME1L1	Proteintech	11510-1-AP
Glycolysis Antibody Sampler Kit	CST	8337
Anti-histone H3 (acetyl K27), ChIP grade	Abcam	ab4729
Anti-β-Actin (13E5) rabbit mAb	CST	4970S
Anti-β-Tubulin	CST	2146
Anti-AR	CST	5153
Experimental Models		
Nude mice	Shanghai Laboratory Animal Center, SLAC, China	
NOD-SCID mice	Shanghai Laboratory Animal Center, SLAC, China	
Experimental Equipment		Version
Microplate reader	Molecular Devices	Paradigm
Microplate reader	Tecan	M200PRO
Nano Zoomer	Hamamatsu	S60
Microscope	Leica	OMI4000B
Microscope	ZEISS	Observer. D1
NanoDrop	Thermo	2000c
Seahorse XF96	Agilent	
Irradiation Center	Faculty of Naval Medicine, Second Military Medical University	
Real-time PCR system	Thermo	QuantStudio 7
GCMS-QP	Shimadzu	2010 Plus quadrupole mass analyzer
¹⁸ F-FDG micro-PET/CT imaging	Super Nova	
Experimental Software		Version
Microplate reader software	Molecular Devices	SoftMax Pro 6.3
Flow cytometer	MACSQuant	Analyzer 10
Nano Zoomer	Hamamatsu	NDP.scan 3.2
Avatar (PET-CT) software	Pingseng	1.2
SPSS	SPSS Inc.	19.0
GraphPad		Prism 5
Wave	Agilent	2.6.0.31

Table S4 Continued

Xu et al. Mitochondrial pyruvate influx blockade in prostate cancer

		Table S4	Continued
Reagent or resource	Source	Identifier	
Leica LAS X	Leica	LAS X	
FlowJo		7.6	
ImageJ		1.46 r	

PCa (discovery set) PCa BPH Number 25 51 19 Age (year) 69.0 ± 7.2 68.3 ± 7.4 65.2 ± 11.8 PSA (ng/mL) 21.7 ± 21.3 23.2 ± 18.7 7.7 ± 11.5 GS GS<7 2 6 / GS=7 12 31 / GS>7 11 14 /

Table S5 Patient characteristics in metabolic analysis

GS, Gleason score.

Table S6Patient characteristics in group A and group B

	Group A	Group B
Number	65	125
Age (year)	68.8 ± 10.8	68.6 ± 6.4
PSA (ng/mL)	27.8 ± 37.6	41.6 ± 110.6
GS	7.5 ± 1.0	7.7 ± 1.0

GS, Gleason score.