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ABSTRACT Objective: Large volume radiological text data have been accumulated since the incorporation of electronic health record (EHR) 

systems in clinical practice. We aimed to determine whether deep natural language processing algorithms could aid radiologists in 

improving thyroid cancer diagnosis.

Methods: Sonographic EHR data were obtained from the EHR database. Pathological reports were used as the gold standard for 

diagnosing thyroid cancer. We developed thyroid cancer diagnosis based on natural language processing (THCaDxNLP) to interpret 

unstructured sonographic text reports for thyroid cancer diagnosis. We used the area under the receiver operating characteristic 

curve (AUROC) as the primary metric to measure the performance of the THCaDxNLP. We compared the performance of thyroid 

ultrasound radiologists aided with THCaDxNLP vs. those without THCaDxNLP using 5 independent test sets.

Results: We obtained a total number of 788,129 sonographic radiological reports. The number of thyroid sonographic data points 

was 132,277, 18,400 of which were thyroid cancer patients. Among the 5 test sets, the numbers of patients per set were 439, 186, 

82, 343, and 171. THCaDxNLP achieved high performance in identifying thyroid cancer patients (the AUROC ranged from 0.857–

0.932). Thyroid ultrasound radiologists aided with THCaDxNLP achieved significantly higher performances than those without 

THCaDxNLP in terms of accuracy (93.8% vs. 87.2%; one-sided t-test, adjusted P = 0.003), precision (92.5% vs. 86.0%; P = 0.018), 

and F1 metric (94.2% vs. 86.4%; P = 0.007).

Conclusions: THCaDxNLP achieved a high AUROC for the identification of thyroid cancer, and improved the accuracy, sensitivity, 

and precision of thyroid ultrasound radiologists. This warrants further investigation of THCaDxNLP in prospective clinical trials.
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Introduction

Thyroid nodules are prevalently detected in 65% of the gen-

eral population1. The incidence of thyroid cancer has been 

increasing steadily over the last 2 decades, while its mortality 

rate has not risen concomitantly2. The increase in incidence is 

likely attributed to over diagnosis conferred by sensitive imag-

ing techniques, especially the increased detection of indolent 

and well-differentiated forms of thyroid cancer, which even-

tually leads to unnecessary fine needle aspiration biopsy or 

thyroidectomy2. Thyroid ultrasonographic imaging is a com-

mon procedure to screen for thyroid diseases. Interpretation 

of ultrasonographic results was conducted by radiologists 

according to the Thyroid Imaging Reporting and Data System 

(TI-RADS)3,4. According to TI-RADS, the clinically relevant 

ultrasonographic features associated with suspicious malig-

nant phenotypes included solid composition, hypoechogenic-

ity, irregular margins, taller-than-wide shape, and microcalci-

fication. Individuals characterized by these suspicious features 

should have prompt additional evaluation, whereas those with 

a cystic or spongiform appearance do not require additional 

testing1.

Deep learning algorithms have been widely used in medical 

imaging data interpretation, including thyroid cancer diagno-

sis. The success of deep learning in imaging data understand-

ing has greatly benefitted from the accumulation of large-scale 

imaging datasets. Recently, we developed a deep learning 

model on large-scale thyroid ultrasonographic imaging data 

using pathological reports as the gold standard. In this study, 

we achieved comparable sensitivity and improved specificity 

in detecting patients with thyroid cancer, when compared with 

that from a group of skilled thyroid ultrasonographic radiolo-

gists5. Beyond the imaging data area, deep learning algorithms 

have been widely used in natural language processing and 

modeling. A breakthrough record for language understand-

ing was achieved by a natural language processing algorithm 

called bidirectional encoder representation from transformers 

(BERT) on 11 natural language processing tasks6. Over the 

last decade, the accumulation of radiological text data has 

increased exponentially since the rapid incorporation of 

electronic health records (EHRs) in routine clinical practice. 

