ORIGINAL ARTICLE

The mutation landscape of multiple cancer predisposition genes in Chinese familial/hereditary breast cancer families

Li Dong¹*, Hailian Zhang^{2,3,4}*, Huan Zhang³, Yingnan Ye¹, Yanan Cheng¹, Lijuan Li³, Lijuan Wei³, Lei Han¹, Yandong Cao⁵, Shixia Li³, Xishan Hao^{1,3}, Juntian Liu^{2,3}, Jinpu Yu¹

¹Cancer Molecular Diagnostics Core; ²The Second Department of Breast Cancer; ³Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; ⁴Department of Oncology, Tianjin Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China; ⁵Analyses Technology Co. Ltd., Beijing 102600, China

ABSTRACT Objective: Approximately 5%–10% of breast cancer (BC) patients display familial traits that are genetically inherited among the members of a family. The purpose of this study was to profile the germline mutations in 43 genes with different penetration rates and their correlations with phenotypic traits in Chinese familial BC families. Methods: Ion Torrent S5[™]-based next generation sequencing was conducted on 116 subjects from 27 Chinese familial BC families. Results: Eighty-one germline mutations in 27 BC predisposition genes were identified in 82.8% (96/116) of the cases. Among these, 80.8% of the mutated genes were related to DNA damage repair. Fourteen possible disease-causing variants were identified in 13 of 27 BC families. Only 25.9% (7/27) of the BC families exhibited hereditary deficiency in *BRCA1/2* genes, while 22.2% of the BC

families exhibited defects in *non-BRCA* genes. In all, 41.7% (40/96) of the mutation carriers had *BRCA* mutations, 88.5% (85/96) had *non-BRCA* mutations, and 30.2% (29/96) had both *BRCA* and *non-BRCA* mutations. The BC patients with *BRCA* mutations had a higher risk of axillary lymph node metastases than those without mutations (P < 0.05). However, the BC patients with *non-BRCA* mutations frequently had a higher occurrence of benign breast diseases than those without mutations (P < 0.05).

Conclusions: In addition to *BRCA1/2*, genetic variants in *non-BRCA* DNA repair genes might play significant roles in the development of familial/hereditary BC. Therefore, profiling of multiple BC predisposition genes should be more valuable for screening potential pathogenic germline mutations in Chinese familial/hereditary BC.

KEYWORDS Familial breast cancer; predisposition genes; DNA damage repair genes; clinical features

Introduction

For Chinese women, breast cancer (BC) has become the most common malignant tumor and the fifth most common cause of cancer death. Approximately 5%–10% of BC patients display familial traits that are genetically inherited among the members of a family¹, and are significantly regulated by varied

Correspondence to: Jinpu Yu and Juntian Liu

- Received January 5, 2021; accepted April 7, 2021;
- published online September 28, 2021.

genetic factors. Among these genetic factors, driver genes directly stimulate BC carcinogenesis, while predisposition genes generally increase the hereditary genetic risk of BC and are the most important causes of familial clustering in BC. However, no study focusing on the germline genetic profiling of multiple BC predisposition genes has been reported in Chinese hereditary BC families. BRCA1 and BRCA2 are 2 wellknown high penetration BC predisposition genes in hereditary BC². BRCA1/2 mutations are characteristic of an increased lifetime risk for hereditary breast and ovarian cancer syndrome³. The cumulative risk of BC in women with BRCA mutations is as high as 80% by the age of 704,5. Clinical studies have shown that patients with BRCA mutations have a higher incidence of early-onset BC, bilateral BC, triple-negative BC, lymph node metastasis, and ipsilateral and contralateral BC recurrence⁶⁻⁹. Patients with BRCA-related BC are also at high risk for other cancers, such as pancreatic cancers, gastrointestinal

^{*}Li Dong and Hailian Zhang contributed equally to this work.

E-mail: jyu@tmu.edu.cn and ljt641024@163.com

ORCID ID: https://orcid.org/0000-0002-5982-2266

and https://orcid.org/0000-0002-7256-197X

Available at www.cancerbiomed.org

^{©2022} Cancer Biology & Medicine. Creative Commons

Attribution-NonCommercial 4.0 International License

malignancies, and melanomas¹⁰. Identification of germline mutations in *BRCA1/2* will not only help to identify high risk hereditary BC patients, but will also change screening, cancer risk management, and therapeutic strategies for their family members.

However, only 20%-40% of familial hereditary BC are caused by BRCA1/2 mutations¹¹. There is a large percentage of familial BC not associated with BRCA1/2 mutations. Currently, more BC predisposition genes have been identified, including genes with high penetration (TP53, CDH1, PTEN, and STK11), moderate penetration (PALB2, CHEK2, ATM, NBN, etc.), and low penetration (MLH1, MSH2, MSH6, PMS2, MEN1, etc.)¹²⁻¹⁴. Most BC predisposition genes are DNA damage repair (DDR)-related genes. DDR is an important part of the mammalian cell defense mechanism and includes 5 different but functionally interrelated pathways: base excision repair (BER), nucleotide excision repair, mismatch repair (MMR), homologous recombination repair (HR), and nonhomologous end joining¹⁵. DDR genes recover the DNA damage caused by various factors in vivo and in vitro, thus maximizing the stability of genetic material. The decline or lack of DDR ability can lead to genome instability and the occurrence of cancer¹⁶.

It has been reported that genomic instability caused by DDR gene deficiency is one of the most important reasons for the occurrence of BC¹⁷⁻¹⁹. Comprehensive screening of genetic variants of DDR genes would therefore help to precisely evaluate hereditary susceptibilities to BC in high risk families. Nextgeneration sequencing (NGS) has recently enabled massive parallel sequencing at low cost, which makes high-throughput gene testing commercially available for hereditary BC susceptibility assessment with high accuracy and high efficiency²⁰.

In this study, a total of 116 subjects from 27 Chinese hereditary BC families were enrolled, including both BC patients and their relatives. Ion Torrent $S5^{TM}$ -based NGS was conducted to detect multiple types of germline variants in 43 genes and compare their correlations with phenotypic traits. We found that 80.8% of the mutated genes were related to DDR. Only 25.9% of BC families exhibited hereditary deficiency in *BRCA1/2* genes, while 22.2% of the BC families exhibited defects in *non-BRCA* genes. The *BRCA* mutation patients had a higher occurrence of axillary lymph node metastases, while the *non-BRCA* mutation patients frequently had a higher occurrence of benign breast diseases than those without mutations. Genetic variants in *non-BRCA* DDR genes might therefore play significant roles in the development of Chinese familial/hereditary BC, and more extensive BC predisposition genes should be considered to evaluate hereditary BC susceptibilities in high risk families.

Materials and methods

Sample collection

A total of 27 hereditary BC families in China were enrolled and admitted to the Second Department of Breast Cancer of Tianjin Medical University Cancer Institute and Hospital (TMUCIH) from January 2017 to January 2019. The criterion for the collection of hereditary BC families was that the families should include ≥ 2 patients with breast and/or ovarian cancer among first- and second-degree relatives. This study was approved by the Ethics Committee of Tianjin Medical University (Approval No. Ek2018050). Written consent was obtained from all patients.

We selected at least 1 BC patient and 1 family member from each hereditary BC family. Finally, a total of 116 subjects from 27 families were collected, which included 45 patients (42 BC, 2 ovarian cancer, and 1 endometrial cancer) and 71 healthy family members. All subjects were Chinese. Among the 42 BC patients, 36 were initially treated at TMUCIH. Clinical characteristics for these 36 patients were collected, including the age of onset, unilateral/bilateral, primary tumor diameter size, regional lymph node status, clinical stage, tumor grade, histological type, luminal type, benign breast disease, and recurrence or metastasis. When the clinical characteristics of the 36 patients were analyzed, the data of the additional 47 BC patients with a family history of BC were also included. These 47 familial BC patients were all females and were also treated at TMUCIH. The age of the patients ranged from 26-76 years. The median age was 51 years and the average age was 50.1 years. Of them, 31.9% were younger than 45 years, 36.1% had lymph node metastasis, 17.0% were triple negative BC, 29.7% were in stage III, and 21.2% were histological grade III (details are shown in Supplementary Table S1). All 47 familial BC patients were sequenced by the same assay panel as the 27 pedigree samples.

This study was approved by the ethics committee of TMUCIH, and all included subjects signed informed consent forms.

NGS panel

In this study, the 43 genes selected were as follows: *AKT1*, *APC*, *ATM*, *ATR*, *BAP1*, *BARD1*, *BLM*, *BRAF*, *BRCA1*, *BRCA2*,

Table 1 Gono list

BRIP1, CCND1, CDH1, CDK4, CHEK2, CYP1B1, EGFR, EPCAM, ERBB2, ERBB4, ERCC1, FANCD2, FANCI, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NOTCH1, PALB2, PIK3CA, PMS2, PTEN, RAD50, RAD51C, RAD51D, RET, SMAD4, STK11, TP53, XPC, and XRCC1 (**Table 1**). Most of the 43 genes, such as APC, ATM, ATR, BAP1, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, CYP1B1, EPCAM, ERCC1, FANCD2, FANCI, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, XPC, and XRCC1 were DDR genes. The panel was composed of the whole coding sequence and splicing region (exonic boundaries ± 10 bp) of each gene. The target region size of the panel was 114 kb, and 99% of the target region was covered with 1,352 amplicons (Analyses, Beijing, China).

NGS and data processing

Genomic DNA was extracted from peripheral blood samples (2-5 mL) using a QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. The DNA library was constructed using GO prep kits (Analyses), in which every library from different samples was marked with varied indices. The prepared libraries were sequenced by Ion S5 (TMO, Shanghai, China). Qualified reads were aligned to the human reference genome hg19 by TMAP (v.5.10). The target regions were sequenced at a depth > 200 times. Germline mutations (SNV/small InDel < 22 bp) were detected using TVC software (v.5.10). Then, Ensembl Variant Effect Predictor software (http://grch37.ensembl. org/info/docs/tools/vep/index.html) was used for variant interpretation, such as HGVS notation, Population Allele Frequencies from GnomAD (http://gnomad.broadinstitute. org/), 1K Genomes Project (http://www.1000genomes.org), Clinical Significance States assigned by HGMD (http://www. hgmd.cf.ac.uk/), ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/), BRCA Exchange (https://brcaexchange.org/), and BIC (https://research.nhgri.nih.gov/bic/). In addition, all significant mutations, including pathogenic variants, likely pathogenic variants, and variants of uncertain significance (VUS) were confirmed by Sanger sequencing.

