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ABSTRACT	 Objective: Approximately 5%–10% of breast cancer (BC) patients display familial traits that are genetically inherited among the 

members of a family. The purpose of this study was to profile the germline mutations in 43 genes with different penetration rates and 

their correlations with phenotypic traits in Chinese familial BC families.

Methods: Ion Torrent S5™-based next generation sequencing was conducted on 116 subjects from 27 Chinese familial BC families.

Results: Eighty-one germline mutations in 27 BC predisposition genes were identified in 82.8% (96/116) of the cases. Among these, 

80.8% of the mutated genes were related to DNA damage repair. Fourteen possible disease-causing variants were identified in 13 

of 27 BC families. Only 25.9% (7/27) of the BC families exhibited hereditary deficiency in BRCA1/2 genes, while 22.2% of the BC 

families exhibited defects in non-BRCA genes. In all, 41.7% (40/96) of the mutation carriers had BRCA mutations, 88.5% (85/96) had 

non-BRCA mutations, and 30.2% (29/96) had both BRCA and non-BRCA mutations. The BC patients with BRCA mutations had a 

higher risk of axillary lymph node metastases than those without mutations (P < 0.05). However, the BC patients with non-BRCA 

mutations frequently had a higher occurrence of benign breast diseases than those without mutations (P < 0.05).

Conclusions: In addition to BRCA1/2, genetic variants in non-BRCA DNA repair genes might play significant roles in the development 

of familial/hereditary BC. Therefore, profiling of multiple BC predisposition genes should be more valuable for screening potential 

pathogenic germline mutations in Chinese familial/hereditary BC.
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Introduction

For Chinese women, breast cancer (BC) has become the most 

common malignant tumor and the fifth most common cause 

of cancer death. Approximately 5%–10% of BC patients dis-

play familial traits that are genetically inherited among the 

members of a family1, and are significantly regulated by varied 

genetic factors. Among these genetic factors, driver genes 

directly stimulate BC carcinogenesis, while predisposition 

genes generally increase the hereditary genetic risk of BC and 

are the most important causes of familial clustering in BC. 

However, no study focusing on the germline genetic profil-

ing of multiple BC predisposition genes has been reported in 

Chinese hereditary BC families. BRCA1 and BRCA2 are 2 well-

known high penetration BC predisposition genes in hereditary 

BC2. BRCA1/2 mutations are characteristic of an increased life-

time risk for hereditary breast and ovarian cancer syndrome3. 

The cumulative risk of BC in women with BRCA mutations is 

as high as 80% by the age of 704,5. Clinical studies have shown 

that patients with BRCA mutations have a higher incidence 

of early-onset BC, bilateral BC, triple-negative BC, lymph 

node metastasis, and ipsilateral and contralateral BC recur-

rence6-9. Patients with BRCA-related BC are also at high risk 

for other cancers, such as pancreatic cancers, gastrointestinal 
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malignancies, and melanomas10. Identification of germline 

mutations in BRCA1/2 will not only help to identify high risk 

hereditary BC patients, but will also change screening, cancer 

risk management, and therapeutic strategies for their family 

members.

However, only 20%–40% of familial hereditary BC are 

caused by BRCA1/2 mutations11. There is a large percent-

age of familial BC not associated with BRCA1/2 mutations. 

Currently, more BC predisposition genes have been identified, 

including genes with high penetration (TP53, CDH1, PTEN, 

and STK11), moderate penetration (PALB2, CHEK2, ATM, 

NBN, etc.), and low penetration (MLH1, MSH2, MSH6, PMS2, 

MEN1, etc.)12-14. Most BC predisposition genes are DNA dam-

age repair (DDR)-related genes. DDR is an important part of 

the mammalian cell defense mechanism and includes 5 differ-

ent but functionally interrelated pathways: base excision repair 

(BER), nucleotide excision repair, mismatch repair (MMR), 

homologous recombination repair (HR), and nonhomologous 

end joining15. DDR genes recover the DNA damage caused by 

various factors in vivo and in vitro, thus maximizing the sta-

bility of genetic material. The decline or lack of DDR ability 

can lead to genome instability and the occurrence of cancer16.

It has been reported that genomic instability caused by 

DDR gene deficiency is one of the most important reasons for 

the occurrence of BC17-19. Comprehensive screening of genetic 

variants of DDR genes would therefore help to precisely evalu-

ate hereditary susceptibilities to BC in high risk families. Next-

generation sequencing (NGS) has recently enabled massive 

parallel sequencing at low cost, which makes high-throughput 

gene testing commercially available for hereditary BC suscep-

tibility assessment with high accuracy and high efficiency20.

In this study, a total of 116 subjects from 27 Chinese heredi-

tary BC families were enrolled, including both BC patients and 

their relatives. Ion Torrent S5™-based NGS was conducted to 

detect multiple types of germline variants in 43 genes and com-

pare their correlations with phenotypic traits. We found that 

80.8% of the mutated genes were related to DDR. Only 25.9% 

of BC families exhibited hereditary deficiency in BRCA1/2 

genes, while 22.2% of the BC families exhibited defects in non-

BRCA genes. The BRCA mutation patients had a higher occur-

rence of axillary lymph node metastases, while the non-BRCA 

mutation patients frequently had a higher occurrence of 

benign breast diseases than those without mutations. Genetic 

variants in non-BRCA DDR genes might therefore play signif-

icant roles in the development of Chinese familial/hereditary 

BC, and more extensive BC predisposition genes should be 

considered to evaluate hereditary BC susceptibilities in high 

risk families.

Materials and methods

Sample collection

A total of 27 hereditary BC families in China were enrolled 

and admitted to the Second Department of Breast Cancer 

of Tianjin Medical University Cancer Institute and Hospital 

(TMUCIH) from January 2017 to January 2019. The criterion 

for the collection of hereditary BC families was that the fam-

ilies should include ≥ 2 patients with breast and/or ovarian 

cancer among first- and second-degree relatives. This study 

was approved by the Ethics Committee of Tianjin Medical 

University (Approval No. Ek2018050). Written consent was 

obtained from all patients.