Improvements in natural language processing algorithms and 

the accumulation of large-scale data in the EHR system have 

tremendous potential to transform medical care in diverse 

scenarios. For example, Liang et al.7 developed a deep natu-

ral language processing model and demonstrated that it could 

achieve pediatrician-level accuracy in diagnosing common 

childhood disease based on massive radiological text reports. 

Taggart et al.8 reported high accuracy of natural language 

 processing algorithms in identifying bleeding events from 

clinical notes. Kehl et al.9 recently demonstrated that deep nat-

ural language processing algorithms could predict oncological 

outcomes from radiological text reports. These studies showed 

that deep natural language processing algorithms accelerated 

curation and learning from EHR data.

Chinese word segmentation is a fundamental task in 

Chinese natural language processing studies. Chinese lan-

guage sentences are written in a continuous style without an 

explicit delimiter. The meaning of a single Chinese character 

is not complete. Thus, it is important to segment Chinese 

sentences into meaningful words for downstream natural lan-

guage processing tasks. Ambiguity and unregistered words are 

2 major difficulties in Chinese word segmentation. Traditional 

approaches use character-based sequencing labeling to detect 

word boundaries within limited and fixed contextual local 

windows10,11. Modern approaches12-14 use deep neural net-

works to model work segmentation tasks by exploring the 

contextual features.

The purpose of this study was to develop an automated and 

scalable model that could aid thyroid ultrasonographic radi-

ologists in diagnosing thyroid cancer based on a deep natural 

language processing algorithm applied to massive radiological 

text reports. In this study, we first developed a deep natural 

language processing model called EhrBERT to learn seman-

tic representation within and between sentences of radio-

logical text reports. We next developed thyroid cancer diag-

noses based on natural language processing (THCaDxNLP) 

by fine-tuning the pretrained EhrBERT with thyroid sono-

graphic radiological text reports and corresponding patho-

logical examination results. The performance of THCaDxNLP 

was comprehensively evaluated using 5 independent test sets. 

We also compared the performance of radiologists aided with 

THCaDxNLP vs. those without the aid of THCaDxNLP.
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Materials and methods

Curation of radiological and pathological text 
report data

We extracted ultrasonographic radiological text reports of 

adult individuals from the EHR system at Tianjin Medical 

University Cancer Institute and Hospital (TMUCIH) 

between January 2012 and December 2017. All radiologi-

cal text reports of individuals who underwent ultrasono-

graphic examination of the thyroid, neck, and abdomen 

were included. The pathological examination reports of 

patients with thyroid disease in the training set were pro-

vided by the Pathology Department at TMUCIH. All radio-

logical and pathological text reports were identified before 

they were transferred to the investigators. This study was 

approved by the institutional review board of TMUCIH 

and was conducted in accordance with the Declaration of 

Helsinki.

Development and validation of EhrBERT 
for an understanding of radiological text 
reports

BERT is an empirically powerful language model that was 

designed to learn bidirectional representations by jointly 

conditioning on both left and right sentence contexts6. It 

has achieved state-of-the-art performance on 11 language 

understanding tasks. The BERT model can address the 

masked language model (MLM) and next-sentence predic-

tion (NSP) tasks simultaneously. We first tokenized radi-

ological reports by the pretrained lexical analysis model 

that was specifically developed for the Chinese language12. 

We next built EhrBERT, an EHR language model based on 

BERT, to jointly learn the semantic representations of radio-

logical text reports. The EhrBERT model was developed for 

1 million steps with the Bertadam optimizer, with a batch 

size of 128, and cosine learning rate decay scheduling with 

an initial learning rate of 0.0001. We randomly selected 

50,000 radiological reports as the validation set. The 

remaining 1,086,736 records were used to train EhrBERT. 

The EhrBERT model was trained for 1 million steps. The 

accuracies of the MLM and NSP of EhrBERT were evaluated 

on the validation set.

