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REVIEW

Imaging in translational cancer research
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ABSTRACT	 This review is aimed at presenting some of the recent developments in translational cancer imaging research, with a focus on 

novel, recently established, or soon to be established cross-sectional imaging techniques for computed tomography (CT), magnetic 

resonance imaging (MRI), and positron-emission tomography (PET) imaging, including computational investigations based on 

machine-learning techniques.
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Introduction

For preclinical and clinical research and subsequent translation 

to routine applications in patient care, such as the develop-

ment of novel targeted therapies for metastatic disease, diag-

nostic imaging has a pivotal role in disease detection, grading, 

treatment planning, therapy monitoring, and detection of 

recurrence1. With the availability of ever more powerful com-

putational methods, new imaging biomarkers may emerge and 

shape future clinical decision-making tools, and may also be 

used in fundamental and translational research2. The current 

arsenal of tomographic imaging techniques is continually being 

updated and improved upon, thus leading to the development 

and establishment of new computed tomography (CT) tech-

niques with improved contrast, and spatial and temporal reso-

lution, as well as diminished radiation exposure3; novel imaging 

sequences in magnetic resonance imaging (MRI) for assessing, 

e.g., the specific microstructural composition of biological 

tissue via its diffusive properties4; new molecular markers to 

advance positron-emission tomography (PET) imaging5,6; 

improved hybrid imaging techniques combining PET and CT 

or MRI7,8; and novel imaging-sifting computational methods 

based on machine-learning and high-throughput analysis of 

large patient cohorts9,10.

Although many techniques may offer promising appli-

cations, their potential to be translated to routine clinical 

imaging is continually being evaluated or reconsidered, and 

translation is not ensured; some techniques, such as MRI 

spectroscopy, have been well-known for several decades but 

remain rarely used in routine imaging11. However, the role of 

MRI spectroscopy in oncological research is indispensable and 

may increase, on the basis of sequences with improved artifact 

reduction, resolution, and time efficacy12.

Typically, the interpretation of in vivo tomographic imag-

ing in preclinical settings is compared with results from ex vivo 

histology and/or microscopy images with much better spatial 

resolution, as well as with patient characteristics, to obtain inte-

grative correlative measures that may indicate disease status. 

On the basis of these results, the interpretation is extended to 

clinical imaging and serves as a basis for clinical decision-mak-

ing. Animal studies may even be used to enable correlative 

approaches that compare in vivo tomographic imaging with in 

vivo microscopic imaging from, e.g., multiphoton microscopy13. 

These experimental imaging procedures are becoming increas-

ingly important because they allow for the application and 

direct comparison of common clinical imaging techniques with 

ground truth microscopic images in a non-destructive in vivo 

setting, thus providing the benefit of a live view of functional 

disease properties otherwise not possible in human imaging.

CT imaging

CT imaging is currently the most commonly used cross- 

sectional imaging method in radiological imaging, and is 

applied in emergency situations, screening protocols, and cancer  
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staging examinations. In fact, most oncological staging proce-

dures, particularly in thoracic and abdominal radiology, rely 

on standardized CT imaging protocols according to national 

consensus guidelines such as those from the association of the 

scientific medical societies in Germany (AWMF). CT imaging 

is rapid and allows for quantitative evaluation of neoplastic 

disease; however, it has the drawbacks of radiation exposure 

through X-rays and contraindication for patients with aller-

gies to CT contrast agents and/or who are at risk of iodinated 

contrast-induced thyrotoxicosis or impaired renal function.

Beyond improving imaging resolution and speed, novel 

techniques in CT imaging have been aimed at decreasing radi-

ation exposure and the need for contrast agent. Nonetheless, 

currently available commercial CTs are already approaching 

their physical limits in terms of technological advances in 

gantry, tube, and detector design14. The number of detector 

rows in the z-direction (along the patient long axis) is typ-

ically between 192 and 320; this number, together with the 

maximum detector panel width of 16 cm, is not expected to 

substantially increase in the coming years, because it already 

allows for adequate cardiac imaging within one heartbeat15. 

One recently established technique is CT-based measurement 

of the fractional flow reserve to model flow in coronary arter-

ies by using anatomic physiological modeling, that can be used 

to quantify the extent of coronary artery disease, which is a 

potential radiation-therapy related side effect16,17.