Variant classification

All mutations were classified according to the American College of Medical Genetics (ACMG) professional practice

GeneTranscriptExon numberTarget region bases (bp)1AKT1NM_0005163143,0082APCNM_000038158,6833ATMNM_000051629,7924ATRNM_001184478,1585BAP1NM_004656172,3616BARD1NM_000465112,4457BLMNM_000057214,4658BRAFNM_007294225,81310BRCA1NM_007294225,81311BRIP1NM_032043193,94112CCND1NM_05305654,23813CDH1NM_00007581,86514CDK4NM_001005735151,91215CHEK2NM_0010421,65317EGFRNM_005238289,90518EPCAMNM_0052352812,09720ERBB4NM_0052352812,09721FANCD2NM_00118115434,92223FANCINM_00249192,46224MLH1NM_002591162,81625MRE11ANM_002591163,69226MSH2NM_002485162,42627MSH6NM_002485162,42628MUTYHNM_002485162,42629NBNNM_002485162,42629NBNNM	Table 1 Gene list							
2 APC NM_000038 15 8,683 3 ATM NM_00051 62 9,792 4 ATR NM_001184 47 8,158 5 BAP1 NM_004556 17 2,361 6 BARD1 NM_000455 11 2,445 7 BLM NM_00057 21 4,465 8 BRAF NM_000794 22 5,813 10 BRCA2 NM_000550 26 10,518 11 BRIP1 NM_032043 19 3,941 12 CCND1 NM_0032056 5 4,238 13 CDH1 NM_000757 8 1,865 14 CDK4 NM_001065735 15 1,912 15 CHEK2 NM_0010757 8 1,865 16 CYP1B1 NM_00105235 28 9,905 17 EGFR NM_005235 28 12,097 18 EPCAM NM_005235		Gene	Transcript		Target region bases (bp)			
ATM NM_000051 62 9,792 4 ATR NM_001184 47 8,158 5 BAP1 NM_004656 17 2,361 6 BARD1 NM_000465 11 2,445 7 BLM NM_00037 21 4,465 8 BRAF NM_000333 18 6,459 9 BRCA1 NM_00059 26 10,518 10 BRPA NM_0032043 19 3,941 12 CCND1 NM_032043 16 2,810 13 BRIP1 NM_0010575 15 1,912 14 CDK4 NM_000104 2 1,653 15 CHEK2 NM_001281 10 3,379 16 CYP1B1 NM_005235 28 12,097 17 EGFR NM_005235 28 12,097 18 EPCAM NM_005235 28 12,097 19 ERSB2 NM_00118115 43 </td <td>1</td> <td>AKT1</td> <td>NM_005163</td> <td>14</td> <td>3,008</td>	1	AKT1	NM_005163	14	3,008			
4 ATR NM_001184 47 8,158 5 BAP1 NM_004656 17 2,361 6 BARD1 NM_000465 11 2,445 7 BLM NM_00037 21 4,465 8 BRAF NM_000333 18 6,459 9 BRCA1 NM_00059 26 10,518 10 BR/P1 NM_032043 19 3,941 12 CCND1 NM_032043 19 3,941 13 BRIP1 NM_003606 5 4,238 14 CK44 NM_000755 8 1,865 15 CHE2 NM_00105735 15 1,912 16 CYF1B1 NM_001281 28 9,005 18 EPCAM NM_002354 9 1,036 19 ERBB2 NM_0017813 10 3,379 21 FANCD2 NM_00178115 43 4,922 23 FANCD2 NM_001781<	2	APC	NM_000038	15	8,683			
5BAP1NM_004656172,3616BARD1NM_000465112,4457BLMNM_000057214,4658BRAFNM_004333186,4599BRCA1NM_007294225,81310BRCA2NM_000592610,51811BRIP1NM_032043193,94112CCND1NM_05305654,23813CDH1NM_0007581,86514CDK4NM_00007581,86515CHEK2NM_001005735151,91216CYP1B1NM_00235499,00518EPCAMNM_00235491,03619ERBB2NM_004448274,55720ERBB4NM_001983103,37921FANCD2NM_00118115434,92223FANCI2NM_002591162,96624MLH1NM_002591162,96627MSH6NM_002751162,96628MUT/HNM_00251162,96629NBNNM_002485162,42630NOTCH1NM_017617349,56831PALB2NM_002618219,25933PMS2NM_00535152,74034PIESNM_00535152,740	3	ATM	NM_000051	62	9,792			
6 BARD1 NM_000465 11 2,445 7 BLM NM_000057 21 4,465 8 BRAF NM_001333 18 6,459 9 BRCA1 NM_00059 26 10,518 10 BRCA2 NM_00059 26 10,518 11 BRP1 NM_032043 19 3,941 12 CCND1 NM_053056 5 4,238 13 CDH1 NM_000075 8 1,865 14 CDK4 NM_001005735 15 1,912 15 CHEK2 NM_00104 2 1,653 16 CYP1B1 NM_002354 9 9,005 18 EPCAM NM_002354 9 1,036 19 ERBB2 NM_0011815 4 4,527 20 ERC1 NM_00179 10 4,168 21 FANC1 NM_00249 9 2,318 22 FANC1 NM_000251	4	ATR	NM_001184	47	8,158			
7 BLM NM_000057 21 4,465 8 BRAF NM_004333 18 6,459 9 BRCA1 NM_007294 22 5,813 10 BRCA2 NM_00059 26 10,518 11 BRIP1 NM_032043 19 3,941 12 CCND1 NM_053056 5 4,238 13 CDH1 NM_000075 8 1,865 14 CDK4 NM_000075 8 1,865 15 CHEK2 NM_001005735 15 1,912 16 CYP1B1 NM_002354 9 9,055 17 EGFR NM_002451 28 12,097 20 ERBB2 NM_0018115 3379 3,379 21 EGC1 NM_0018115 4,168 4,922 23 FANC12 NM_00179 10 2,462 24 MLH1 NM_002591 16 2,966 27 MSH6 NM_0	5	BAP1	NM_004656	17	2,361			
8BRAFNM_004333186,4599BRCA1NM_007294225,81310BRCA2NM_000592610,51811BRIP1NM_032043193,94112CCND1NM_05305654,23813CDH1NM_004360162,81014CDK4NM_00105735151,91215CHEK2NM_001005735151,91216CYP1B1NM_0010421,65317EGFRNM_00235491,03618EPCAMNM_002354282,09710ERBB2NM_001983103,37921ERC1NM_001983103,37922FANCD2NM_00118115434,92223FANC1NM_00249192,46224MLH1NM_005591162,96625MRE11ANM_00179104,18426MSH2NM_00179161,86127MSH6NM_002485162,42628MUTYHNM_012222161,86129NBNNM_002485162,42630NOTCH1NM_024675133,69231PALB2NM_005535152,74034PMS2NM_00535152,74034PMS2NM_00535152,740	6	BARD1	NM_000465	11	2,445			
9 BRCA1 NM_007294 22 5,813 10 BRCA2 NM_000059 26 10,518 11 BRIP1 NM_032043 19 3,941 12 CCND1 NM_053056 5 4,238 13 CDH1 NM_004360 16 2,810 14 CDK4 NM_00005735 15 1,912 16 CYP1B1 NM_001005735 15 1,912 16 CYP1B1 NM_0002354 9 9,05 17 EGFR NM_001354 9 1,036 19 ERBB2 NM_001448 27 4,557 20 ERBB4 NM_001983 10 3,379 21 ERCC1 NM_0018115 43 4,922 23 FANCI NM_000249 19 2,318 24 MLH1 NM_000251 16 1,861 25 MRE11A NM_000249 19 2,318 26 MSH6 NM_00017	7	BLM	NM_000057	21	4,465			
10 BRCA2 NM_000059 26 10,518 11 BRIP1 NM_032043 19 3,941 12 CCND1 NM_053056 5 4,238 13 CDH1 NM_0004360 16 2,810 14 CDK4 NM_000075 8 1,865 15 CHEK2 NM_00105735 15 1,912 16 CYP1B1 NM_0002354 9 1,036 17 EGFR NM_002354 9 1,036 19 ERBB2 NM_001983 10 3,379 21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_00118115 43 4,922 23 FANC1 NM_00249 19 2,462 24 MLH1 NM_002551 16 2,861 25 MRE11A NM_002485 16 1,861 26 MSH2 NM_002485 16 2,462 27 MSH6 N	8	BRAF	NM_004333	18	6,459			
11BRIP1NM_032043193,94112CCND1NM_05305654,23813CDH1NM_004360162,81014CDK4NM_00007581,86515CHEK2NM_001005735151,91216CYP1B1NM_0010421,65317EGFRNM_005228289,90518EPCAMNM_00235491,03619ERBB2NM_004448274,55720ERBB4NM_0052352812,09721ERCC1NM_001983103,37922FANCD2NM_001018115434,92223FANCINM_00249192,46224MLH1NM_002591162,96627MSH6NM_000251161,86128MUTYHNM_002485162,42630NOTCHINM_002485162,42631PALB2NM_006218219,25933PMS2NM_000535152,74034PIS2NM_000535152,74034PIS2NM_000535152,74034PIS2NM_000535152,74034PIS2NM_000535152,74034PIS2NM_000535152,74034PIS2NM_000535152,74034PIS2NM_000535152,74034PIS2NM_000535 <td>9</td> <td>BRCA1</td> <td>NM_007294</td> <td>22</td> <td>5,813</td>	9	BRCA1	NM_007294	22	5,813			
12 CCND1 NM_053056 5 4,238 13 CDH1 NM_004360 16 2,810 14 CDK4 NM_000075 8 1,865 15 CHEK2 NM_001005735 15 1,912 16 CYP1B1 NM_000104 2 1,653 17 EGFR NM_005228 28 9,905 18 EPCAM NM_002354 9 1,036 19 ERBB2 NM_004448 27 4,557 20 ERBB4 NM_005235 28 12,097 21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_00118115 43 4,922 23 FANCI NM_002499 19 2,318 24 MLH1 NM_002551 16 2,966 27 MSH6 NM_0017617 16 2,426 28 MUTYH NM_002485 16 2,426 30 NOTCH1 <td< td=""><td>10</td><td>BRCA2</td><td>NM_000059</td><td>26</td><td>10,518</td></td<>	10	BRCA2	NM_000059	26	10,518			
13 CDH1 NM_004360 16 2,810 14 CDK4 NM_000075 8 1,865 15 CHEK2 NM_001005735 15 1,912 16 CYP1B1 NM_00104 2 1,653 17 EGFR NM_005228 28 9,905 18 EPCAM NM_002354 9 1,036 19 ERBB2 NM_004448 27 4,557 20 ERBB4 NM_005235 28 12,097 21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_01018115 43 4,922 23 FANCI NM_000249 19 2,462 24 MLH1 NM_000251 16 2,966 27 MSH6 NM_0017617 16 2,966 28 MUTYH NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 <td< td=""><td>11</td><td>BRIP1</td><td>NM_032043</td><td>19</td><td>3,941</td></td<>	11	BRIP1	NM_032043	19	3,941			
14 CDK4 NM_000075 8 1,865 15 CHEK2 NM_001005735 15 1,912 16 CYP1B1 NM_000104 2 1,653 17 EGFR NM_005228 28 9,905 18 EPCAM NM_002354 9 1,036 19 ERBB2 NM_004448 27 4,557 20 ERBB4 NM_005235 28 12,097 21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_001018115 43 4,922 23 FANCI NM_00249 19 2,462 24 MLH1 NM_005591 19 2,318 25 MRE11A NM_002179 10 4,184 28 MUTYH NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_006218 21 9,259 32 PIK3CA	12	CCND1	NM_053056	5	4,238			
15 CHEK2 NM_001005735 15 1,912 16 CYP1B1 NM_000104 2 1,653 17 EGFR NM_005228 28 9,905 18 EPCAM NM_002354 9 1,036 19 ERBB2 NM_004448 27 4,557 20 ERBB4 NM_005235 28 12,097 21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_001018115 43 4,922 23 FANCI NM_000249 19 2,462 24 MLH1 NM_0005591 16 2,966 25 MRE11A NM_000251 16 2,966 26 MSH2 NM_0017617 14 1,861 27 MSH6 NM_002485 16 1,861 28 MUTYH NM_0024675 13 3,692 31 PALB2 NM_006218 21 9,259 33 PMS2	13	CDH1	NM_004360	16	2,810			
16 CYP1B1 NM_000104 2 1,653 17 EGFR NM_005228 28 9,905 18 EPCAM NM_002354 9 1,036 19 ERBB2 NM_004448 27 4,557 20 ERBB4 NM_005235 28 12,097 21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_001018115 43 4,922 23 FANCI NM_000249 19 2,462 24 MLH1 NM_0005591 19 2,318 25 MRE11A NM_000249 19 2,318 26 MSH2 NM_000179 16 1,861 27 MSH6 NM_002485 16 2,426 30 NOTCH1 NM_002485 16 2,426 31 PALB2 NM_0024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2	14	CDK4	NM_000075	8	1,865			
17 EGFR NM_005228 28 9,905 18 EPCAM NM_002354 9 1,036 19 ERBB2 NM_004448 27 4,557 20 ERBB4 NM_005235 28 12,097 21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_001018115 43 4,922 23 FANCI NM_00249 19 2,462 24 MLH1 NM_0025591 16 2,966 25 MRE11A NM_002551 16 2,966 26 MSH2 NM_000249 19 2,318 26 MSH2 NM_000251 16 2,966 27 MSH6 NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_006218 21 9,259 33 PMS2 NM_000314 9 1,303	15	CHEK2	NM_001005735	15	1,912			
18 EPCAM NM_002354 9 1,036 19 ERBB2 NM_004448 27 4,557 20 ERBB4 NM_005235 28 12,097 21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_001018115 43 4,922 23 FANCI NM_00249 19 2,462 24 MLH1 NM_005591 19 2,318 25 MRE11A NM_000219 10 4,184 28 MUTYH NM_002485 16 2,462 29 NBN NM_012222 16 1,861 29 NBN NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_006218 21 9,259 33 PMS2 NM_000314 9 1,303	16	CYP1B1	NM_000104	2	1,653			
19 ERBB2 NM_004448 27 4,557 20 ERBB4 NM_005235 28 12,097 21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_001018115 43 4,922 23 FANCI NM_018193 36 4,168 24 MLH1 NM_000249 19 2,462 25 MRE11A NM_0005591 19 2,318 26 MSH2 NM_000179 10 4,184 28 MUTYH NM_012222 16 1,861 29 NBN NM_017617 34 9,568 31 PALB2 NM_006218 21 9,259 33 PMS2 NM_000535 15 2,740 34 PTEN NM_00314 9 1,303	17	EGFR	NM_005228	28	9,905			
20ERBB4NM_0052352812,09721ERCC1NM_001983103,37922FANCD2NM_001018115434,92223FANCINM_018193364,16824MLH1NM_000249192,46225MRE11ANM_005591192,31826MSH2NM_000251162,96627MSH6NM_000179104,18428MUTYHNM_012222161,86129NBNNM_002485162,42630NOTCH1NM_017617349,56831PALB2NM_006218219,25933PMS2NM_00031491,303	18	EPCAM	NM_002354	9	1,036			
21 ERCC1 NM_001983 10 3,379 22 FANCD2 NM_001018115 43 4,922 23 FANCI NM_018193 36 4,168 24 MLH1 NM_000249 19 2,462 25 MRE11A NM_005591 19 2,318 26 MSH2 NM_000251 16 2,966 27 MSH6 NM_00179 10 4,184 28 MUTYH NM_012222 16 1,861 29 NBN NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_0024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000314 9 1,303	19	ERBB2	NM_004448	27	4,557			
22 FANCD2 NM_001018115 43 4,922 23 FANCI NM_018193 36 4,168 24 MLH1 NM_000249 19 2,462 25 MRE11A NM_005591 19 2,318 26 MSH2 NM_000251 16 2,966 27 MSH6 NM_000179 10 4,184 28 MUTYH NM_012222 16 1,861 29 NBN NM_017617 34 9,568 31 PALB2 NM_006218 21 9,259 33 PMS2 NM_000314 9 1,303	20	ERBB4	NM_005235	28	12,097			
23 FANCI NM_018193 36 4,168 24 MLH1 NM_000249 19 2,462 25 MRE11A NM_005591 19 2,318 26 MSH2 NM_000251 16 2,966 27 MSH6 NM_000179 10 4,184 28 MUTYH NM_012222 16 1,861 29 NBN NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_0024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000314 9 1,303	21	ERCC1	NM_001983	10	3,379			
24 MLH1 NM_000249 19 2,462 25 MRE11A NM_005591 19 2,318 26 MSH2 NM_000251 16 2,966 27 MSH6 NM_000179 10 4,184 28 MUTYH NM_012222 16 1,861 29 NBN NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_0024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000314 9 1,303	22	FANCD2	NM_001018115	43	4,922			
25 MRE11A NM_005591 19 2,318 26 MSH2 NM_000251 16 2,966 27 MSH6 NM_000179 10 4,184 28 MUTYH NM_012222 16 1,861 29 NBN NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_0024875 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000314 9 1,303	23	FANCI	NM_018193	36	4,168			
26 MSH2 NM_000251 16 2,966 27 MSH6 NM_000179 10 4,184 28 MUTYH NM_012222 16 1,861 29 NBN NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000314 9 1,303	24	MLH1	NM_000249	19	2,462			
27 MSH6 NM_000179 10 4,184 28 MUTYH NM_012222 16 1,861 29 NBN NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000535 15 2,740 34 PTEN NM_000314 9 1,303	25	MRE11A	NM_005591	19	2,318			
28 MUTYH NM_012222 16 1,861 29 NBN NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_0024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000314 9 1,303	26	MSH2	NM_000251	16	2,966			
29 NBN NM_002485 16 2,426 30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000535 15 2,740 34 PTEN NM_000314 9 1,303	27	MSH6	NM_000179	10	4,184			
30 NOTCH1 NM_017617 34 9,568 31 PALB2 NM_024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000535 15 2,740 34 PTEN NM_000314 9 1,303	28	MUTYH	NM_012222	16	1,861			
31 PALB2 NM_024675 13 3,692 32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000535 15 2,740 34 PTEN NM_000314 9 1,303	29	NBN	NM_002485	16	2,426			
32 PIK3CA NM_006218 21 9,259 33 PMS2 NM_000535 15 2,740 34 PTEN NM_000314 9 1,303	30	NOTCH1	NM_017617	34	9,568			
33 PMS2 NM_000535 15 2,740 34 PTEN NM_000314 9 1,303	31	PALB2	NM_024675	13	3,692			
34 <i>PTEN</i> NM_000314 9 1,303	32	<i>РІКЗСА</i>	NM_006218	21	9,259			
	33	PMS2	NM_000535	15	2,740			
35 RAD50 NM_005732 25 4,190	34	PTEN	NM_000314	9	1,303			
	35	RAD50	NM_005732	25	4,190			