Development and validation of THCaDxNLP 
for thyroid cancer diagnosis

We built THCaDxNLP from the pretrained EhrBERT model 

by adding a classifier at the end of EhrBERT. The weights of the 

classifier were randomly initialized from a normal distribution 

with a mean of 0 and a standard deviation of 0.02. The weights 

of THCaDxNLP were derived from the pre-trained EhrBERT 

model. We then fine-tuned THCaDxNLP with sonographic 

radiological reports of thyroid for 8 epochs with the Bertadam 

optimizer and a cosine learning rate decay scheduling with an 

initial learning rate of 5e-5 and batch size of 16. The total sono-

graphic radiological reports used to develop THCaDxNLP 

were 172,792, with 142,670 used as the training set and the 

remaining 30,122 as the validation set. The validation set was 

used iteratively to test the performance of THCaDxNLP at the 

end of each training epoch.

Model ensembling of THCaDxNLP for thyroid 
cancer (THCA) diagnosis

Model ensembling is a process of combining multiple models 

and synthesizing the results of each model into a single score to 

improve the model performance. In this study, we performed 

model ensembling for the last 5 THCaDxNLP models. We 

used the area under the receiver operating characteristic curve 

(AUROC) of these 5 models on the internal validation set as 

weights to combine the prediction probabilities. Specifically, 

for a given individual, we denoted the AUROC value of the 

ith model as wl, and the probability predicted to be THCA 

by the ith model as Pi. The ensemble probabilities from these 

5  models were calculated as 
=

= ∑
5

ensemble
1

.
i i

i

P w P

Assessment of radiologists aided with 
THCaDxNLP

Eight thyroid ultrasonographic radiologists were asked to read 

the radiological text reports of all test sets. We randomly asked 

5 thyroid ultrasonographic radiologists (i.e., Q. Zhang, X. Yang, 

Z. Zheng, Y. Zhao, and L. Liu) to read the radiological text 

reports of all test sets along with predicted probabilities from 

THCaDxNLP; they were aware of the AUROC of THCaDxNLP. 

The remaining 4 radiologists (i.e., J. Zhao, Y. Feng, X. Wang, 

and J. Li) were asked to read the radiological text reports of all 
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test sets without predicted probabilities from THCaDxNLP. All 

radiologists read the text reports without any time limit. Each 

dataset was read by 2 radiologists. The working periods/experi-

ence of the radiologists ranged from 6–28 years. The accuracy, 

sensitivity, specificity, positive predictive rate, negative pre-

dictive rate, kappa coefficient, and F1 metric were compared 

between radiologists with and without THCaDxNLP.

Statistical analysis

The AUROC was used as the primary metric to measure the 

performance of the THCaDxNLP. The ROC curve was cre-

ated by plotting sensitivity and specificity by varying the pre-

dicted probability threshold. The F1 metric was calculated as 

the harmonic average between precision and sensitivity, which 

was calculated as F1 = 2 × precision × sensitivity/(precision + 

sensitivity). The 95% confidence intervals for sensitivity, spec-

ificity, positive predictive rate, and negative predicted rate were 

calculated by the Clopper-Pearson method. We plotted ROC 

and calculated the corresponding AUROC using the R pack-

age pROC, version 1.10.0 (The R Foundation for Statistical 

Computing, Vienna, Austria). We calculated the inter-radiol-

ogist agreement and Fleiss’ kappa using the R package irr, ver-

sion 0.84. Statistical analysis was conducted using the R soft-

ware, version 3.4.3. Training and evaluation of EhrBERT and 

THCaDxNLP were conducted using MXNet, version 1.5.1 and 

GluonNLP, version 0.8.1 packages. We used precision, recall 

rate, and F1 score to compare the classification ability of radi-

ologists with and without the aid of THCaDxNLP. A 1-sided 

t-test was used to determine whether radiologists aided with 

THCaDxNLP achieved higher classification performances 

than radiologists without THCaDxNLP.