Advances in tube technology saw the introduction of spe-

cific prefilters that selectively remove photons with low energy 

from the photon spectrum of the CT cone beam, thus decreas-

ing radiation exposure and enabling faster scanning18,19. These 

advances allow for high-speed, low-kilovolt (kV) examina-

tions that can accommodate patients with high body-mass 

index, and 100 kV has replaced 120 kV as the new imaging 

standard20-22. The decrease in radiation exposure is highly 

sought after for future screening exams. To date, low-dose CT 

screening is advised only for lung cancer screening in adults 

50–80 years of age with a history of smoking of at least 20 pack 

years23, and remains under investigation for the detection of 

early lung cancer24.

Photon counting detector CT imaging

Developments in CT detectors have included the introduction 

of smaller detector elements as well as so-called photon count-

ing detectors (Figure 1). In a conventional, energy-integrating 

detector, X-rays enter a solid-state scintillator detector, thus 

generating scintillation light through interaction, which hits 

a photodiode that converts the light into an electrical signal 

proportional to the sum of all detected X-ray photon ener-

gies, regardless of the individual photon energies25. In photon 

counting detectors (PCDs), however, the interaction of X-ray 

photons with the single layer semiconductor detector mate-

rial (typically cadmium zinc telluride) produces positive and 

negative charges, wherein the negative charges are drawn to 

pixelated anodes and record individual X-ray photons, thus 

enabling direct conversion to an electronic signal proportional 

to the photons’ individual energies26. Because the signal is 

recorded within only nanoseconds, detector pixel sizes can be 

designed to enable photon energy discrimination in clinical 

CT imaging27. Measuring individual photon energies has high 

potential to be adapted by using elements such as bismuth, 

gadolinium, and iodine to produce new imaging contrasts 

and potentially enable multi-phase imaging within a single 

recording28,29.

The following contrasts are currently being investigated. 

PCDs in micro-CT imaging have been used in nanoparticle 

contrast agent imaging of mouse sarcoma with iodine and 

gadolinium nanoparticles, thus achieving improved visuali-

zation of the tumor vasculature and intratumoral distribu-

tion patterns of contrast agent nanoparticles30. In a similar 

study, iodine and gadolinium based intravenous contrast 

agent injections in rats have been demonstrated to feasibly 

differentiate peritoneal metastases in colorectal carcinoma 

with a specificity of 100%31. Furthermore, in a mouse model 

of soft tissue sarcoma receiving radiation therapy, the radi-

omic features from PCD CT with iodine contrast have been 

found to be superior to those of conventional micro-CT in 

differentiating among various tumor metrics32. Such func-

tional characterizations of tumor tissue are expected to be 

important in future preclinical research and may be used in 

whole-body PCD CT imaging for translational research from 

rodents to humans33.

Owing to the smaller pixel sizes, the in-plane resolution and 

longitudinal spatial resolution are significantly better in PCD 

CT scanners than conventional CT scanners, and in-plane 

resolutions as high as 50–150 μm have been achieved34,35. 

This improvement enables better detection of small struc-

tures in biological tissue such as small bronchi36. Moreover, 

ultra-high-resolution PCD CT imaging has shown potential 

in detecting small osteolytic bone metastases in breast cancer 

that would have otherwise been missed by conventional imag-

ing37. In addition, the improved resolution also allows for the 
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detection of microcalcifications in breast cancer specimens 

with sensitivity and specificity comparable to those of digital 

breast tomosynthesis, with a voxel size of (50 μm)3,35.

The feasibility of decreasing radiation exposure in PCD 

imaging technology has also been demonstrated in lung tissue 

and shown higher contrast, lower noise levels, and ultimately 

better diagnostic quality than energy-integrating detector CT 

imaging38. Therefore, PCD CT imaging is expected to be par-

ticularly interesting in future low-dose lung cancer screening 

studies. A recent study has reported the development of a pro-

totype PCD CT scanner with a relevant dental filling artifact 

reduction39; this method, if validated in clinical studies, would 

have enormous potential in head and neck cancer staging, 

wherein artifacts are the primary reason for cancer misclassifi-

cation and recurrence of missed tumors40.