			Tabl	Table 1 Continued			
	Gene	Transcript	Exon number	Target region bases (bp)			
36	RAD51C	NM_058216	9	1,226			
37	RAD51D	NM_002878	10	1,088			
38	RET	NM_020975	20	3,578			
39	SMAD4	NM_005359	11	1,770			
40	STK11	NM_000455	9	1,393			
41	TP53	NM_000546	10	1,283			
42	XPC	NM_004628	16	3,650			
43	XRCC1	NM_006297	17	2,052			

and guidelines²¹. Following the principles of the ACMG, all germline mutations were classified as pathogenic (P), likely pathogenic (LP), uncertain significance (US), likely benign (LB), or benign (B). Each pathogenic criterion was weighted as very strong (PVS1: nonsense, frameshift, canonical \pm 1 or 2 splice sites, initiation codon), strong (PS1–4); moderate (PM1–6), or supporting (PP1–5), and each benign criterion was weighted as stand-alone (BA1), strong (BS1–4), or supporting (BP1–6). The other mutations were classified as variants of uncertain significance (VUS).

Statistical analysis

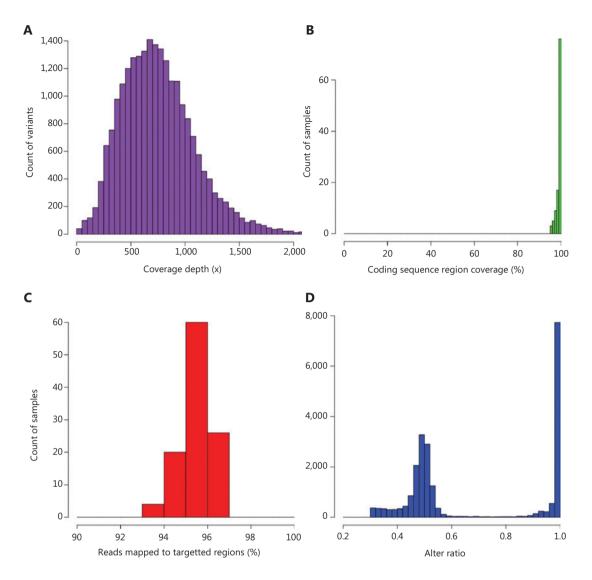
The correlations between genetic variants and clinicopathological characteristics of patients were determined using the Student's *t*-test, the chi-square test, or Fisher's precise test. *P*-values less than 0.05 were considered to be statistically significant.

Results

Quality assessment of sequencing data

More than 26.7 GB of sequencing data were generated from 116 clinical samples. An average of 1.0 million reads for each sample was obtained. The depth of each variant was mainly 200–1,500×, and the average depth was more than 800× (**Figure 1A**). On average, 98.9% of all reads could be mapped back to the hg19 genome (**Figure 1B**) and 96.0% of all reads were mapped to targeted regions (**Figure 1C**). After variant calling, the allele fraction plots of all the variants demonstrated a clear bimodal distribution pattern peaking at 0.5 and 1.0,

which indicated that a typical distribution pattern of germline mutations was achieved (**Figure 1D**).


Identification of germline mutations

We detected 37,009 variants among 43 genes in 116 subjects from 27 families. After variant filtering (Figure 2), 81 germline mutations in 26 genes were identified in 96 subjects (Figure 3A; more details are available in Supporting Information Supplementary Table S2). The genes with ≥ 5 mutations were BRCA1, BRCA2, ATM, BLM, BRIP1, MSH6, and RAD50. Of the mutated genes, 80.8% (21/26) were DDR genes (ATM, BRCA1, BRCA2, BAP1, BARD1, BRIP1, BLM, CHEK2, FANCD2, FANCI, MRE11A, NBN, PALB2, RAD50, RAD51C, MLH1, MSH2, MSH6, EPCAM, PMS2, and MUTYH), and 19.2% (5/26) were driver genes (APC, CDH1, RET, STK11, and TP53). Among these DDR genes, 71.4% (15/21) were involved in HR, 23.8% (5/21) were involved in MMR, and 4.8% (1/21) were involved in BER. Of the 81 mutations, 67.9% were found in HR genes, 19.8% in MMR genes, 2.5% in BER genes, and 9.9% in driver genes (Figure 3B). More than 90% of the mutations occurred in DDR genes. Of these mutations, 10 (12.3%) were pathogenic or likely pathogenic (P/LP), and 71 (88.7%) were VUS. There were 7 P/LP mutations detected in BRCA1/2 genes and 3 P/LP mutations detected in non-BRCA genes. Four VUS were considered high risk based on software predictions and literature reports. In this article, P/LP mutations and high risk VUS were defined as possible disease-causing mutations²².