Results

A summary of radiological report data

We collected a total of 788,129 ultrasonographic radi-

ological texts from individuals who underwent sono-

graphic examination of the thyroid, breast, and abdomen 

at TMUCIH and Weihai Municipal Hospital, 132,277 of 

whom were thyroid sonographic reports, including 18,400 

items from THCA patients and 113,875 items from the 

non-thyroid cancer control group. These text reports were 

used to develop the EhrBERT model. All THCA patients and 

5% (n = 5,704) of controls had pathological reports. The  

remaining 95% of controls (n = 108,171) were from outpa-

tient examinations that were deemed benign by sonographic 

radiologists. A total of 132,277 thyroid sonographic text 

reports were used as the training set to develop THCaDxNLP. 

The 5 test sets consisted of 1,221 individuals from TMUCIH 

(n = 439), Tianjin Medical University General Hospital 

(TGH, n = 186), Tianjin Fourth Central Hospital (TFCH, 

n = 82), Weihai Municipal Hospital (Weihai, n = 343), and 

Chengde Hospital (Chengde, n = 171). A flowchart depict-

ing this procedure is presented in Figure 1. The clinical 

characteristics of the training set and the 4 test sets are listed 

in Supplementary Table S1.

Radiologic text reports of thyroid
and abdomen examination

collected from TMUCIH
between Jan 2012 and

Dec 2017
(n = 720,171)

Radiologic text reports of thyroid
examination collected from
Weihai Municipal Hospital

between Jan 2012 and Dec 2017
(n = 67,958)

Radiologic text reports of
thyroid examination

(n = 788,129)

Tokenized radiologic text
reports of thyroid

examination
(n = 788,129)

Language representation
model of thyroid

radiologic text reports
EhrBERT

Iterative training
and evaluation

Sentence tokenization

Development of EhrBERT Development of THCaDxNLP

Radiologic text reports of thyroid
examination collected from

TMUCIH between
Jan 2012 and Dec 2018

Non-cancerous diseases
5,704 radiologic text

reports

Doctors directed control
108,173 radiologic text

reports

Thyroid cancer
18,400 radiologic

text reports

Control
113,875 radiologic

text reports

Training set
132,277 radiologic

text reports

Deep learning model to
identify thyroid cancer via

radiologic text reports
THCaDxNLP

Surgery or biopsy (decided by doctors)
Yes

No

Iterative training
and evaluation

Finetuning EhrBERT
with task specific

dataset

Evaluation of radiologists aided with or without THCaDxNLP

Tianjin test set,
284 thyroid cancers,

155 controls

Weihai test set,
167 thyroid cancers,

176 controls

Chengde test set,
85 thyroid cancers,

86 controls

Radiologists aided
with THCaDxNLP Radiologists

Tianjin test set
interpretation result

Weihai test set
interpretation result

Chengde test set
interpretation result

Analysis of sensitivity,
specificity, positive
predictive value,

negative predictive
value and F1

Analysis of sensitivity,
specificity, positive

predictive value and
negative predictive

value

Tianjin test set
interpretation result

Weihai test set
interpretation result

Chengde test set
interpretation result

Interpretation of text reports

Comparison

Figure 1 A flowchart depicting the procedures of development and evaluation of EhrBERT for radiological text report modeling and 
THCaDxNLP for identification of thyroid cancers.
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The high performance of EhrBERT 
in sonographic text report modeling

We used 14,715 thyroid sonographic text reports to study 

the latent features learned by EhrBERT. We visualized the 

latent features learned by EhrBERT using the fast interpo-

lation t-SNE projection method15. The results showed that 

the learned representation features of text reports from thy-

roid cancer patients were distinctive from the control group, 

although the class label of text reports was not used in the 

development of EhrBERT (Figure 2). The varying loss values 

of MLM and NSP of EhrBERT are shown in Supplementary 

Figure S1.