Phase-contrast-based synchrotron CT imaging

Another emerging technology in preclinical medical research 

is phase-contrast-based synchrotron CT imaging, performed 

at synchrotron radiation beamlines41,42. This method is  

sensitive to light elements (hydrogen, carbon, nitrogen, and 

oxygen) whose X-ray phase shift cross section is much larger 

than the X-ray absorption cross section; therefore, phase maps 

from an X-ray interferometer may be used to detect specific 

interference patterns and subsequently reveal microscopic soft 

tissue details at nanometer scale without a need for specific 

tissue staining41. Although such analyses have been restricted 

to only very small sections of biological specimens, the first 

high-energy (6-GeV), fourth-generation synchrotron source 

at the European Synchrotron Radiation Facility has allowed 
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Figure 1  (A) Schematic representation of the integrated energy detector (EID; left panel) and the photon-counting detector (PCD; right 
panel). In the EID, X-rays enter a solid-state scintillator detector and convert to scintillation light through interaction. The resulting photons 
hit a photodiode, which converts the light to an electrical signal proportional to the sum of all X-ray photon energies. The PCD allows X-ray 
photons to interact with a semiconductor material layer, thus producing positive and negative charges. The negative charges are drawn to pix-
elated anodes and record individual X-ray photons directly in an electrical signal proportional to the photons’ individual energy. (B) The PCD 
allows for recording of different energy spectra by using energy thresholds (middle panel) that produce material-specific maps in a manner 
dependent on the material concentration within the tissue (for instance, iodine, water, calcium), on the basis of specific material decompo-
sition algorithms. (C) Unenhanced EID (c6) and PCD (c1–c5, c7) images of a 68-year-old patient with unifocal medium-grade breast cancer 
and histologically confirmed osseous metastases (CT window: C = 500 HU, W = 1,500 HU). (c1) Red arrows indicate multiple osteoblastic 
metastases with one metastasis in the right iliac bone with a complex sclerotic composition pattern (c2–c5). (c6, c7) EID and PCD CT image 
of a metastasis in the right fifth lumbar vertebra. The gain in resolution and therefore diagnostic accuracy is clearly seen. Figures in (A, B) are 
adapted from Ref.26 (CC BY 4.0 license), and the images in (C) are adapted from Figure 3 in Ref.37 (CC BY 4.0 license).
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for the scanning of human organs in toto42,43 (Figure 2). This 

non-destructive technique may provide unprecedented detail 

of the extent of oncological disease, thus aiding in studies of 

tumor infiltration patterns and changes in the tissue microen-

vironment around tumor cells in whole human organs and 

whole rodents.

Outlook

The exciting new possibilities of PCD CT imaging with 

increased resolution and decreased radiation exposure, as well 

as additional contrasts, are beginning to be explored in the 

first large-scale clinical studies, which are expected to shape 

the future of CT imaging44,45. Although only few PCD CTs are 

currently available, many more are expected to be found in 

hospitals and radiology cabinets. Their potential and pitfalls 

are expected to determine future oncological disease diagnosis, 

staging, and monitoring. Simultaneously, progress in ex vivo 

phase-contrast-based synchrotron CT imaging with imaging 

of whole human organs is expected to facilitate exploration 

of cancer growth patterns in greater detail, thereby providing 

a microstructural basis to detect, interpret, and quantify CT 

imaging patterns in oncology.

MRI

MRI has markedly advanced since the first recorded 

nuclear magnetic resonance (NMR) signal in an anesthe-

tized rat was reported by Jackson and Langham in 196846. 

Raymond Damadian proposed and patented an “Apparatus 

and method for detecting cancer in tissue” relying on NMR 

technology in 1974, on the basis of his findings that the 

spin-lattice (T1) and spin-spin (T2) magnetic relaxation 

times differed between normal rat tissue and sarcoma and 

hepatoma tissue47. Likewise, other groups found differing 

NMR relaxation times between healthy and neoplastic tis-

sue48. Several years after Paul Lauterbur produced the first 

MR images in 197349, the first clinical MRI was introduced, 

thus eventually leading to the high-field machines with 1.5 

Tesla and 3 Tesla magnetic field strengths in clinical use 

today. Simultaneously, apart from the fundamental T1- and 

T2-weighted sequences, many new MR sequences have been 

developed to elucidate various tissue properties. To com-

prehend their roles in translational cancer research, we dis-

tinguish between weighted and quantitative imaging MRI 

sequences (Figure 3).