We selected at least 1 BC patient and 1 family member from 

each hereditary BC family. Finally, a total of 116 subjects from 

27 families were collected, which included 45 patients (42 BC, 

2 ovarian cancer, and 1 endometrial cancer) and 71 healthy 

family members. All subjects were Chinese. Among the 42 BC 

patients, 36 were initially treated at TMUCIH. Clinical char-

acteristics for these 36 patients were collected, including the 

age of onset, unilateral/bilateral, primary tumor diameter size, 

regional lymph node status, clinical stage, tumor grade, histo-

logical type, luminal type, benign breast disease, and recurrence 

or metastasis. When the clinical characteristics of the 36 patients 

were analyzed, the data of the additional 47 BC patients with a 

family history of BC were also included. These 47 familial BC 

patients were all females and were also treated at TMUCIH. 

The age of the patients ranged from 26–76 years. The median 

age was 51 years and the average age was 50.1 years. Of them, 

31.9% were younger than 45 years, 36.1% had lymph node 

metastasis, 17.0% were triple negative BC, 29.7% were in stage 

III, and 21.2% were histological grade III (details are shown 

in Supplementary Table S1). All 47 familial BC patients were 

sequenced by the same assay panel as the 27 pedigree samples.

This study was approved by the ethics committee of 

TMUCIH, and all included subjects signed informed consent 

forms.

NGS panel

In this study, the 43 genes selected were as follows: AKT1, 

APC, ATM, ATR, BAP1, BARD1, BLM, BRAF, BRCA1, BRCA2, 
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BRIP1, CCND1, CDH1, CDK4, CHEK2, CYP1B1, EGFR, 

EPCAM, ERBB2, ERBB4, ERCC1, FANCD2, FANCI, MLH1, 

MRE11A, MSH2, MSH6, MUTYH, NBN, NOTCH1, PALB2, 

PIK3CA, PMS2, PTEN, RAD50, RAD51C, RAD51D, RET, 

SMAD4, STK11, TP53, XPC, and XRCC1 (Table 1). Most of 

the 43 genes, such as APC, ATM, ATR, BAP1, BARD1, BLM, 

BRCA1, BRCA2, BRIP1, CDH1, CHEK2, CYP1B1, EPCAM, 

ERCC1, FANCD2, FANCI, MLH1, MRE11A, MSH2, MSH6, 

MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, 

RAD51D, STK11, XPC, and XRCC1 were DDR genes. The 

panel was composed of the whole coding sequence and splic-

ing region (exonic boundaries ± 10 bp) of each gene. The tar-

get region size of the panel was 114 kb, and 99% of the target 

region was covered with 1,352 amplicons (Analyses, Beijing, 

China).

NGS and data processing

Genomic DNA was extracted from peripheral blood samples 

(2–5 mL) using a QIAamp DNA Blood Mini Kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s instruc-

tions. The DNA library was constructed using GO prep kits 

(Analyses), in which every library from different samples 

was marked with varied indices. The prepared libraries were 

sequenced by Ion S5 (TMO, Shanghai, China). Qualified 

reads were aligned to the human reference genome hg19 by 

TMAP (v.5.10). The target regions were sequenced at a depth 

> 200 times. Germline mutations (SNV/small InDel < 22 bp) 

were detected using TVC software (v.5.10). Then, Ensembl 

Variant Effect Predictor software (http://grch37.ensembl.

org/info/docs/tools/vep/index.html) was used for variant 

interpretation, such as HGVS notation, Population Allele 

Frequencies from GnomAD (http://gnomad.broadinstitute.

org/), 1K Genomes Project (http://www.1000genomes.org), 

Clinical Significance States assigned by HGMD (http://www.

hgmd.cf.ac.uk/), ClinVar (http://www.ncbi.nlm.nih.gov/clin-

var/), BRCA Exchange (https://brcaexchange.org/), and BIC 

(https://research.nhgri.nih.gov/bic/). In addition, all signifi-

cant mutations, including pathogenic variants, likely patho-

genic variants, and variants of uncertain significance (VUS) 

were confirmed by Sanger sequencing.

Variant classification

All mutations were classified according to the American 

College of Medical Genetics (ACMG) professional practice 

Table 1  Gene list

  Gene   Transcript   Exon 
number

  Target region 
bases (bp)

1   AKT1   NM_005163   14   3,008

2   APC   NM_000038   15   8,683

3   ATM   NM_000051   62   9,792

4   ATR   NM_001184   47   8,158

5   BAP1   NM_004656   17   2,361

6   BARD1   NM_000465   11   2,445

7   BLM   NM_000057   21   4,465

8   BRAF   NM_004333   18   6,459

9   BRCA1   NM_007294   22   5,813

10   BRCA2   NM_000059   26   10,518

11   BRIP1   NM_032043   19   3,941

12   CCND1   NM_053056   5   4,238

13   CDH1   NM_004360   16   2,810

14   CDK4   NM_000075   8   1,865

15   CHEK2   NM_001005735   15   1,912

16   CYP1B1   NM_000104   2   1,653

17   EGFR   NM_005228   28   9,905

18   EPCAM   NM_002354   9   1,036

19   ERBB2   NM_004448   27   4,557

20   ERBB4   NM_005235   28   12,097

21   ERCC1   NM_001983   10   3,379

22   FANCD2   NM_001018115   43   4,922

23   FANCI   NM_018193   36   4,168

24   MLH1   NM_000249   19   2,462

25   MRE11A   NM_005591   19   2,318

26   MSH2   NM_000251   16   2,966

27   MSH6   NM_000179   10   4,184

28   MUTYH   NM_012222   16   1,861

29   NBN   NM_002485   16   2,426

30   NOTCH1   NM_017617   34   9,568

31   PALB2   NM_024675   13   3,692

32   PIK3CA   NM_006218   21   9,259

33   PMS2   NM_000535   15   2,740

34   PTEN   NM_000314   9   1,303

35   RAD50   NM_005732   25   4,190

http://grch37.ensembl.org/info/docs/tools/vep/index.html
http://grch37.ensembl.org/info/docs/tools/vep/index.html
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://www.1000genomes.org
http://www.hgmd.cf.ac.uk/
http://www.hgmd.cf.ac.uk/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
https://brcaexchange.org/
https://research.nhgri.nih.gov/bic/
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and guidelines21. Following the principles of the ACMG, all 

germline mutations were classified as pathogenic (P), likely 

pathogenic (LP), uncertain significance (US), likely benign 

(LB), or benign (B). Each pathogenic criterion was weighted 

as very strong (PVS1: nonsense, frameshift, canonical ± 1 or 

2 splice sites, initiation codon), strong (PS1–4); moderate 

(PM1–6), or supporting (PP1–5), and each benign criterion 

was weighted as stand-alone (BA1), strong (BS1–4), or sup-

porting (BP1–6). The other mutations were classified as vari-

ants of uncertain significance (VUS).