The high performance of THCaDxNLP 
in identifying THCA

THCaDxNLP achieved an AUROC of 0.921 [95% confidence 

interval (CI): 0.896–0.946] for the TMUCIH dataset, 0.857 

(0.803–0.912) for the TGH dataset, 0.915 (0.843–0.986) for 

the TFCH dataset, 0.932 (0.906–0.958) for the Weihai data-

set, and 0.900 (0.852–0.948) for the Chengde dataset. The 

ROC curves of THCaDxNLP across the 5 test sets are shown 

in Figure 3. The other classification performance metrics 

of THCaDxNLP, such as accuracy, sensitivity, positive pre-

dictive rate, and F1 score, are provided in Supplementary 

Table S2.

THCaDxNLP improves the performance 
of radiologists

Thyroid radiologists aided with THCaDxNLP achieved con-

sistent improvements in a variety of classification metrics as 

compared with those without THCaDxNLP. The detailed per-

formance of radiologists aided with and without THCaDxNLP 

is shown in Table 1. Radiologists aided with THCaDxNLP 

achieved significantly higher performance on average across 

these 5 test sets in terms of accuracy (93.8% vs. 87.2%; one-

sided t-test, adjusted P = 0.003), positive predictive value 

(92.5% vs. 86.0%; P = 0.018), kappa coefficient (87.2% vs. 

73.6%; P = 0.003), and F1 metric (94.2% vs. 86.4%; P = 0.007). 

Radiologists aided with THCaDxNLP also showed marginal 

improvement in sensitivity (96.3% vs. 88.2%; P = 0.053), 

specificity (90.7% vs. 84.8%; P = 0.053), and NPV (95.8% 

vs. 90.5%; P = 0.068), although they were not statistically 

significant (Figure 4). In addition, THCaDxNLP improved 

the radiologists’ inter-rater agreement (0.811 vs. 0.776; 1,000 

permutations, P < 0.001). Across these 5 test sets as a whole, 

72 cases were incorrectly interpreted by radiologists without 

THCaDxNLP, 25 of which were picked by radiologists aided 

with THCaDxNLP.

Discussion

In this study, we developed EhrBERT to obtain semantic rep-

resentations of radiological text reports and THCaDxNLP to 

identify thyroid cancer patients by using a deep natural lan-

guage processing algorithm applied to unstructured EHR data. 

The performance of THCaDxNLP was evaluated across 5 test 

sets. A group of 4 thyroid ultrasonographic radiologists aided 

with THCaDxNLP achieved consistently higher performances 

than those without THCaDxNLP on a variety of classification 

metrics. This suggested that THCaDxNLP may be useful as a 

second reader to help thyroid ultrasonographic radiologists 

identify THCA patients.

The strength of this study included the development of a 

text report understanding model with an enormous amount 

of EHR data, followed by using a fine-tuned, pre-trained 

model on a task-specific dataset. We developed EhrBERT 

using 788,129 ultrasonographic text reports. The advantages 

of pre-training included a good initial point for easier opti-

mization, robustness to overfitting, and more transferra-

ble representations learned from EHR data for downstream 

tasks16. The distinctive t-SNE projection of latent feature 
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Figure 2 The t-SNE visualization of latent features learned by 
EhrBERT colored by group labels.
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representation (Figure 2) further showed that EhrBERT was 

able to identify semantic differences between text reports of 

thyroid cancer patients and controls, even though the classifi-

cation label of text reports was not included in the development 

of EhrBERT. This also highlighted the feasibility of fine-tuning 

EhrBERT for building THCaDxNLP. THCaDxNLP was devel-

oped by fine-tuning EhrBERT on thyroid text reports and 

corresponding labels. This pretraining-then-fine-tuning par-

adigm in language modeling was demonstrated to be robust 

to overfitting16.