The correlation between genetic mutations and hereditary BC families

Among the 27 familial BC families, 48.1% (13/27) had possible disease-causing mutations in known BC predisposition genes, including *BRCA1*, *BRCA2*, *BLM*, *BRIP1*, *MSH2*, *MSH6*, *RAD51C*, and *RET*. The cause of hereditary BC in 51.9% (14/27) of the families was unknown. Hereditary BC in 25.9% (7/27) of the families was associated with *BRCA1/2* genes, while that in 22.2% (6/27) was associated with *non-BRCA* genes (**Table 2**). This showed that testing the *non-BRCA* genes increased the detection of hereditary BC by 22.2%.

Of these 27 families, 11 (40.7%) were characterized by BC only, 4 (14.8%) by both BC and ovarian cancer, and 12 (44.5%) by other cancer types besides BC (and ovarian cancer), such

Figure 1 Quality assessment of the sequencing data. (A) The sequencing depth of variants. (B) Percentage of all mapped reads for samples. (C) Percentage of reads mapped to target regions for samples. (D) The distribution of allele fractions across all identified variants.

as lung cancer, stomach cancer, esophageal cancer, colorectal cancer, and endometrial cancer (**Table 3**). Of the families with BC only, 27.3% (3/11) were related with *BRCA* genes and 18.2% (2/11) were related with *non-BRCA* genes. However, of the families with cancer types other than BC (and ovarian cancer), more were related with *non-BRCA* genes than *BRCA* genes (33.3% *vs.* 16.7%) (**Table 2**).

The distribution of possible disease-causing mutations in *BRCA1/2* genes

Among the mutation carriers, 24.0% (23/96) carried possible disease-causing mutations in *BRCA* genes. Of them, 47.8%

(11/23) were carriers of the *BRCA1* gene, and 52.2% (12/23) were carriers of the *BRCA2* gene. Therefore, mutation carriers of the *BRCA2* gene occurred 1.09 times more frequently than those of the *BRCA1* gene in these 27 Chinese hereditary BC families.

Four possible disease-causing mutations in the *BRCA1* gene were found in 27 familial BC families. There were 3 mutations located in exon 10 and 1 located in exon 23 (**Figure 4A**). *BRCA1* p.Glu1836fs was located in the BRCT2 domain of BRCA1. The BRCT domain is found in a large variety of proteins involved in DNA repair, recombination, and cell cycle control, and functions as a protein-protein interaction module^{23,24}. *BRCA1* p.Thr327fs was located upstream of the serine-rich

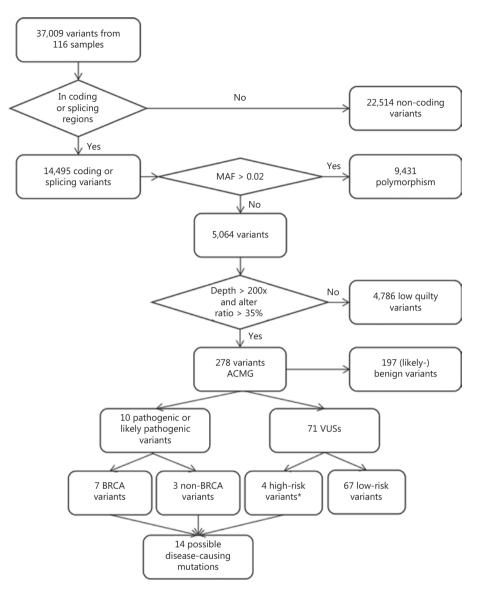
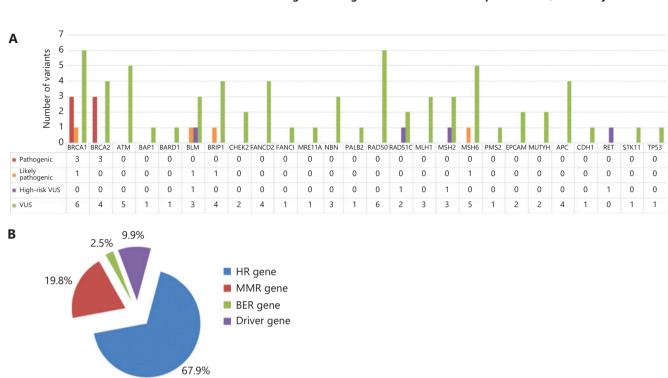



Figure 2 Filtering steps of mutations. *Predicted as damaging by multiple software programs or reported in cancer patients.

domain associated with BRCT and found in a family with 2 BC patients, 1 of whom was diagnosed with BC at 32 years of age and died of BC. The healthy member with this mutation is taking tamoxifen orally to prevent BC under the guidance of her physician. *BRCA1* p.Asp1362fs and p.Leu1306fs were not located in the functional domain of BRCA1. Both were found in a family with BC and ovarian cancer. Four possible disease-causing mutations in the *BRCA1* gene previously found in 146 sporadic BC patients were located in exons 4, 10, 23, and all in the functional domain²². There was no significant difference in the location of these mutations in the *BRCA1* gene between pedigrees and sporadic patients. Of the 8 possible disease-causing mutations in the *BRCA1* gene, 7 (87.5%) were frameshift mutations, and 5 (62.5%) were located in the functional domain of the *BRCA1* gene, especially BRCT2 (**Figure 4A**). The patients with *BRCA1* p.Ile1824fs and p.Leu1306fs were diagnosed with BC at the age of \leq 45 years and had lymph node metastases. The tumor-node-metastasis (TNM) stage of *BRCA1* p.Ile1824fs mutation carriers was stage III. The patient with *BRCA1* p.Leu481fs was diagnosed with BC at the age of > 45 years but had lymph node metastasis and was in stage III. The *BRCA1* p.Asp1362fs mutation carriers were \geq 45 years of age, in stage I, and had no lymph node metastasis.

Dong et al. The germline mutation landscape in familial/hereditary BC families

Rate of mutation in different gene types

Figure 3 Distribution of the mutated genes. (A) Number of mutations in the mutated genes. (B) Percentage of mutations in different gene types. HR: homologous recombination repair, MMR: mismatch repair, BER: base excision repair.

Types of cancer within a family	No. of families	BRCA-related families	Non-BRCA-related families	Families of unknown reason
Breast cancer	11	3 (27.3%)	2 (18.2%)	6 (54.5%)
Breast cancer + ovarian cancer	4	2 (50.0%)	0 (0.0%)	2 (50.0%)
Breast cancer (+ ovarian cancer) other cancers	12	2 (16.7%)	4 (33.3%)	6 (50.0%)
Total	27	7 (25.9%)	6 (22.2%)	14 (51.9%)

Table 2 The correlation between mutation genes and cancer types of hereditary breast cancer families

Three possible disease-causing mutations in the *BRCA2* gene were found in 27 familial BC families and located in exons 3, 15, and 23 (**Figure 4B**). *BRCA2* p.Arg2520Term was located in the helical domain of BRCA2. The region interacts with the DSS1 (deleted in split hand/split foot) protein in mammalian cells, which is required for normal cell growth²⁵. *BRCA2* p.Glu97Term and p.Ser2984Term were not located in the functional domain of BRCA2. *BRCA2* p.Glu97Term was found in a family with 2 BC patients. The onset age of the patients was over 50 years. *BRCA2* p.Ser2984Term was found in a family with 3 BC patients. Among them, 1 patient developed BC at the age of 35 years, and 1 patient experienced contralateral BC after she was diagnosed with BC at 42 years of age. Six

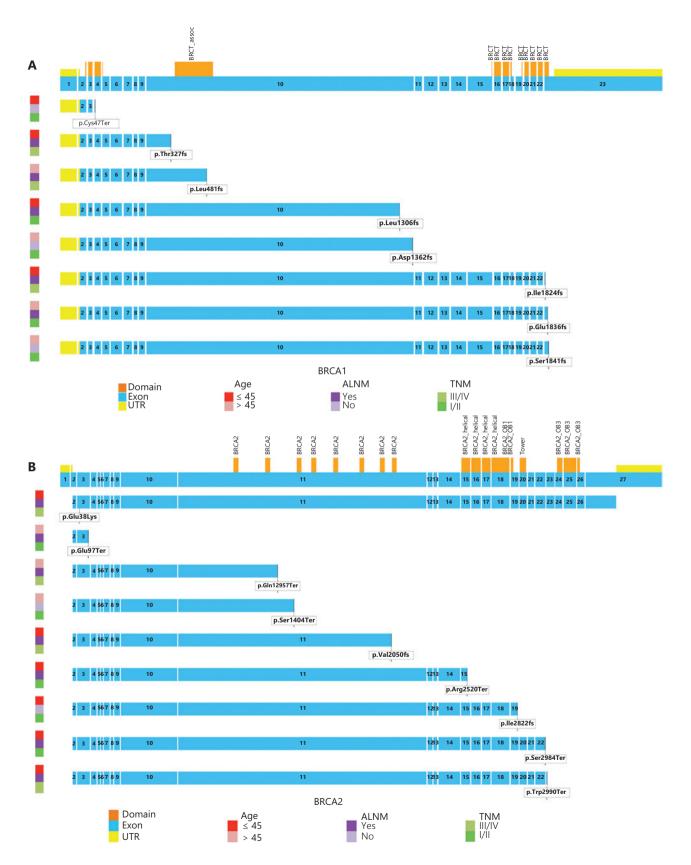
possible disease-causing mutations in the *BRCA2* gene found previously in 146 sporadic BC patients were located in exons 3, 11, 19, and 23. The distribution of possible disease-causing mutations found in sporadic patients may be more dispersed in the *BRCA2* gene²². Of the 9 possible disease-causing mutations of the BRCA2 gene, 6 (66.7%) were nonsense mutations, and mutations within exon 11 of *BRCA2* were the most common. We found that most of the mutations carried by patients with an onset age of \leq 45 years were located in the region of exon 15 or behind exon 15, and 80.0% of the patients with *BRCA2* possible disease-causing mutations had lymph node metastases. The patients with *BRCA2* p.Glu38Lys, p.Val2050fs, p.Arg2520Term, p.Ser2984Term, and p.Trp2990Term were

856

Cancer Biol Med Vol 19, No 6 June 2022

 Table 3
 The corresponding variants and the cancer types of each family

Family	The possible	Cancer types of a	
	corresponding variants	family	
F01	BRCA2 p.Glu97Term	Breast cancer	
F02	BLM p.Leu60Ile	Breast cancer	
F03	Uncertain	Breast cancer	
F04	Uncertain	Breast cancer	
F05	MSH2 p.Met688Ile	Breast cancer	
F06	Uncertain	Breast cancer	
		Hepatic carcinoma	
F07	Uncertain	Breast cancer	
F08	Uncertain	Breast cancer	
		Colorectal cancer	
F09	BRCA1 p.Glu1836fs	Breast cancer	
	BRIP1 p.Lys222Term	Ovarian cancer	
F10	BRCA2 p.Ser2984Term	Breast cancer	
		Esophageal cancer	
		Stomach cancer	
F11	Uncertain	Breast cancer	
		Ovarian cancer	
F12	Uncertain	Breast cancer,	
		Colorectal cancer	
F13	BRCA1 p.Leu1306fs	Breast cancer	
		Ovarian cancer	
		Colorectal cancer	
		Non-Hodgkin's	
		lymphoma	
		Esophageal cancer	
F14	Uncertain	Breast cancer	
		Ovarian cancer	
		Stomach cancer	
		Esophageal cancer	
		Cervical cancer	
		Thyroid cancer	
F15	Uncertain	Breast cancer	
F16	RAD51C p.Arg370Term	Breast cancer	
		Colorectal cancer	


Family	The possible corresponding variants	Cancer types of a family	
F17	Uncertain	Breast cancer	
F18	RET p.Glu632Lys	Breast cancer	
		Esophageal cancer	
F19	Uncertain	Breast cancer	
		Colorectal cancer	
		Lung cancer	
F20	Uncertain	Breast cancer	
		Ovarian cancer	
F22	BRCA1 p.Thr327fs	Breast cancer	
F23	BRCA2 p.Arg2520Term	Breast cancer	
F24	Uncertain	Breast cancer	
F25	Uncertain	Breast cancer	
		Colorectal cancer	
		Lung cancer	
F27	BLM p.Asp1116fs	Breast cancer	
		Stomach cancer	
		Lung cancer	
F28	BRCA1 p.Asp1362fs	Breast cancer	
		Ovarian cancer	
F29	MSH6 p.Arg841fs	Breast cancer	
		Endometrial cance	

diagnosed with BC at the age of \leq 45 years and had lymph node metastases. The TNM stage of *BRCA2* p.Glu38Lys, p.Val2050fs, and p.Trp2990Term mutation carriers was stage III. The *BRCA2* p.Ser1404Term mutation carriers were more than 45 years of age, were in stage I, and had no lymph node metastasis.