In weighted sequences, the contrast can be optimized by 

varying specific sequence-inherent parameters, e.g., the echo 

time (TE) for T2-weighted sequences in the range of T250. 

The typical weighted sequences are T1-, T2-, and proton 

density (PD) weighted sequences, with short repetition time 

(TR) and short TE, long TR and long TE, and long TR and 

short TE, respectively. Other weighted sequences are diffu-

sion-weighted imaging (DWI) and T2*-weighted and/or sus-

ceptibility-weighted imaging (SWI) sequences, which were 

developed in the late 1980s and 1990s and are now part of 

the standard MRI protocols in cancer imaging. Steady-state 

free precession MRI sequences maintain a residual transverse 

magnetization between successive MRI pulse cycles to gener-

ate a mixed contrast between T2 and T2* weighting, and are 

used primarily in dynamically changing organs such as the 

heart51.

Quantitative sequences enable acquisition of tissue-spe-

cific physical entities or parameters that therefore are prone to 

changes with alterations in tissue composition, e.g., owing to 

metabolic changes or tumor cell infiltration. These sequences 

have a functional quality that cannot be attributed to conven-

tionally structural sequences, with the sole exception of the 

apparent diffusion coefficient (ADC), a quantitative parame-

ter obtained in DWI sequences. Apart from ADC mapping and 

dynamic-contrast enhanced (DCE) or dynamic susceptibility 

contrast (DSC) MR perfusion sequences, all these functional, 

quantitative sequences are not yet part of standard oncological 

MRI protocols. Their roles in translational cancer imaging are 

reviewed below.

In addition, model-based quantitative imaging methods 

provide indirect information on the voxel-inherent micro-

structure. They are motivated by small magnetic field inhomo-

geneities that produce local changes in magnetic susceptibility 

and diffusion, both of which influence the MR signal decay. 

Measurements of detailed MR signal decay curves therefore 

allow for quantification of the underlying microstructure, e.g., 

microvascular density or axonal myelination.

DWI, diffusion-tensor imaging, and  
intravoxel-incoherent motion imaging

DWI is currently integral part of most MRI protocols in 

oncologic imaging for a variety of tumors, e.g., brain tumors, 

prostate cancer, or metastatic disease in general52. Increased 

tumor cellularity restricts the diffusion of water molecules 

around tumor cells, thus resulting in a hyperintense signal in 
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Figure 2  Phase-contrast-based synchrotron CT images of an intact human heart. (A) Intact human heart, and magnified cross-sections with 
voxel sizes of (B) 25 μm, (C) 6.5 μm, and (D) 2.5 μm, and (E) magnification of the image in (D), revealing the local arrangement of ventricular 
myocytes (mc), a coronary artery (ca), and adipose tissue (ad). Adapted from Ref.233 (CC BY-NC 4.0 license).
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DWI images with higher b-values. This sensitivity to diffu-

sion results from the applied b-values whose quality depends 

on the gradient properties during the pulse sequence design. 

The role of DWI in differentiating malignant neoplastic tissue 

from healthy tissue or predicting treatment response has been 

investigated in most, if not all, tumor types52-57. Although its 

resolution (2–5 mm2 in plane) is typically lower than those 

of structural sequences, its b-value dependent contrast with 

cell-rich tumor tissue and its ability to provide tissue-spe-

cific ADCs have demonstrated great success in identifying 

tumor tissue. An increasing number of MRI tumor protocols 

now incorporate DWI in their tumor grading systems, most 

prominently the Prostate Imaging Reporting and Data System 

(PI-RADS) classification for prostate cancer58, the Breast 

Imaging Reporting and Data System (MRI BI-RADS) classifi-

cation for breast cancer59, the Myeloma Response Assessment 

and Diagnosis system (MY-RADS) classification for mye-

loma60, and the Ovarian-Adnexal Reporting Data System 

(O-RADS) MRI score for ovarian cancer61.