Statistical analysis

The correlations between genetic variants and clinicopatho-

logical characteristics of patients were determined using the 

Student’s t-test, the chi-square test, or Fisher’s precise test. 

P-values less than 0.05 were considered to be statistically 

significant.

Results

Quality assessment of sequencing data

More than 26.7 GB of sequencing data were generated from 

116 clinical samples. An average of 1.0 million reads for each 

sample was obtained. The depth of each variant was mainly 

200–1,500×, and the average depth was more than 800× 

(Figure 1A). On average, 98.9% of all reads could be mapped 

back to the hg19 genome (Figure 1B) and 96.0% of all reads 

were mapped to targeted regions (Figure 1C). After variant 

calling, the allele fraction plots of all the variants demonstrated 

a clear bimodal distribution pattern peaking at 0.5 and 1.0, 

  Gene   Transcript   Exon 
number

  Target region 
bases (bp)

36   RAD51C   NM_058216   9   1,226

37   RAD51D   NM_002878   10   1,088

38   RET   NM_020975   20   3,578

39   SMAD4   NM_005359   11   1,770

40   STK11   NM_000455   9   1,393

41   TP53   NM_000546   10   1,283

42   XPC   NM_004628   16   3,650

43   XRCC1   NM_006297   17   2,052

Table 1  Continued which indicated that a typical distribution pattern of germline 

mutations was achieved (Figure 1D).

Identification of germline mutations

We detected 37,009 variants among 43 genes in 116 sub-

jects from 27 families. After variant filtering (Figure 2), 81 

germline mutations in 26 genes were identified in 96 sub-

jects (Figure  3A; more details are available in Supporting 

Information Supplementary Table S2). The genes with ≥ 5 

mutations were BRCA1, BRCA2, ATM, BLM, BRIP1, MSH6, 

and RAD50. Of the mutated genes, 80.8% (21/26) were 

DDR genes (ATM, BRCA1, BRCA2, BAP1, BARD1, BRIP1, 

BLM, CHEK2, FANCD2, FANCI, MRE11A, NBN, PALB2, 

RAD50, RAD51C, MLH1, MSH2, MSH6, EPCAM, PMS2, and 

MUTYH), and 19.2% (5/26) were driver genes (APC, CDH1, 

RET, STK11, and TP53). Among these DDR genes, 71.4% 

(15/21) were involved in HR, 23.8% (5/21) were involved in 

MMR, and 4.8% (1/21) were involved in BER. Of the 81 muta-

tions, 67.9% were found in HR genes, 19.8% in MMR genes, 

2.5% in BER genes, and 9.9% in driver genes (Figure  3B). 

More than 90% of the mutations occurred in DDR genes. Of 

these mutations, 10 (12.3%) were pathogenic or likely path-

ogenic (P/LP), and 71 (88.7%) were VUS. There were 7 P/LP 

mutations detected in BRCA1/2 genes and 3 P/LP mutations 

detected in non-BRCA genes. Four VUS were considered high 

risk based on software predictions and literature reports. In 

this article, P/LP mutations and high risk VUS were defined as 

possible disease-causing mutations22.

The correlation between genetic mutations and 
hereditary BC families

Among the 27 familial BC families, 48.1% (13/27) had pos-

sible disease-causing mutations in known BC predisposition 

genes, including BRCA1, BRCA2, BLM, BRIP1, MSH2, MSH6, 

RAD51C, and RET. The cause of hereditary BC in 51.9% 

(14/27) of the families was unknown. Hereditary BC in 25.9% 

(7/27) of the families was associated with BRCA1/2 genes, 

while that in 22.2% (6/27) was associated with non-BRCA 

genes (Table 2). This showed that testing the non-BRCA genes 

increased the detection of hereditary BC by 22.2%.

Of these 27 families, 11 (40.7%) were characterized by BC 

only, 4 (14.8%) by both BC and ovarian cancer, and 12 (44.5%) 

by other cancer types besides BC (and ovarian cancer), such 
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as lung cancer, stomach cancer, esophageal cancer, colorec-

tal cancer, and endometrial cancer (Table 3). Of the families 

with BC only, 27.3% (3/11) were related with BRCA genes and 

18.2% (2/11) were related with non-BRCA genes. However, 

of the families with cancer types other than BC (and ovarian 

cancer), more were related with non-BRCA genes than BRCA 

genes (33.3% vs. 16.7%) (Table 2).

The distribution of possible disease-causing 
mutations in BRCA1/2 genes

Among the mutation carriers, 24.0% (23/96) carried possible 

disease-causing mutations in BRCA genes. Of them, 47.8% 

(11/23) were carriers of the BRCA1 gene, and 52.2% (12/23) 

were carriers of the BRCA2 gene. Therefore, mutation carriers 

of the BRCA2 gene occurred 1.09 times more frequently than 

those of the BRCA1 gene in these 27 Chinese hereditary BC 

families.

Four possible disease-causing mutations in the BRCA1 gene 

were found in 27 familial BC families. There were 3 mutations 

located in exon 10 and 1 located in exon 23 (Figure 4A). BRCA1 

p.Glu1836fs was located in the BRCT2 domain of BRCA1. 

The BRCT domain is found in a large variety of proteins 

involved in DNA repair, recombination, and cell cycle control, 

and functions as a protein-protein interaction module23,24. 

BRCA1 p.Thr327fs was located upstream of the serine-rich 
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domain associated with BRCT and found in a family with 2 

BC patients, 1 of whom was diagnosed with BC at 32 years of 

age and died of BC. The healthy member with this mutation 

is taking tamoxifen orally to prevent BC under the guidance 

of her physician. BRCA1 p.Asp1362fs and p.Leu1306fs were 

not located in the functional domain of BRCA1. Both were 

found in a family with BC and ovarian cancer. Four possi-

ble disease-causing mutations in the BRCA1 gene previously 

found in 146 sporadic BC patients were located in exons 4, 

10, 23, and all in the functional domain22. There was no sig-

nificant difference in the location of these mutations in the 

BRCA1 gene between pedigrees and sporadic patients. Of 

the 8 possible disease-causing mutations in the BRCA1 gene, 

7 (87.5%) were frameshift mutations, and 5 (62.5%) were 

located in the functional domain of the BRCA1 gene, especially 

BRCT2 (Figure 4A). The patients with BRCA1 p.Ile1824fs and 

p.Leu1306fs were diagnosed with BC at the age of ≤ 45 years 

and had lymph node metastases. The tumor-node-metasta-

sis (TNM) stage of BRCA1 p.Ile1824fs mutation carriers was 

stage III. The patient with BRCA1 p.Leu481fs was diagnosed 

with BC at the age of > 45 years but had lymph node metas-

tasis and was in stage III. The BRCA1 p.Asp1362fs mutation 

carriers were ≥ 45 years of age, in stage I, and had no lymph 

node metastasis.