Possible disease-causing mutations in non-BRCA genes

Seven possible disease-causing mutations in *non-BRCA* genes were found in 27 familial BC families including 3 likely pathogenic mutations in the *BLM*, *BRIP1*, and *MSH6* genes, and 4 high risk VUSs in the *BLM*, *MSH2*, *RAD50C*, and *RET* genes. *BLM* p.Asp1116fs was not present in population databases

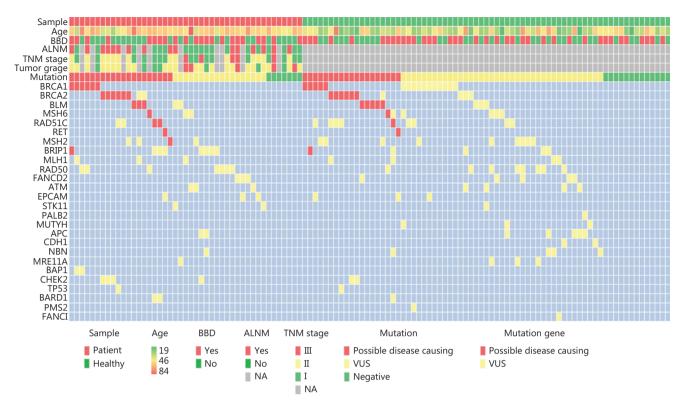
Continued

Figure 4 The distribution of *BRCA1/2* mutations in databases (HGMD, ClinVar, and Gnomad) and the disease-causing mutations in *BRCA1/2* genes and its effects on the BRCA protein. (A) The disease-causing mutations in the *BRCA1* gene. (B) The disease-causing mutations in the *BRCA2* gene.

such as ExAC, gnomAD, and 1,000 Genomes. This sequence change duplicated 1 nucleotide from exon 17 of the BLM mRNA (c.3349dupA), causing a frameshift variant at codon 1,116. Loss-of-function variants in the BLM gene are known to be the pathogenic mechanism for Bloom syndrome²⁶. The sequence change of BRIP1 p.Lys222Term replaced A with T from exon 7 of the BRIP1 mRNA (c.664A>T), causing a nonsense mutation at codon 222. It was also not present in population databases such as ExAC, gnomAD, and 1,000 Genomes and was recorded as pathogenic in the ClinVar database (SCV001187697). MSH6 p.Arg841fs was not present in population databases such as ExAC, gnomAD, and 1,000 Genomes. This sequence change deleted 1 nucleotide from exon 4 of the MSH6 mRNA (c.2522delG), causing frameshift variants at codon 841. Loss-of-function variants in the MSH6 gene are known to be the pathogenic mechanism for Lynch syndrome^{27,28}. According to the guidelines of the ACMG, these 3 mutations were classified as likely pathogenic.

Four VUS were considered high risk in this study, namely, BLM p.Leu60Ile, MSH2 p.Met688Ile, RAD50C p.Arg370Term, and RET p.Glu632Lys. BLM p.Leu60Ile, MSH2 p.Met688Ile, and RET p.Glu632Lys were predicted to be damaging by multiple software programs. BLM p.Leu60Ile was recorded as having conflicting interpretations of pathogenicity in the ClinVar database without clinical information. MSH2 p.Met688Ile was recorded with uncertain significance in the ClinVar database and reported in colorectal cancer, endometrial cancer, and Lynch syndrome²⁹⁻³². RET p.Glu632Lys was recorded with uncertain significance in the ClinVar database and reported in medullary thyroid carcinoma^{33,34}, Hirschsprung's disease³⁵, esophageal cancer³⁶, colorectal cancer³⁷ and sporadic pheochromocytoma³⁸. The nonsense mutation RAD50C p.Arg370Term exhibited the termination codon at 370 amino acids. It was not clear whether RAD50C p.Arg370Term would lead to nonsense mutation-mediated mRNA decay because it was located in the last exon. It was also recorded with uncertain significance in the ClinVar database. Overall, the studies have shown that deletion of the terminal 11 amino acid residues led to cell localization errors of the RAD51C protein³⁹.

Comutation of *BRCA* and non-*BRCA* genes in the BC pedigree


In this study, 82.76% (96/116) of all subjects were found to carry at least 1 gene mutation. Only 34.4% (33/96) of the mutation carriers had 1 mutation, while 65.6% (63/96) had

 \geq 2 mutations simultaneously. It is common that 1 person carries > 1 mutation, which was detected either in *BRCA1/2* genes or *non-BRCA* genes (**Figure 5**). Twenty-nine (25.0%, 29/116) subjects carried both *BRCA* and *non-BRCA* mutations, namely, 12 patients and 17 healthy members. These non-BRCA mutations occurred in the *ATM*, *BAP1*, *BLM*, *BRIP1*, *CHEK2*, *EPCAM*, *MLH1*, *MSH2*, *MSH6*, *MUTYH*, *PMS2*, *RAD50*, *RAD51C*, and *TP53* genes, 92.9% of which were related to DDR genes. Among the comutation samples of *BRCA* and *non-BRCA* genes, there were 19 carriers with possible disease-causing mutations in *BRCA* genes and 5 carriers with possible disease-causing mutations in *non-BRCA* genes. Two carriers had possible disease-causing mutations in both *BRCA* genes and *non-BRCA* genes. Both were from 1 family with 1 BC patient and 1 ovarian cancer patient.

The clinicopathological characteristics of hereditary BC patients with varied genetic mutations

According to the mutation status (P, LP, VUS), 36 BC patients were divided into 3 groups: the *BRCA* mutation group (n = 9), *non-BRCA* mutation group (n = 20), and nonmutation group (n = 7) (**Table 4**). The *BRCA* mutation group had a comparably higher risk of axillary lymph node metastasis than the nonmutation group (77.8% vs. 28.6%, P = 0.049). There was no significant difference in age, unilateral or bilateral, tumor size, TNM stage, tumor grade, histological type, luminal type, history of benign breast diseases, recurrence, or metastasis between the *BRCA* mutation group and the nonmutation group. In contrast, the *non-BRCA* mutation group had a significantly higher occurrence of benign breast disease before BC than the nonmutation group (70.0% vs. 14.3%, P = 0.021). However, there was no significant difference in other parameters.

The average onset age of BC in the *BRCA* mutation group was younger than that in the nonmutation group (44.8 \pm 9.5 vs. 51.3 \pm 6.8) (**Table 4**). However, the difference was not statistically significant. The small sample size might be an important factor. We therefore included an additional 47 BC patients with family histories of BC. Among these 83 familial BC patients, 20 had mutations in *BRCA1/2* genes, 25 had *non-BRCA* mutations, and 38 had no mutations. We compared the correlations between *BRCA* mutation status and the clinical and pathological features of patients (**Table 5**). The results showed that the average onset age in the *BRCA* mutation group was significantly younger than that in the nonmutation

Notes: BBD: Benign Breast Disease; ALNM: Axillary Lymph Node Metastasis; VUS: Varients of Uncertain Significance; NA: Not applicable or lack of information; Possible disease causing: Including pathogenic, likely pathogenic variants and high-risk VUS.

Figure 5 The distribution of mutations and clinical features across all subjects.

group (45.7 ± 9.6 vs. 51.9 ± 8.7, P = 0.015). Furthermore, the percentages of young BC (55.6% vs. 28.6%, P = 0.023), lymph node metastatic (70.0% vs. 28.9%, P = 0.005), clinical stage III (35.0% vs. 18.4%, P = 0.011), and triple-negative BC (40.0% vs. 7.9%, P = 0.002) were higher in the *BRCA* mutation group than in the nonmutation group. In contrast, no significant difference was detected when comparing the above clinicopathological features between the *non-BRCA* mutation group and the non-mutation group.

Classical pedigree analysis of hereditary BC families

Figure 6 shows several representative families enrolled in this study. As shown in **Figure 6A**, the family included 4 BC patients, of whom 1 died and 1 suffered bilateral BC. We collected samples from other patients. The sequencing results showed that all 3 patients carried *BRCA2* p.Arg2520Term and *CHEK2* p.Ala480Thr mutations. According to the ACMG classification, *CHEK2* p.Ala480Thr is a VUS and *BRCA2*

p.Arg2520Term is a pathogenic mutation. Therefore, the *BRCA2* p.Arg2520Term mutation may be the genetic pathogenic mutation of this family. The earliest onset age of BC patients in this family was 30 years of age, and the oldest was 40 years of age. The onset age of BC caused by the *BRCA2* p.Arg2520Term mutation may be earlier. In the fourth generation, 2 young family members, 26 and 22 years of age, respectively, also carried *BRCA2* p.Arg2520Term. Although they are still healthy, it was recommended that prevention and follow-up should be strengthened.