The potential application of THCaDxNLP involves assisting 

thyroid sonographic radiologists in identifying THCA patients 

while reducing false positives that would receive unnecessary 

fine needle aspiration biopsy. This was exemplified by the 

higher accuracy and precision of thyroid sonographic radiol-

ogists aided with or without THCaDxNLP. If integrated into 

the diagnostic system, THCaDxNLP can instantly provide a 

second opinion for radiologists. Thyroid sonographic radi-

ologists may find it useful in complex and uncertain cases, 

which are common in clinical practice. In terms of differ-

ential diagnoses, radiologists often make decisions based on 

their experience, which may bias the cases, based upon those 

encountered in the past. Because the differential diagnostic 

ability of THCaDxNLP was learned from a large text report 

corpus, it would be less biased towards some specific clinical 

scenarios encountered by an individual radiologist. From this 

point of view, THCaDxNLP may broaden and augment the 

differential diagnostic ability of thyroid sonographic radiolo-

gists, especially for less experienced radiologists.

A limitation of this study was that the radiological text of 

each individual in the training and test sets were written by 

a single radiologist during clinical examination, whose inac-

curate interpretation and recording (structured language and 

unstructured language) could lead to inaccurate interpreta-

tion of the second radiologist. In addition, the writing styles 

of radiological texts varied among radiologists, especially 

among those from different hospitals. To mitigate the diversity 

of EHR data, we developed EhrBERT using EHR data from 2 

independent medical centers. Nevertheless, the EHR data used 

to fine-tune EhrBERT to develop THCaDxNLP was only from 

a single hospital; thus, the diversity of the association between 

thyroid sonographic text and its corresponding diagnosis 

could not be fully captured. In the future, we intend to col-

lect more data from more medical centers to further improve 
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the performance of THCaDxNLP. Additionally, most clinical 

natural language processing tasks, including our study, aimed 

to link text notes to disease phenotypes but not understand 

the recognition of relations among entities17. Deep learning 

approaches such as BERT will enable researchers to explore 

text note understanding. Specifically, the self-attention mod-

ules in BERT can provide quantitative relations among differ-

ent entities. The self-attention module enables the representa-

tion of a sentence by attending to a different position in that 

sentence. The attention score matrix determines the extent 

of the association among words. Thus, parsing the attention 

score matrix will contribute to the recognition of entities and 

clinical conception and may provide a better understanding of 

clinical natural language processing tasks.

In this study, we developed THCaDxNLP to perform dif-

ferential diagnoses of THCA based on the clinical expertise of 

sonographic radiologists, which was complementary to pre-

vious studies that analyzed sonographic images to diagnose 

THCA5,18. By analyzing an enormous number of radiological 

text reports, we could transfer and internalize radiologists’ 

expertise in deep learning models. This represented a type 

of transfer of human intelligence to artificial intelligence. In 

future studies, we plan to integrate THCaDxNLP with the 

deep learning model learned from thyroid sonographic imag-

ing data. Therefore, human intelligence and machine intelli-

gence will be combined to improve the differential diagnosis 

of THCA. To what extent THCaDxNLP benefits radiologists 

remains to be determined, because it depends on the willing-

ness of radiologists to believe and accept artificial intelligence 

models, which are difficult to quantify. Although EhrBERT 

and THCaDxNLP were constructed using the Chinese 

language, the study paradigm in our study could be applied to 

other languages because the deep learning algorithms used are 

independent of language. With significant improvements in 

language translation, it is also feasible to build language-spe-

cific EhrBERT and THCaDxNLP models.

Conclusions

In conclusion, our findings suggested that a deep natural lan-

guage processing algorithm developed with a large volume of 

unstructured sonographic EHR data efficiently extracted clin-

ically relevant information associated with THCA from radi-

ological text reports. This technical improvement warrants 

further investigation of THCaDxNLP in prospective clinical 

trials to validate its clinical efficacy. If clinically validated, 

THCaDxNLP can assist sonographic radiologists in the diag-

nosis of THCA.
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