37,009 variants from
116 samples

22,514 non-coding
variants
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polymorphism

4,786 low quilty
variants

197 (likely-)
benign variants

5,064 variants

In coding
or splicing
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Figure 2  Filtering steps of mutations. *Predicted as damaging by multiple software programs or reported in cancer patients.
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Three possible disease-causing mutations in the BRCA2 

gene were found in 27 familial BC families and located in exons 

3, 15, and 23 (Figure 4B). BRCA2 p.Arg2520Term was located 

in the helical domain of BRCA2. The region interacts with the 

DSS1 (deleted in split hand/split foot) protein in mamma-

lian cells, which is required for normal cell growth25. BRCA2 

p.Glu97Term and p.Ser2984Term were not located in the 

functional domain of BRCA2. BRCA2 p.Glu97Term was found 

in a family with 2 BC patients. The onset age of the patients 

was over 50 years. BRCA2 p.Ser2984Term was found in a fam-

ily with 3 BC patients. Among them, 1 patient developed BC 

at the age of 35 years, and 1 patient experienced contralateral 

BC after she was diagnosed with BC at 42 years of age. Six 

possible disease-causing mutations in the BRCA2 gene found 

previously in 146 sporadic BC patients were located in exons 

3, 11, 19, and 23. The distribution of possible disease-causing 

mutations found in sporadic patients may be more dispersed 

in the BRCA2 gene22. Of the 9 possible disease-causing muta-

tions of the BRCA2 gene, 6 (66.7%) were nonsense mutations, 

and mutations within exon 11 of BRCA2 were the most com-

mon. We found that most of the mutations carried by patients 

with an onset age of ≤ 45 years were located in the region of 

exon 15 or behind exon 15, and 80.0% of the patients with 

BRCA2 possible disease-causing mutations had lymph node 

metastases. The patients with BRCA2 p.Glu38Lys, p.Val2050fs, 

p.Arg2520Term, p.Ser2984Term, and p.Trp2990Term were 
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Table 2  The correlation between mutation genes and cancer types of hereditary breast cancer families

Types of cancer within a family   No. of 
families

  BRCA-related 
families

  Non-BRCA-related 
families

  Families of unknown 
reason

Breast cancer   11   3 (27.3%)   2 (18.2%)   6 (54.5%)

Breast cancer + ovarian cancer   4   2 (50.0%)   0 (0.0%)   2 (50.0%)

Breast cancer (+ ovarian cancer) other cancers   12   2 (16.7%)   4 (33.3%)   6 (50.0%)

Total   27   7 (25.9%)   6 (22.2%)   14 (51.9%)
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diagnosed with BC at the age of ≤ 45 years and had lymph 

node metastases. The TNM stage of BRCA2 p.Glu38Lys, 

p.Val2050fs, and p.Trp2990Term mutation carriers was stage 

III. The BRCA2 p.Ser1404Term mutation carriers were more 

than 45 years of age, were in stage I, and had no lymph node 

metastasis.

Possible disease-causing mutations in non-
BRCA genes

Seven possible disease-causing mutations in non-BRCA genes 

were found in 27 familial BC families including 3 likely path-

ogenic mutations in the BLM, BRIP1, and MSH6 genes, and 4 

high risk VUSs in the BLM, MSH2, RAD50C, and RET genes. 

BLM p.Asp1116fs was not present in population databases 

Table 3  The corresponding variants and the cancer types of each 
family

Family   The possible 
corresponding variants

  Cancer types of a 
family

F01   BRCA2 p.Glu97Term   Breast cancer

F02   BLM p.Leu60Ile   Breast cancer

F03   Uncertain   Breast cancer

F04   Uncertain   Breast cancer

F05   MSH2 p.Met688Ile   Breast cancer

F06   Uncertain   Breast cancer

    Hepatic carcinoma

F07   Uncertain   Breast cancer

F08   Uncertain   Breast cancer

    Colorectal cancer

F09   BRCA1 p.Glu1836fs   Breast cancer

  BRIP1 p.Lys222Term   Ovarian cancer

F10   BRCA2 p.Ser2984Term   Breast cancer

    Esophageal cancer

    Stomach cancer

F11   Uncertain   Breast cancer

    Ovarian cancer

F12   Uncertain   Breast cancer,

    Colorectal cancer

F13   BRCA1 p.Leu1306fs   Breast cancer

    Ovarian cancer

    Colorectal cancer

    Non-Hodgkin’s 

    lymphoma

    Esophageal cancer

F14   Uncertain   Breast cancer

    Ovarian cancer

    Stomach cancer

    Esophageal cancer

    Cervical cancer

    Thyroid cancer

F15   Uncertain   Breast cancer

F16   RAD51C p.Arg370Term   Breast cancer

    Colorectal cancer

Family   The possible 
corresponding variants

  Cancer types of a 
family

F17   Uncertain   Breast cancer

F18   RET p.Glu632Lys   Breast cancer

    Esophageal cancer

F19   Uncertain   Breast cancer

    Colorectal cancer

    Lung cancer

F20   Uncertain   Breast cancer

    Ovarian cancer

F22   BRCA1 p.Thr327fs   Breast cancer

F23   BRCA2 p.Arg2520Term   Breast cancer

F24   Uncertain   Breast cancer

F25   Uncertain   Breast cancer

    Colorectal cancer

    Lung cancer

F27   BLM p.Asp1116fs   Breast cancer

    Stomach cancer

    Lung cancer

F28   BRCA1 p.Asp1362fs   Breast cancer

    Ovarian cancer

F29   MSH6 p.Arg841fs   Breast cancer

    Endometrial cancer

Continued
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Figure 4  The distribution of BRCA1/2 mutations in databases (HGMD, ClinVar, and Gnomad) and the disease-causing mutations in BRCA1/2 genes 
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such as ExAC, gnomAD, and 1,000 Genomes. This sequence 