As shown in **Figure 6B**, the pathogenic mutation *BRCA1* Asp1362fs was found in 1 BC patient, 1 ovarian cancer patient, and 2 healthy family members. The BC patient was diagnosed at the age of 58 years, and the ovarian cancer patient was diagnosed at the age of 63 years. BC or ovarian cancer caused by *BRCA1* Asp1362fs may develop later. It is noteworthy that their mother was not a cancer patient, while 1 of their maternal aunts (their mother's sister) suffered from BC. Genetic testing for these patients was not available because they had died. In addition to BC and ovarian cancer, this family also

Cancer Biol Med Vol 19, No 6 June 2022

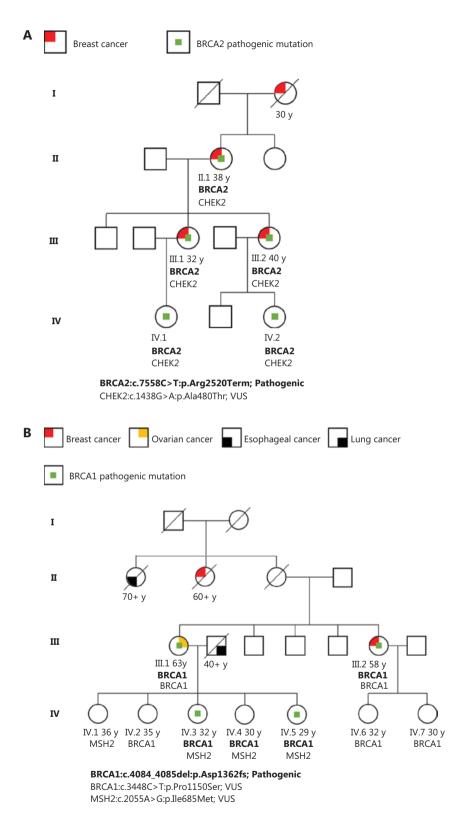
 Table 4
 Clinicopathological characteristics among 36 patients with different mutation status

Features	n	BRCA+ (<i>n</i> = 9, %)	non-BRCA+ (<i>n</i> = 20, %)	Negative (<i>n</i> = 7, %)	P1-value*	P2-value*
Age of onset (years)						
Mean ± size		44.8 ± 9.5	55.7 ± 10.3	51.3 ± 6.8	0.148ª	0.307 ^a
≤ 45	8	5 (55.6%)	1 (5.0%)	2 (28.6%)	0.358	0.156
> 45	28	4 (44.4%)	19 (95.0%)	5 (71.4%)		
Unilateral/bilateral					0.088	1.000
Unilateral	31	5 (55.6%)	19 (95.0%)	7 (100.0%)		
Bilateral	5	4 (44.4%)	1 (5.0%)	0 (0.0%)		
Tumor size					0.550	1.000
≤ 3 cm	28	8 (88.9%)	15 (75.0%)	5 (71.4%)		
> 3 cm	8	1 (11.1%)	5 (25.0%)	2 (28.6%)		
Axillary lymph node metastasis					0.049	1.000
Yes	16	7 (77.8%)	7 (35.0%)	2 (28.6%)		
No	20	2 (22.2%)	13 (65.0%)	5 (71.4%)		
TNM stage					0.263 ^b	0.435 ^b
0 + I	17	2 (22.2%)	10 (50.0%)	5 (71.4%)		
Π	14	7 (77.8%)	6 (30.0%)	1 (14.3%)		
III	5	0 (0.0%)	4 (20.0%)	1 (14.3%)		
Tumor grade					0.109 ^b	0.665 ^b
Ι	8	1 (11.1%)	5 (25.0%)	2 (28.6%)		
Ш	23	8 (88.9%)	12 (60.0%)	3 (42.9%)		
III	5	0 (0.0%)	3 (15.0%)	2 (28.6%)		
Histological type					1.000	0.633
Breast invasive ductal carcinoma	28	7 (77.8%)	16 (80.0%)	5 (71.4%)		
Other	8	2 (22.2%)	4 (20.0%)	2 (28.6%)		
Luminal type					0.086 ^b	0.160 ^b
Luminal A	4	0 (0.0%)	3 (15.0%)	2 (28.6%)		
Luminal B	21	6 (66.7%)	12 (60.0%)	5 (71.4%)		
HER2 overexpressing	4	0 (0.0%)	4 (20.0%)	0 (0.0%)		
Triple negative	4	3 (33.3%)	1 (5.0%)	0 (0.0%)		
With benign breast disease					0.060	0.024
Yes	21	6 (66.7%)	14 (70.0%)	1 (14.3%)		
No	15	3 (33.3%)	6 (30.0%)	6 (85.7%)		
Recurrence or metastasis					1.000	1.000
Yes	2	1 (11.1%)	1 (5.0%)	0 (0.0%)		
No	34	8 (88.9%)	19 (95.0%)	7 (100.0%)		

*Fisher's precise test; ^aStudent's *t*-test; ^brank-sum test; P1-value: BRCA+ group vs. the negative group; P2-value: non-BRCA+ group vs. the negative group.

Features	n	BRCA+ (n = 20, %)	non-BRCA+ (n = 25, %)	Negative (n = 38, %)	P1-value*	P2-value*
Age of onset						
Mean ± size		45.7 ± 9.6	53.8 ± 10.7	51.9 ± 8.7	0.015ª	0.432ª
≤ 45	23	11 (55.0%)	3 (12.0%)	9 (23.7%)	0.023	0.334
> 45	60	9 (45.0%)	22 (88.0%)	29 (76.3%)		
Axillary lymph node metastasis					0.005	1.000
Yes	33	14 (70.0%)	8 (32.0%)	11 (28.9%)		
No	50	6 (30.0%)	17 (68.0%)	27 (71.1%)		
TNM stage					0.011 ^b	0.273 ^b
0 + I	37	4 (20.0%)	10 (40.0%)	23 (60.5%)		
П	27	9 (45.0%)	10 (40.0%)	8 (21.1%)		
III	19	7 (35.0%)	5 (20.0%)	7 (18.4%)		
Tumor grade					0.223 ^b	0.986 ^b
Ι	14	1 (5.0%)	5 (20.0%)	8 (21.1%)		
П	54	16 (80.0%)	15 (60.0%)	23 (60.5%)		
III	15	3 (15.0%)	5 (20.0%)	7 (18.4%)		
Luminal type					0.002 ^b	0.293 ^b
Luminal A	4	2 (10.0%)	4 (16.0%)	14 (36.8%)		
Luminal B	21	8 (40.0%)	15 (60.0%)	17 (44.7%)		
HER2 overexpressing	11	2 (10.0%)	5 (20.0%)	4 (10.5%)		
Triple negative	12	8 (40.0%)	1 (4.0%)	3 (7.9%)		

 Table 5
 Clinicopathological characteristics among 83 patients with different mutation status


*Fisher's precise test. ^aStudent's *t*-test; ^brank-sum test; P1-value: BRCA+ group vs. the negative group; P2-value: non-BRCA+ group vs. the negative group.

had 1 esophageal cancer patient. However, there was no definite link between the occurrence of esophageal cancer and the *BRCA1* Asp1362fs mutation. The 2 healthy family members with *BRCA1* Asp1362fs were 32 and 29 years of age, respectively. They may have not reached the age of onset. However, early prevention and regular physical examination were recommended.

Figure 6C shows a family with 2 BC patients. Patient III.1 was diagnosed with BC at the age of 57 years. Her sister (Patient III.2) was diagnosed with BC at the age of 52 years. They both carried *BLM* p.Asp1116fs and *BRCA2* p.Ile1929Val. According to the ACMG classification, *BLM* p.Asp1116fs is a likely pathogenic mutation and *BRCA2* p.Ile1929Val is a VUS. The *BLM* gene encodes the DNA helicase RecQ protein on chromosome 15q26, which unwinds a variety of DNA

substrates including Holliday junctions, and is involved in several pathways contributing to the maintenance of genome stability⁴⁰. *BLM* p.Asp1116fs was presumably the main genetic cause of BC in this family. One of the healthy family members was also detected with *BLM* p.Asp1116fs at the age of 37 years. Because she might have a high risk of BC, we suggested that she have regular physical examinations for the possible early prevention of BC.

In **Figure 6D**, we collected 5 samples from this family. BC patient II.1 was detected with *BRCA1* p.Glu1836fs and *BRIP1* p.Lys222Term. These 2 mutations are likely pathogenic according to the ACMG guidelines. Her mother had ovarian cancer. Because she had already died, her sample could not be collected. One healthy family member was detected with p.Glu1836fs and *BRIP1* p.Lys222Term and another with

BRCA1 p.Glu1836fs. *BRCA1* p.Glu1836fs has been reported in a Chinese BC patient⁴¹ and recorded as pathogenic in the LOVD database (https://brcaexchange.org/variant/451386). It was indicated that mutation of BRCA1 p.Glu1836fs can lead to the occurrence of BC without the mutation of *BRIP1* p.Lys222Term. The protein encoded by BRIP1 interacts with the BRCT repeats of BRCA1 protein. The bound complex is important in the normal double-strand break repair function of BRCA1⁴². In this family, healthy carriers of likely pathogenic mutations were also recommended to seek close follow-up and early prevention of BC.

Annual breast magnetic resonance imaging or mammography screening is recommended for younger pathogenic mutation carriers. For healthy women with *BRCA* pathogenic mutations who have no fertility requirements, chemoprevention or risk-reduction surgery is recommended to reduce the risk of BC occurrence⁴³.

Discussion

We performed NGS for 116 subjects from 27 familial BC families based on the Ion Torrent S5 platform. The average sequencing depth was more than 800×. The percentage of hereditary BC in families caused by mutations in known genetic predisposition genes was approximately 48.1%, which was higher than that of other reports of familial BC⁴⁴⁻⁴⁶. This was probably because of the high sensitivity of amplicon-based NGS. In addition, the range of genes tested was increased in this study.

In this study, 43 genes were used to detect the hereditary risk of familial BC and other BC-related inherited syndromes. Most of them, such as *AKT1*, *APC*, *ATR*, *ATM*, *BAP1*, *BARD1*, *BLM*, *BRCA1*, *BRCA2*, *BRIP1*, *CDH1*, *CHEK2*, *EPCAM*, *ERBB2*, *ERCC1*, *FANCI*, *MLH1*, *MRE11A*, *MSH2*, *MSH6*, *MUTYH*, *NBN*, *PALB2*, *PIK3CA*, *PMS2*, *PTEN*, *RAD50*, *RAD51C*, *RAD51D*, *RET*, *STK11*, and *TP53* have been reported to be associated with BC susceptibilities^{14,47-51}. In addition, there are still some cancer predisposition genes reported in other BC-related inherited syndromes, such as *CYP1B1*, *CCND1*, *CDK4*, *ERBB4*, *FANCD2*, *NOTCH1*, *SMAD4*, *XPC*, and *XRCC1*⁵²⁻⁵⁵, most of which belong to DDR-related genes.

BRCA1 and *BRCA2* are 2 well-known high penetration predisposition genes in hereditary BC. Hereditary BC with *BRCA* mutations is more invasive than that without *BRCA* mutations^{9,22,56}. In this study, comparative analyses of clinicopathological features also showed that patients with *BRCA* mutations had a younger age of onset, more advanced stage,

and higher risk of axillary lymph node metastasis than those without mutations. The mutation prevalence of BRCA is distinct in different countries. In this study, BRCA-related families accounted for 25.9% of the 27 familial BC families. In a German study including 21,401 families with familial breast or ovarian cancers, the percentage of BRCA-related families was 24.0%⁴⁴. According to another study⁵⁷, which analyzed comparative families with ≥ 2 cases of breast and/or ovarian cancer among first- and second-degree relatives, the percentage of BRCA-related families was 46.2% in 78 Caucasian families, 68.9% in 29 Ashkenazi Jewish families, and 27.9% in 43 African families. The prevalence of BRCA1/2 mutations in this study was comparably higher than those reported in other Chinese familial BC cohorts. According to previous studies^{6,22,56}, the prevalence of BRCA1/2 mutations was 12.7%-19.1% in Chinese familial BC patients, which is distinct from the prevalence of BRCA1/2 mutations in this study. The disparity might be caused by differences in the study populations and the methods of statistical analyses. In our study, we focused on the prevalence of BRCA1/2 mutations in each hereditary BC family, including both familial BC patients and their direct relatives. The prevalence of BRCA1/2 mutation was significantly higher compared to those studies including familial BC patients only. In addition, different geographical areas, ethnic groups, genetic testing methods, as well as limited sample sizes might have contributed to the disparity in the prevalence of BRCA1/2 mutations. We plan to enroll more hereditary BC families in the future to validate our findings.