change duplicated 1 nucleotide from exon 17 of the BLM 

mRNA (c.3349dupA), causing a frameshift variant at codon 

1,116. Loss-of-function variants in the BLM gene are known 

to be the pathogenic mechanism for Bloom syndrome26. The 

sequence change of BRIP1 p.Lys222Term replaced A with 

T from exon 7 of the BRIP1 mRNA (c.664A>T), causing a 

nonsense mutation at codon 222. It was also not present in 

population databases such as ExAC, gnomAD, and 1,000 

Genomes and was recorded as pathogenic in the ClinVar 

database (SCV001187697). MSH6 p.Arg841fs was not present 

in population databases such as ExAC, gnomAD, and 1,000 

Genomes. This sequence change deleted 1 nucleotide from 

exon 4 of the MSH6 mRNA (c.2522delG), causing frameshift 

variants at codon 841. Loss-of-function variants in the MSH6 

gene are known to be the pathogenic mechanism for Lynch 

syndrome27,28. According to the guidelines of the ACMG, these 

3 mutations were classified as likely pathogenic.

Four VUS were considered high risk in this study, namely, 

BLM p.Leu60Ile, MSH2 p.Met688Ile, RAD50C p.Arg370Term, 

and RET p.Glu632Lys. BLM p.Leu60Ile, MSH2 p.Met688Ile, 

and RET p.Glu632Lys were predicted to be damaging by mul-

tiple software programs. BLM p.Leu60Ile was recorded as hav-

ing conflicting interpretations of pathogenicity in the ClinVar 

database without clinical information. MSH2 p.Met688Ile was 

recorded with uncertain significance in the ClinVar database 

and reported in colorectal cancer, endometrial cancer, and 

Lynch syndrome29-32. RET p.Glu632Lys was recorded with 

uncertain significance in the ClinVar database and reported 

in medullary thyroid carcinoma33,34, Hirschsprung’s disease35, 

esophageal cancer36, colorectal cancer37 and sporadic phe-

ochromocytoma38. The nonsense mutation RAD50C p.Ar-

g370Term exhibited the termination codon at 370 amino 

acids. It was not clear whether RAD50C p.Arg370Term would 

lead to nonsense mutation-mediated mRNA decay because it 

was located in the last exon. It was also recorded with uncer-

tain significance in the ClinVar database. Overall, the studies 

have shown that deletion of the terminal 11 amino acid resi-

dues led to cell localization errors of the RAD51C protein39.

Comutation of BRCA and non-BRCA genes in 
the BC pedigree

In this study, 82.76% (96/116) of all subjects were found to 

carry at least 1 gene mutation. Only 34.4% (33/96) of the 

mutation carriers had 1 mutation, while 65.6% (63/96) had 

≥ 2 mutations simultaneously. It is common that 1 person 

carries > 1 mutation, which was detected either in BRCA1/2 

genes or non-BRCA genes (Figure 5). Twenty-nine (25.0%, 

29/116) subjects carried both BRCA and non-BRCA muta-

tions, namely, 12 patients and 17 healthy members. These 

non-BRCA mutations occurred in the ATM, BAP1, BLM, 

BRIP1, CHEK2, EPCAM, MLH1, MSH2, MSH6, MUTYH, 

PMS2, RAD50, RAD51C, and TP53 genes, 92.9% of which 

were related to DDR genes. Among the comutation samples of 

BRCA and non-BRCA genes, there were 19 carriers with pos-

sible disease-causing mutations in BRCA genes and 5 carriers 

with possible disease-causing mutations in non-BRCA genes. 

Two carriers had possible disease-causing mutations in both 

BRCA genes and non-BRCA genes. Both were from 1 family 

with 1 BC patient and 1 ovarian cancer patient.

The clinicopathological characteristics of 
hereditary BC patients with varied genetic 
mutations

According to the mutation status (P, LP, VUS), 36 BC patients 

were divided into 3 groups: the BRCA mutation group (n = 9), 

non-BRCA mutation group (n = 20), and nonmutation group 

(n = 7) (Table 4). The BRCA mutation group had a comparably 

higher risk of axillary lymph node metastasis than the nonmu-

tation group (77.8% vs. 28.6%, P = 0.049). There was no signif-

icant difference in age, unilateral or bilateral, tumor size, TNM 

stage, tumor grade, histological type, luminal type, history of 

benign breast diseases, recurrence, or metastasis between the 

BRCA mutation group and the nonmutation group. In con-

trast, the non-BRCA mutation group had a significantly higher 

occurrence of benign breast disease before BC than the non-

mutation group (70.0% vs. 14.3%, P = 0.021). However, there 

was no significant difference in other parameters.

The average onset age of BC in the BRCA mutation group 

was younger than that in the nonmutation group (44.8 ± 

9.5 vs. 51.3 ± 6.8) (Table 4). However, the difference was not 

statistically significant. The small sample size might be an 

important factor. We therefore included an additional 47 BC 

patients with family histories of BC. Among these 83 familial 

BC patients, 20 had mutations in BRCA1/2 genes, 25 had non-

BRCA mutations, and 38 had no mutations. We compared the 

correlations between BRCA mutation status and the clinical 

and pathological features of patients (Table 5). The results 

showed that the average onset age in the BRCA mutation 

group was significantly younger than that in the nonmutation 
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group (45.7 ± 9.6 vs. 51.9 ± 8.7, P = 0.015). Furthermore, the 

percentages of young BC (55.6% vs. 28.6%, P = 0.023), lymph 

node metastatic (70.0% vs. 28.9%, P = 0.005), clinical stage III 

(35.0% vs. 18.4%, P = 0.011), and triple-negative BC (40.0% 

vs. 7.9%, P = 0.002) were higher in the BRCA mutation group 

than in the nonmutation group. In contrast, no significant dif-

ference was detected when comparing the above clinicopatho-

logical features between the non-BRCA mutation group and 

the non-mutation group.