We found that the mutation frequency of the BRCA2 gene was 1.09 times that of the BRCA1 gene in these BC families. In other reports based on a Chinese population, Zhang et al.⁴⁶ reported in 409 Chinese familial BC patients that the BRCA2 mutation frequency was 1.7 times (6.6%/3.9%) higher than the BRCA1 mutation frequency. However, this result was inconsistent with other reported findings, which indicated that the mutation frequency of the BRCA1 gene was considerably higher than that of the BRCA2 gene in European and American populations^{57,58}. Another important difference is the penetrance of BRCA. It is well-documented that Western women who carry a pathogenic BRCA1 or BRCA2 mutation may have a 57%-65% or 45%-49% risk of developing BC by the age of 70 years^{59,60}. Women of Ashkenazi Jewish and Icelandic descent who carry a BRCA1/2 mutation have a BC risk as high as 70% by the age of 70 years^{3,61,62}. However, the breast cancer risk for BRCA1/2 mutation carriers is only 35%-49% in women from Australia, the UK, and the Republic of Korea^{3,63,64}. A study based on a Chinese population⁶⁵ reported that the estimated cumulative risks of BC by the age of 70 years were 37.9% for *BRCA1* mutation carriers and 36.5% for *BRCA2* mutation carriers. The differences might be predominantly derived from the disparities in ethnic groups, which should be thoroughly investigated in a large-scale random case-control trial, especially in the Chinese population.

Of the 116 subjects in this study, 48.6% were found to exclusively carry mutations in non-BRCA genes. Testing for non-BRCA genes increased the detection of hereditary BC families by 22.2%. Similar results were also found in other reports. According to the Lin et al.⁶⁶ study, the mutation prevalence of BRCA1/2 in Han Chinese patients with early onset or with a significant family history was 15.0%, and there was a 7.5% mutation of non-BRCA genes in women who tested negative for BRCA1/2 mutations. In another study of German BC patients, extended testing beyond BRCA1/2 also identified a deleterious mutation in an additional 6% of patients⁶⁷. Our previous findings also showed that the percentage of possible disease-causing mutation carriers among BC patients with a family history increased from 21.3% to 27.7% when the sequenced genes were increased from 6 to 20²². Therefore, broader panel testing including more genes would significantly increase the detection percentage of mutation carriers and enhance the screening efficiency for hereditary BC.

We also found that non-BRCA-mutated BC was more likely to be accompanied by benign breast diseases. Benign breast disease is an important risk factor for the development of BC. It has been reported that women with severe atypical epithelial hyperplasia of the breasts were twice as likely to develop BC as women without such diseases⁶⁸. The non-BRCA gene mutation has a weaker pathogenic effect on carcinogenesis than the BRCA gene^{69,70}. It is reasonable that BC gradually develops from benign breast disease upon stimulation from non-BRCA gene mutations. This could also explain the trend to some degree that the average age of onset of BC patients with non-BRCA mutations was older than that of BRCA-mutated BC patients (55.84 \pm 10.50 vs. 45.50 \pm 9.24). These findings indicated that genetic variants of those non-BRCA genes also played an important role in the development of hereditary BC. These genetic variants should be further evaluated to predict the hereditary BC predisposition of high risk individuals.

In this study, 80.8% (21/26) of the mutated genes were DDR genes. Among these, 71.4% of DDR genes were involved in the HR pathway. In addition to *BRCA1/2* genes, the mutated HR genes also included *ATM*, *BAP1*, *BARD1*, *BRIP1*, *BLM*,

CHEK2, FANCD2, FANCI, MRE11A, NBN, PALB2, RAD50, and RAD51C. The interaction between BRCA1-BARD1, the BRCA2-PALB2 complex, and the recombinant enzyme RAD51 is an important aspect in the HR process⁷¹. The most important function of HR genes is to repair DNA double strand breaks (DSBs), which are the most serious type of DNA damage^{72,73}. Breast cells with homologous recombination repair defects may not be able to initiate HR to repair DSBs. Abnormal repair may lead to chromosome loss, transposition, and other changes. Over time, under the influence of multiple carcinogenic factors, the accumulation of errors leads to the development of BC74. The mutated MMR genes included MLH1, MSH2, MSH6, EPCAM, and PMS2, accounting for 23.8% of the DDR genes. MMR genes prevent mutational events through correction of mismatched bases during DNA replication. Genetic defects in the DNA MMR system result in DNA replication errors, including base substitutions and insertion-deletion loops, known as microsatellite instability75. Germline mutations in MMR genes can give rise to Lynch syndrome (LS), an autosomal-dominant cancer predisposition syndrome that increases the risk for several forms of malignancy, including colorectal (lifetime cancer risk, 70%-80%), endometrial (50%-60%), stomach cancer (13%-19%), and ovarian cancer (9%-14%). BC incidence has been found to be increased in patients with Lynch syndrome⁷⁶. MMR genes belong to low penetrance genes associated with BC. Studies have suggested that there might be a functional overlap between the MMR and FA-BRCA pathways^{77,78}. Furthermore, 19.2% of the mutated genes were driver genes, including APC, CDH1, RET, STK11, and TP53. Driver gene mutations promote cancer progression and have major impacts on patient clinical outcomes. Further research on these genes in BC tissue may be warranted. Other studies have shown that the mutation clonality of driver genes was prognostic and predictive for BC patients^{79,80}.

Conclusions

In conclusion, this study primarily compared germline mutation profiling among 27 Chinese familial/hereditary BC families to comprehensively evaluate the genetic variants and clinical significance of 43 BC predisposition genes with different penetration rates in carcinogenesis. We found that in addition to *BRCA1/2*, genetic variants in *non-BRCA* genes, especially DDR genes, played significant roles in the development of Chinese familial/hereditary BC, which implied the

indispensable significance of more extensive multiple-gene panel testing in genetic screening of hereditary BC families. People with *non-BRCA* gene mutations are more likely to suffer from BC accompanied by benign breast diseases because *non-BRCA* gene mutations have a weaker pathogenic effect on carcinogenesis than *BRCA* genes. Therefore, more intensive mammary screening of *non-BRCA* mutation-bearing individuals in hereditary BC families is recommended to increase the efficacy of early diagnosis and early treatment of BC. However, this study was limited by a small sample size from a single center. A larger multicenter study in a Chinese population should be conducted to validate the findings of this study.

Acknowledgments

The authors thank Campian Jian Li from Washington University School of Medicine for providing constructive suggestions to this manuscript.

Grant support

This work was supported by the National Natural Science Foundation of China (Grant Nos. 82072588, 82002601, 81872143, and 81702280); the National Science and Technology Support Program of China (Grant Nos. 2015BAI12B15 and 2018ZX09201015); the National Key Research and Development Program of China; the Net Construction of Human Genetic Resource Bio-bank in North China (2016YFC1201703), the Projects of Science and Technology of Tianjin (Grant Nos. 13ZCZCSY20300 and 18JCQNJC82700), and the Key Project of Tianjin Health and Family Planning Commission (Grant No. 16KG126).

Conflict of interest statement

No potential conflicts of interest are disclosed.

Author contributions

Conceived and designed the analysis: Jinpu Yu and Juntian Liu. Collected the data: Li Dong, Hailian Zhang, Huan Zhang, Yingnan Ye, Yanan Cheng, Lei Han, Lijuan Li, Lijuan Wei, and Shixia Li.

Contributed data or analysis tools: Lei Han and Yandong Cao.

Performed the analysis: Li Dong, Hailian Zhang, and Huan Zhang.

Wrote the paper: Li Dong, Hailian Zhang, and Huan Zhang. Other contribution: Xishan Hao gave guidance and help on the design of this study.

References

- Lynch HT, Conway T, Fitzgibbons RJ, Schreiman J, Watson P, Marcus J, et al. Age-of-onset heterogeneity in hereditary breast cancer: minimal clues for diagnosis. Breast Cancer Res Treat. 1988; 12: 275-85.
- O'Donovan PJ, Livingston DM. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis. 2010; 31: 961-7.
- King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003; 302: 643-6.
- Fackenthal JD, Olopade OI. Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer. 2007; 7: 937-48.
- Lynch HT, Lynch JF. Breast cancer genetics in an oncology clinic: 328 consecutive patients. Cancer Genet Cytogenet. 1986; 22: 369-71.
- Zhang J, Sun J, Chen J, Yao L, Ouyang T, Li J, et al. Comprehensive analysis of BRCA1 and BRCA2 germline mutations in a large cohort of 5931 Chinese women with breast cancer. Breast Cancer Res Treat. 2016; 158: 455-62.
- Mavaddat N, Barrowdale D, Andrulis IL, Domchek SM, Eccles D, Nevanlinna H, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev. 2012; 21: 134-47.
- Frank TS, Deffenbaugh AM, Reid JE, Hulick M, Ward BE, Lingenfelter B, et al. Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol. 2002; 20: 1480-90.
- Valachis A, Nearchou AD, Lind P. Surgical management of breast cancer in BRCA-mutation carriers: a systematic review and metaanalysis. Breast Cancer Res Treat. 2014; 144: 443-55.
- Mersch J, Jackson MA, Park M, Nebgen D, Peterson SK, Singletary C, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015; 121: 269-75.
- Rebbeck TR, Friebel TM, Mitra N, Wan F, Chen S, Andrulis IL, et al. Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Res. 2016; 18: 112.
- Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015; 372: 2243-57.
- Kean S. Breast cancer. The 'other' breast cancer genes. Science. 2014; 343: 1457-9.

- Sun J, Meng H, Yao L, Lv M, Bai J, Zhang J, et al. Germline Mutations in cancer susceptibility genes in a large series of unselected breast cancer patients. Clin Cancer Res. 2017; 23: 6113-9.
- Majidinia M, Yousefi B. DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst). 2017; 54: 22-9.
- 16. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998; 396: 643-9.
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490: 61-70.
- Economopoulou P, Dimitriadis G, Psyrri A. Beyond BRCA: new hereditary breast cancer susceptibility genes. Cancer Treat Rev. 2015; 41: 1-8.
- Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012; 486: 400-4.
- Zhang X, Liang Z, Wang S, Lu S, Song Y, Cheng Y, et al. Application of next-generation sequencing technology to precision medicine in cancer: joint consensus of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology. Cancer Biol Med. 2019; 16: 189-204.
- 21. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17: 405-24.
- Dong L, Wu N, Wang S, Cheng Y, Han L, Zhao J, et al. Detection of novel germline mutations in six breast cancer predisposition genes by targeted next-generation sequencing. Hum Mutat. 2018; 39: 1442-55.
- 23. Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 1997; 11: 68-76.
- Callebaut I, Mornon JP. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 1997; 400: 25-30.
- 25. Marston NJ, Richards WJ, Hughes D, Bertwistle D, Marshall CJ, Ashworth A. Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol Cell Biol. 1999; 19: 4633-42.
- German J, Sanz MM, Ciocci S, Ye TZ, Ellis NA. Syndrome-causing mutations of the BLM gene in persons in the Bloom's Syndrome Registry. Hum Mutat. 2007; 28: 743-53.
- Devlin LA, Graham CA, Price JH, Morrison PJ. Germline MSH6 mutations are more prevalent in endometrial cancer patient cohorts than hereditary non polyposis colorectal cancer cohorts. Ulster Med J. 2008; 77: 25-30.
- 28. Thompson BA, Spurdle AB, Plazzer JP, Greenblatt MS, Akagi K, Al-Mulla F, et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet. 2014; 46: 107-15.
- 29. Yuan Y, Han HJ, Zheng S, Park JG. Germline mutations of hMLH1 and hMSH2 genes in patients with suspected hereditary

nonpolyposis colorectal cancer and sporadic early-onset colorectal cancer. Dis Colon Rectum. 1998; 41: 434-40.