Classical pedigree analysis of hereditary BC 
families

Figure 6 shows several representative families enrolled in 

this study. As shown in Figure 6A, the family included 4 BC 

patients, of whom 1 died and 1 suffered bilateral BC. We col-

lected samples from other patients. The sequencing results 

showed that all 3 patients carried BRCA2 p.Arg2520Term 

and CHEK2 p.Ala480Thr mutations. According to the ACMG 

classification, CHEK2 p.Ala480Thr is a VUS and BRCA2 

p.Arg2520Term is a pathogenic mutation. Therefore, the 

BRCA2 p.Arg2520Term mutation may be the genetic path-

ogenic mutation of this family. The earliest onset age of BC 

patients in this family was 30 years of age, and the oldest was 

40 years of age. The onset age of BC caused by the BRCA2 p.Ar-

g2520Term mutation may be earlier. In the fourth generation, 

2 young family members, 26 and 22 years of age, respectively, 

also carried BRCA2 p.Arg2520Term. Although they are still 

healthy, it was recommended that prevention and follow-up 

should be strengthened.

As shown in Figure 6B, the pathogenic mutation BRCA1 

Asp1362fs was found in 1 BC patient, 1 ovarian cancer patient, 

and 2 healthy family members. The BC patient was diagnosed 

at the age of 58 years, and the ovarian cancer patient was diag-

nosed at the age of 63 years. BC or ovarian cancer caused by 

BRCA1 Asp1362fs may develop later. It is noteworthy that 

their mother was not a cancer patient, while 1 of their mater-

nal aunts (their mother’s sister) suffered from BC. Genetic 

testing for these patients was not available because they had 

died. In addition to BC and ovarian cancer, this family also 
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Table 4  Clinicopathological characteristics among 36 patients with different mutation status

Features   n   BRCA+
 (n = 9, %)

  non-BRCA+ 
(n = 20, %)

  Negative
(n = 7, %)

  P1-value*   P2-value*

Age of onset (years)    

  Mean ± size     44.8 ± 9.5   55.7 ± 10.3   51.3 ± 6.8   0.148a   0.307a

  ≤ 45   8   5 (55.6%)   1 (5.0%)   2 (28.6%)   0.358   0.156

  > 45   28   4 (44.4%)   19 (95.0%)   5 (71.4%)    

Unilateral/bilateral   0.088   1.000

  Unilateral   31   5 (55.6%)   19 (95.0%)   7 (100.0%)    

  Bilateral   5   4 (44.4%)   1 (5.0%)   0 (0.0%)    

Tumor size     0.550   1.000

  ≤ 3 cm   28   8 (88.9%)   15 (75.0%)   5 (71.4%)    

  > 3 cm   8   1 (11.1%)   5 (25.0%)   2 (28.6%)    

Axillary lymph node metastasis   0.049   1.000

  Yes   16   7 (77.8%)   7 (35.0%)   2 (28.6%)    

  No   20   2 (22.2%)   13 (65.0%)   5 (71.4%)    

TNM stage   0.263b   0.435b

  0 + I   17   2 (22.2%)   10 (50.0%)   5 (71.4%)    

  II   14   7 (77.8%)   6 (30.0%)   1 (14.3%)    

  III   5   0 (0.0%)   4 (20.0%)   1 (14.3%)    

Tumor grade   0.109b   0.665b

  I   8   1 (11.1%)   5 (25.0%)   2 (28.6%)    

  II   23   8 (88.9%)   12 (60.0%)   3 (42.9%)    

  III   5   0 (0.0%)   3 (15.0%)   2 (28.6%)    

Histological type   1.000   0.633

  Breast invasive ductal  carcinoma   28   7 (77.8%)   16 (80.0%)   5 (71.4%)    

  Other   8   2 (22.2%)   4 (20.0%)   2 (28.6%)    

Luminal type   0.086b   0.160b

  Luminal A   4   0 (0.0%)   3 (15.0%)   2 (28.6%)    

  Luminal B   21   6 (66.7%)   12 (60.0%)   5 (71.4%)    

  HER2 overexpressing   4   0 (0.0%)   4 (20.0%)   0 (0.0%)    

  Triple negative   4   3 (33.3%)   1 (5.0%)   0 (0.0%)    

With benign breast disease   0.060   0.024

  Yes   21   6 (66.7%)   14 (70.0%)   1 (14.3%)    

  No   15   3 (33.3%)   6 (30.0%)   6 (85.7%)    

Recurrence or metastasis   1.000   1.000

  Yes   2   1 (11.1%)   1 (5.0%)   0 (0.0%)    

  No   34   8 (88.9%)   19 (95.0%)   7 (100.0%)    

*Fisher’s precise test; aStudent’s t-test; brank-sum test; P1-value: BRCA+ group vs. the negative group; P2-value: non-BRCA+ group vs. the 
negative group.
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had 1 esophageal cancer patient. However, there was no defi-

nite link between the occurrence of esophageal cancer and the 

BRCA1 Asp1362fs mutation. The 2 healthy family members 

with BRCA1 Asp1362fs were 32 and 29 years of age, respec-

tively. They may have not reached the age of onset. However, 

early prevention and regular physical examination were 

recommended.

Figure 6C shows a family with 2 BC patients. Patient III.1 

was diagnosed with BC at the age of 57 years. Her sister 

(Patient III.2) was diagnosed with BC at the age of 52 years. 

They both carried BLM p.Asp1116fs and BRCA2 p.Ile1929Val. 

According to the ACMG classification, BLM p.Asp1116fs is 

a likely pathogenic mutation and BRCA2 p.Ile1929Val is a 

VUS. The BLM gene encodes the DNA helicase RecQ pro-

tein on chromosome 15q26, which unwinds a variety of DNA 

substrates including Holliday junctions, and is involved in 

several pathways contributing to the maintenance of genome 

stability40. BLM p.Asp1116fs was presumably the main genetic 

cause of BC in this family. One of the healthy family members 

was also detected with BLM p.Asp1116fs at the age of 37 years. 

Because she might have a high risk of BC, we suggested that 

she have regular physical examinations for the possible early 

prevention of BC.

In Figure 6D, we collected 5 samples from this family. 

BC patient II.1 was detected with BRCA1 p.Glu1836fs and 

BRIP1 p.Lys222Term. These 2 mutations are likely pathogenic 

according to the ACMG guidelines. Her mother had ovar-

ian cancer. Because she had already died, her sample could 

not be collected. One healthy family member was detected 

with p.Glu1836fs and BRIP1 p.Lys222Term and another with 

Table 5  Clinicopathological characteristics among 83 patients with different mutation status

Features   n   BRCA+  
(n = 20, %)

  non-BRCA+  
(n = 25, %)

  Negative  
(n = 38, %)

  P1-value*   P2-value*

Age of onset    

  Mean ± size     45.7 ± 9.6   53.8 ± 10.7   51.9 ± 8.7   0.015a   0.432a

  ≤ 45   23   11 (55.0%)   3 (12.0%)   9 (23.7%)   0.023   0.334 

  > 45   60   9 (45.0%)   22 (88.0%)   29 (76.3%)    

Axillary lymph node metastasis   0.005   1.000 

  Yes   33   14 (70.0%)   8 (32.0%)   11 (28.9%)    

  No   50   6 (30.0%)   17 (68.0%)   27 (71.1%)    

TNM stage   0.011b   0.273b

  0 + I   37   4 (20.0%)   10 (40.0%)   23 (60.5%)    

  II   27   9 (45.0%)   10 (40.0%)   8 (21.1%)    

  III   19   7 (35.0%)   5 (20.0%)   7 (18.4%)    

Tumor grade   0.223b   0.986b

  I   14   1 (5.0%)   5 (20.0%)   8 (21.1%)    

  II   54   16 (80.0%)   15 (60.0%)   23 (60.5%)    

  III   15   3 (15.0%)   5 (20.0%)   7 (18.4%)    

Luminal type   0.002b   0.293b

  Luminal A   4   2 (10.0%)   4 (16.0%)   14 (36.8%)    

  Luminal B   21   8 (40.0%)   15 (60.0%)   17 (44.7%)    

  HER2 overexpressing   11   2 (10.0%)   5 (20.0%)   4 (10.5%)    

  Triple negative   12   8 (40.0%)   1 (4.0%)   3 (7.9%)    

*Fisher’s precise test. aStudent’s t-test; brank-sum test; P1-value: BRCA+ group vs. the negative group; P2-value: non-BRCA+ group vs. the 
negative group.
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BRCA1 p.Glu1836fs. BRCA1 p.Glu1836fs has been reported 

in a Chinese BC patient41 and recorded as pathogenic in the 

LOVD database (https://brcaexchange.org/variant/451386). 

It was indicated that mutation of BRCA1 p.Glu1836fs can 

lead to the occurrence of BC without the mutation of BRIP1 

p.Lys222Term. The protein encoded by BRIP1 interacts with 

the BRCT repeats of BRCA1 protein. The bound complex is 

important in the normal double-strand break repair function 

of BRCA142. In this family, healthy carriers of likely pathogenic 

mutations were also recommended to seek close follow-up 

and early prevention of BC.

Annual breast magnetic resonance imaging or mammog-

raphy screening is recommended for younger pathogenic 

mutation carriers. For healthy women with BRCA pathogenic 

mutations who have no fertility requirements, chemopreven-

tion or risk-reduction surgery is recommended to reduce the 

risk of BC occurrence43.

Discussion

We performed NGS for 116 subjects from 27 familial BC fami-

lies based on the Ion Torrent S5 platform. The average sequenc-

ing depth was more than 800×. The percentage of hereditary 

BC in families caused by mutations in known genetic predis-

position genes was approximately 48.1%, which was higher 

than that of other reports of familial BC44-46. This was proba-

bly because of the high sensitivity of amplicon-based NGS. In 

addition, the range of genes tested was increased in this study.

In this study, 43 genes were used to detect the hereditary 

risk of familial BC and other BC-related inherited syndromes. 

Most of them, such as AKT1, APC, ATR, ATM, BAP1, BARD1, 

BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, 

ERBB2, ERCC1, FANCI, MLH1, MRE11A, MSH2, MSH6, 

MUTYH, NBN, PALB2, PIK3CA, PMS2, PTEN, RAD50, 

RAD51C, RAD51D, RET, STK11, and TP53 have been reported 

to be associated with BC susceptibilities14,47-51. In addition, 

there are still some cancer predisposition genes reported 

in other BC-related inherited syndromes, such as CYP1B1, 

CCND1, CDK4, ERBB4, FANCD2, NOTCH1, SMAD4, XPC, 

and XRCC152-55, most of which belong to DDR-related genes.

BRCA1 and BRCA2 are 2 well-known high penetration 

predisposition genes in hereditary BC. Hereditary BC with 

BRCA mutations is more invasive than that without BRCA 

mutations9,22,56. In this study, comparative analyses of clin-

icopathological features also showed that patients with BRCA 

mutations had a younger age of onset, more advanced stage, 

and higher risk of axillary lymph node metastasis than those 

without mutations. The mutation prevalence of BRCA is dis-

tinct in different countries. In this study, BRCA-related fam-

ilies accounted for 25.9% of the 27 familial BC families. In a 

German study including 21,401 families with familial breast 

or ovarian cancers, the percentage of BRCA-related families 

was 24.0%44. According to another study57, which analyzed 

comparative families with ≥ 2 cases of breast and/or ovarian 

cancer among first- and second-degree relatives, the per-

centage of BRCA-related families was 46.2% in 78 Caucasian 

families, 68.9% in 29 Ashkenazi Jewish families, and 27.9% 

in 43 African families. The prevalence of BRCA1/2 mutations 

in this study was comparably higher than those reported in 

other Chinese familial BC cohorts. According to previous 

studies6,22,56, the prevalence of BRCA1/2 mutations was 

12.7%–19.1% in Chinese familial BC patients, which is dis-

tinct from the prevalence of BRCA1/2 mutations in this study. 

The disparity might be caused by differences in the study pop-

ulations and the methods of statistical analyses. In our study, 

we focused on the prevalence of BRCA1/2 mutations in each 

hereditary BC family, including both familial BC patients and 

their direct relatives. The prevalence of BRCA1/2 mutation 

was significantly higher compared to those studies including 

familial BC patients only. In addition, different geographical 

areas, ethnic groups, genetic testing methods, as well as lim-

ited sample sizes might have contributed to the disparity in 

the prevalence of BRCA1/2 mutations. We plan to enroll more 

hereditary BC families in the future to validate our findings.

We found that the mutation frequency of the BRCA2 gene 

was 1.09 times that of the BRCA1 gene in these BC families. 