- 30. Nomura S, Sugano K, Kashiwabara H, Taniguchi T, Fukayama N, Fujita S, et al. Enhanced detection of deleterious and other germline mutations of hMSH2 and hMLH1 in Japanese hereditary nonpolyposis colorectal cancer kindreds. Biochem Biophys Res Commun. 2000; 271: 120-9.
- Banno K, Susumu N, Hirao T, Yanokura M, Hirasawa A, Aoki D, et al. Identification of germline MSH2 gene mutations in endometrial cancer not fulfilling the new clinical criteria for hereditary nonpolyposis colorectal cancer. Cancer Genet Cytogenet. 2003; 146: 58-65.
- 32. Stojcev Z, Banasiewicz T, Kaszuba M, Sikorski A, Szczepkowski M, Bobkiewicz A, et al. Development of a new, simple and cost-effective diagnostic tool for genetic screening of hereditary colorectal cancer--the DNA microarray assay. Acta Biochim Pol. 2013; 60: 195-8.
- 33. Romei C, Tacito A, Molinaro E, Agate L, Bottici V, Viola D, et al. Twenty years of lesson learning: how does the RET genetic screening test impact the clinical management of medullary thyroid cancer? Clin Endocrinol (Oxf). 2015; 82: 892-9.
- Frank-Raue K, Rondot S, Schulze E, Raue F. Change in the spectrum of RET mutations diagnosed between 1994 and 2006. Clin Lab. 2007; 53: 273-82.
- 35. Carter TC, Kay DM, Browne ML, Liu A, Romitti PA, Kuehn D, et al. Hirschsprung's disease and variants in genes that regulate enteric neural crest cell proliferation, migration and differentiation. J Hum Genet. 2012; 57: 485-93.
- 36. Yokota T, Serizawa M, Hosokawa A, Kusafuka K, Mori K, Sugiyama T, et al. PIK3CA mutation is a favorable prognostic factor in esophageal cancer: molecular profile by next-generation sequencing using surgically resected formalin-fixed, paraffinembedded tissue. BMC Cancer. 2018; 18: 826.
- 37. Kovaleva V, Geissler AL, Lutz L, Fritsch R, Makowiec F, Wiesemann S, et al. Spatio-temporal mutation profiles of case-matched colorectal carcinomas and their metastases reveal unique de novo mutations in metachronous lung metastases by targeted next generation sequencing. Mol Cancer. 2016; 15: 63.
- 38. Han ZY, Qiu CG, Chen QH, Zhu Y, Zhu DL. [Mutation screening of RET proto-oncogene in Chinese sporadic patients with pheochromocytoma]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2006; 23: 320-2.
- French CA, Tambini CE, Thacker J. Identification of functional domains in the RAD51L2 (RAD51C) protein and its requirement for gene conversion. J Biol Chem. 2003; 278: 45445-50.
- 40. Alzahrani FA, Ahmed F, Sharma M, Rehan M, Mahfuz M, Baeshen MN, et al. Investigating the pathogenic SNPs in BLM helicase and their biological consequences by computational approach. Sci Rep. 2020; 10: 12377.
- 41. Wang C, Zhang J, Wang Y, Ouyang T, Li J, Wang T, et al. Prevalence of BRCA1 mutations and responses to neoadjuvant chemotherapy among BRCA1 carriers and non-carriers with triple-negative breast cancer. Ann Oncol. 2015; 26: 523-8.

- 42. Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P, et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet. 2005; 37: 931-3.
- 43. Jatoi I. Risk-reducing options for women with a hereditary breast cancer predisposition. Eur J Breast Health. 2018; 14: 189-93.
- Kast K, Rhiem K, Wappenschmidt B, Hahnen E, Hauke J, Bluemcke B, et al. Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet. 2016; 53: 465-71.
- 45. Weitzel JN, Clague J, Martir-Negron A, Ogaz R, Herzog J, Ricker C, et al. Prevalence and type of BRCA mutations in Hispanics undergoing genetic cancer risk assessment in the southwestern United States: a report from the Clinical Cancer Genetics Community Research Network. J Clin Oncol. 2013; 31: 210-6.
- 46. Zhang J, Pei R, Pang Z, Ouyang T, Li J, Wang T, et al. Prevalence and characterization of BRCA1 and BRCA2 germline mutations in Chinese women with familial breast cancer. Breast Cancer Res Treat. 2012; 132: 421-8.
- Hu C, Hart SN, Gnanaolivu R, Huang H, Lee KY, Na J, et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med. 2021; 384: 440-51.
- Dorling L, Carvalho S, Allen J, Gonzalez-Neira A, Luccarini C, Wahlstrom C, et al. Breast cancer risk genes – association analysis in more than 113,000 women. N Engl J Med. 2021; 384: 428-39.
- Scarpitta R, Zanna I, Aretini P, Gambino G, Scatena C, Mei B, et al. Germline investigation in male breast cancer of DNA repair genes by next-generation sequencing. Breast Cancer Res Treat. 2019; 178: 557-64.
- 50. de Souza TA, Goncalves A, Sales L, Albuquerque BM, de Souza J, de Moura P, et al. A portrait of germline mutation in Brazilian at-risk for hereditary breast cancer. Breast Cancer Res Treat. 2018; 172: 637-46.
- Jalkh N, Chouery E, Haidar Z, Khater C, Atallah D, Ali H, et al. Next-generation sequencing in familial breast cancer patients from Lebanon. BMC Med Genomics. 2017; 10: 8.
- 52. Fewings E, Larionov A, Redman J, Goldgraben MA, Scarth J, Richardson S, et al. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study. Lancet Gastroenterol Hepatol. 2018; 3: 489-98.
- 53. Matakidou A, Eisen T, Fleischmann C, Bridle H, Houlston RS. Evaluation of xeroderma pigmentosum XPA, XPC, XPD, XPF, XPB, XPG and DDB2 genes in familial early-onset lung cancer predisposition. Int J Cancer. 2006; 119: 964-7.
- Del VJ, Rofes P, Moreno-Cabrera JM, Lopez-Doriga A, Belhadj S, Vargas-Parra G, et al. Exploring the role of mutations in fanconi anemia genes in hereditary cancer patients. Cancers (Basel). 2020; 12.
- Ullah SA, Mahjabeen I, Kayani MA. Genetic polymorphisms in cell cycle regulatory genes CCND1 and CDK4 are associated with susceptibility to breast cancer. J BUON. 2015; 20: 985-93.
- 56. Lang GT, Shi JX, Hu X, Zhang CH, Shan L, Song CG, et al. The spectrum of BRCA mutations and characteristics of

BRCA-associated breast cancers in China: screening of 2,991 patients and 1,043 controls by next-generation sequencing. Int J Cancer. 2017; 141: 129-42.

- 57. Nanda R, Schumm LP, Cummings S, Fackenthal JD, Sveen L, Ademuyiwa F, et al. Genetic testing in an ethnically diverse cohort of high-risk women: a comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. J Am Med Assoc. 2005; 294: 1925-33.
- 58. Hall MJ, Reid JE, Burbidge LA, Pruss D, Deffenbaugh AM, Frye C, et al. BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. Cancer. 2009; 115: 2222-33.
- Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol. 2007; 25: 1329-33.
- 60. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003; 72: 1117-30.
- Tryggvadottir L, Sigvaldason H, Olafsdottir GH, Jonasson JG, Jonsson T, Tulinius H, et al. Population-based study of changing breast cancer risk in Icelandic BRCA2 mutation carriers, 1920-2000. J Natl Cancer Inst. 2006; 98: 116-22.
- Antoniou AC, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Breast and ovarian cancer risks to carriers of the BRCA1 5382insC and 185delAG and BRCA2 6174delT mutations: a combined analysis of 22 population based studies. J Med Genet. 2005; 42: 602-3.
- 63. Park B, Dowty JG, Ahn C, Win AK, Kim SW, Lee MH, et al. Breast cancer risk for Korean women with germline mutations in BRCA1 and BRCA2. Breast Cancer Res Treat. 2015; 152: 659-65.
- 64. Hopper JL, Southey MC, Dite GS, Jolley DJ, Giles GG, McCredie MR, et al. Population-based estimate of the average age-specific cumulative risk of breast cancer for a defined set of protein-truncating mutations in BRCA1 and BRCA2. Australian Breast Cancer Family Study. Cancer Epidemiol Biomarkers Prev. 1999; 8: 741-7.
- Yao L, Sun J, Zhang J, He Y, Ouyang T, Li J, et al. Breast cancer risk in Chinese women with BRCA1 or BRCA2 mutations. Breast Cancer Res Treat. 2016; 156: 441-5.
- 66. Lin PH, Kuo WH, Huang AC, Lu YS, Lin CH, Kuo SH, et al. Multiple gene sequencing for risk assessment in patients with earlyonset or familial breast cancer. Oncotarget. 2016; 7: 8310-20.
- 67. Kraus C, Hoyer J, Vasileiou G, Wunderle M, Lux MP, Fasching PA, et al. Gene panel sequencing in familial breast/ovarian cancer patients identifies multiple novel mutations also in genes others than BRCA1/2. Int J Cancer. 2017; 140: 95-102.
- Dupont WD, Page DL. Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med. 1985; 312: 146-51.
- 69. Lalloo F, Evans DG. Familial breast cancer. Clin Genet. 2012; 82: 105-14.
- Tung N, Domchek SM, Stadler Z, Nathanson KL, Couch F, Garber JE, et al. Counselling framework for moderate-penetrance

cancer-susceptibility mutations. Nat Rev Clin Oncol. 2016; 13: 581-8.

- 71. Powell SN, Bindra RS. Targeting the DNA damage response for cancer therapy. DNA Repair (Amst). 2009; 8: 1153-65.
- 72. Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma. 2018; 127: 187-214.
- Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiationinduced DNA double-strand breaks by non-homologous endjoining. Biochem J. 2009; 417: 639-50.
- Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004; 95: 866-71.
- Ford BN, Ruttan CC, Kyle VL, Brackley ME, Glickman BW. Identification of single nucleotide polymorphisms in human DNA repair genes. Carcinogenesis. 2000; 21: 1977-81.
- 76. Lotsari JE, Gylling A, Abdel-Rahman WM, Nieminen TT, Aittomaki K, Friman M, et al. Breast carcinoma and Lynch syndrome: molecular analysis of tumors arising in mutation carriers, non-carriers, and sporadic cases. Breast Cancer Res. 2012; 14: R90.

- Williams SA, Wilson JB, Clark AP, Mitson-Salazar A, Tomashevski A, Ananth S, et al. Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum Mol Genet. 2011; 20: 4395-410.
- Kobayashi H, Ohno S, Sasaki Y, Matsuura M. Hereditary breast and ovarian cancer susceptibility genes (Review). Oncol Rep. 2013; 30: 1019-29.
- Lan Y, Zhao E, Luo S, Xiao Y, Li X, Cheng S. Revealing clonality and subclonality of driver genes for clinical survival benefits in breast cancer. Breast Cancer Res Treat. 2019; 175: 91-104.
- Ng C, Bidard FC, Piscuoglio S, Geyer FC, Lim RS, de Bruijn I, et al. Genetic heterogeneity in therapy-naive synchronous primary breast cancers and their metastases. Clin Cancer Res. 2017; 23: 4402-15.

Cite this article as: Dong L, Zhang H, Zhang H, Ye Y, Cheng Y, Li L, et al. The mutation landscape of multiple cancer predisposition genes in Chinese familial/hereditary breast cancer families. Cancer Biol Med. 2022; 19: 850-870. doi: 10.20892/j.issn.2095-3941.2021.0011