In other reports based on a Chinese population, Zhang et al.46 

reported in 409 Chinese familial BC patients that the BRCA2 

mutation frequency was 1.7 times (6.6%/3.9%) higher than 

the BRCA1 mutation frequency. However, this result was 

inconsistent with other reported findings, which indicated 

that the mutation frequency of the BRCA1 gene was consid-

erably higher than that of the BRCA2 gene in European and 

American populations57,58. Another important difference is 

the penetrance of BRCA. It is well-documented that Western 

women who carry a pathogenic BRCA1 or BRCA2 mutation 

may have a 57%–65% or 45%–49% risk of developing BC 

by the age of 70 years59,60. Women of Ashkenazi Jewish and 

Icelandic descent who carry a BRCA1/2 mutation have a BC 

risk as high as 70% by the age of 70 years3,61,62. However, the 

breast cancer risk for BRCA1/2 mutation carriers is only 35%–

49% in women from Australia, the UK, and the Republic of 

https://brcaexchange.org/variant/451386


866� Dong et al. The germline mutation landscape in familial/hereditary BC families

Korea3,63,64. A study based on a Chinese population65 reported 

that the estimated cumulative risks of BC by the age of 70 

years were 37.9% for BRCA1 mutation carriers and 36.5% for 

BRCA2 mutation carriers. The differences might be predom-

inantly derived from the disparities in ethnic groups, which 

should be thoroughly investigated in a large-scale random 

case-control trial, especially in the Chinese population.

Of the 116 subjects in this study, 48.6% were found to exclu-

sively carry mutations in non-BRCA genes. Testing for non-

BRCA genes increased the detection of hereditary BC families 

by 22.2%. Similar results were also found in other reports. 

According to the Lin et  al.66 study, the mutation prevalence 

of BRCA1/2 in Han Chinese patients with early onset or with 

a significant family history was 15.0%, and there was a 7.5% 

mutation of non-BRCA genes in women who tested nega-

tive for BRCA1/2 mutations. In another study of German BC 

patients, extended testing beyond BRCA1/2 also identified a 

deleterious mutation in an additional 6% of patients67. Our 

previous findings also showed that the percentage of possible 

disease-causing mutation carriers among BC patients with 

a family history increased from 21.3% to 27.7% when the 

sequenced genes were increased from 6 to 2022. Therefore, 

broader panel testing including more genes would signifi-

cantly increase the detection percentage of mutation carriers 

and enhance the screening efficiency for hereditary BC.

We also found that non-BRCA-mutated BC was more likely 

to be accompanied by benign breast diseases. Benign breast 

disease is an important risk factor for the development of BC. 

It has been reported that women with severe atypical epithelial 

hyperplasia of the breasts were twice as likely to develop BC as 

women without such diseases68. The non-BRCA gene muta-

tion has a weaker pathogenic effect on carcinogenesis than 

the BRCA gene69,70. It is reasonable that BC gradually devel-

ops from benign breast disease upon stimulation from non-

BRCA gene mutations. This could also explain the trend to 

some degree that the average age of onset of BC patients with 

non-BRCA mutations was older than that of BRCA-mutated 

BC patients (55.84 ± 10.50 vs. 45.50 ± 9.24). These findings 

indicated that genetic variants of those non-BRCA genes also 

played an important role in the development of hereditary BC. 

These genetic variants should be further evaluated to predict 

the hereditary BC predisposition of high risk individuals.

In this study, 80.8% (21/26) of the mutated genes were DDR 

genes. Among these, 71.4% of DDR genes were involved in 

the HR pathway. In addition to BRCA1/2 genes, the mutated 

HR genes also included ATM, BAP1, BARD1, BRIP1, BLM, 

CHEK2, FANCD2, FANCI, MRE11A, NBN, PALB2, RAD50, 

and RAD51C. The interaction between BRCA1-BARD1, 

the BRCA2-PALB2 complex, and the recombinant enzyme 

RAD51 is an important aspect in the HR process71. The most 

important function of HR genes is to repair DNA double 

strand breaks (DSBs), which are the most serious type of DNA 

damage72,73. Breast cells with homologous recombination 

repair defects may not be able to initiate HR to repair DSBs. 

Abnormal repair may lead to chromosome loss, transposition, 

and other changes. Over time, under the influence of multi-

ple carcinogenic factors, the accumulation of errors leads to 

the development of BC74. The mutated MMR genes included 

MLH1, MSH2, MSH6, EPCAM, and PMS2, accounting for 

23.8% of the DDR genes. MMR genes prevent mutational 

events through correction of mismatched bases during DNA 

replication. Genetic defects in the DNA MMR system result 

in DNA replication errors, including base substitutions and 

insertion-deletion loops, known as microsatellite instability75. 

Germline mutations in MMR genes can give rise to Lynch syn-

drome (LS), an autosomal-dominant cancer predisposition 

syndrome that increases the risk for several forms of malig-

nancy, including colorectal (lifetime cancer risk, 70%–80%), 

endometrial (50%–60%), stomach cancer (13%–19%), and 

ovarian cancer (9%–14%). BC incidence has been found to 

be increased in patients with Lynch syndrome76. MMR genes 

belong to low penetrance genes associated with BC. Studies 

have suggested that there might be a functional overlap 

between the MMR and FA-BRCA pathways77,78. Furthermore, 

19.2% of the mutated genes were driver genes, including APC, 

CDH1, RET, STK11, and TP53. Driver gene mutations pro-

mote cancer progression and have major impacts on patient 

clinical outcomes. Further research on these genes in BC tissue 

may be warranted. Other studies have shown that the muta-

tion clonality of driver genes was prognostic and predictive for 

BC patients79,80.

Conclusions

In conclusion, this study primarily compared germline 

mutation profiling among 27 Chinese familial/hereditary BC 

families to comprehensively evaluate the genetic variants and 

clinical significance of 43 BC predisposition genes with dif-

ferent penetration rates in carcinogenesis. We found that in 

addition to BRCA1/2, genetic variants in non-BRCA genes, 

especially DDR genes, played significant roles in the develop-

ment of Chinese familial/hereditary BC, which implied the 
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indispensable significance of more extensive multiple-gene 

panel testing in genetic screening of hereditary BC fami-

lies. People with non-BRCA gene mutations are more likely 

to suffer from BC accompanied by benign breast diseases 

because non-BRCA gene mutations have a weaker pathogenic 

effect on carcinogenesis than BRCA genes. Therefore, more 

intensive mammary screening of non-BRCA mutation-bear-

ing individuals in hereditary BC families is recommended to 

increase the efficacy of early diagnosis and early treatment of 

BC. However, this study was limited by a small sample size 

from a single center. A larger multicenter study in a Chinese 

population should be conducted to validate the findings of 

this study.
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