Owing to its relatively fast acquisition time and superior 

contrast, DWI is also being investigated for its use in MRI can-

cer screening protocols, specifically in whole-body MRI can-

cer screening in cancer predisposition syndromes62. However, 

the roles of DWI and of MRI in general in screening common 

cancer types such as breast, prostate, and lung cancer remains 

controversial63-65.

Diffusion tensor imaging, in contrast to DWI, considers dif-

fusion along multiple directions in three-dimensional space. 

Because water diffusion in biological tissue is often anisotropic, 

and not isotropic, i.e., equal in all directions, the concept of 

a diffusion tensor captures and quantifies this (fractional) 

anisotropy, thus enabling investigation of preferred tracts of dif-

fusion, e.g., along neuronal fibers in brain tissue or peripheral 

nerves66,67. Although used primarily in neuro-oncology68, this 

method has also been shown to be beneficial in determining the 

histological grade of oral carcinoma69; discriminating between 

small-cell lung cancer and non-small cell lung cancer brain 

metastases70; correlating with Gleason scores in prostate can-

cer71; or predicting parametrial infiltration in cervical cancer72.

Diffusion within an MR voxel that differs from (extracellu-

lar) water diffusion, such as blood circulation within the cap-

illaries, is termed intravoxel incoherent motion (IVIM). IVIM 

leads to attenuation of the diffusion MR signal at low b-values, 

because the diffusion coefficient, or pseudodiffusion, associ-

ated with blood flow is larger than the diffusion coefficient of 

water, thus effectively leading to a slightly larger ADC value73. 

Pseudodiffusion and diffusion can be separated, thereby 

enabling determination of a flowing blood volume fraction 

(fIVIM: fractional IVIM) to obtain estimates of blood perfu-

sion without the use of external contrast agents (see Section 

2.2.4)74. Owing to the abnormal microvasculature in tumors, 

IVIM is increasingly being applied in oncological settings75 

mostly in rectal, pelvic, and hepatic cancers, and fIVIM has 

been found to strongly correlate with microvessel density75,76. 

Its role in common cancer types, such as breast and prostate 

cancer, is currently being evaluated77,78.

Susceptibility-weighted imaging and 
quantitative susceptibility mapping

SWI is based on the differences in local magnetic suscep-

tibilities in biological tissue, which lead to phase shifts at 

Magnetic resonance imaging

Weighted imaging

Quantitative imaging

Model-based quantitative imaging

T1w

T1r

VSI/VAI Microvascular radius mapping NP density mapping Axonal myelination

T2r T2*r QSM DTI DCE/DSC MRE ASL MRS CEST

T2w T2*w SSFP PD DWI SWI

Figure 3  MRI sequences used in translational cancer research, including weighted sequences, quantitative sequences, and model-based 
quantitative microstructural imaging sequences. T1w, T1-weighted imaging; T2w, T2-weighted imaging; T2*w, T2*-weighted imaging; SSFP, 
steady state free precession imaging; PD, proton spin density imaging; DWI, diffusion-weighted imaging; SWI, susceptibility-weighted 
imaging; T1r, T1 relaxation mapping; T2r, T2 relaxation mapping; T2*r, T2* relaxation mapping; QSM, quantitative susceptibility mapping; 
DTI, diffusion tensor imaging; DCE, dynamic contrast-enhanced MR perfusion imaging; DSC, dynamic susceptibility contrast MR perfusion 
imaging; MRE, magnetic resonance elastography; ASL, arterial spin labeling imaging; MRS, magnetic resonance spectroscopy; CEST, chemical 
exchange saturation transfer imaging; VSI, vessel size imaging; VAI, vascular architecture imaging; NP, nanoparticles. Further details are in 
the main text.
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sufficiently large echo times79,80. However, across different MR 

vendors, SWI typically denotes a high-resolution susceptibil-

ity-enhanced sequence that is not necessarily processed with 

phase information, thus resembling a T2*-weighted sequence. 

This method is used in standard imaging protocols in neuro-

radiology to detect microbleeds or thrombi. However, it has 

rarely been used outside of neuroradiological imaging appli-

cations. Intratumoral susceptibility signals in brain tumors 

have been attributed to microbleeds and abnormal vascula-

ture, and may aid in differentiating high- and low-grade glio-

mas81,82. This method has been shown to provide limited diag-

nostic benefit over T1-weighted sequences in the evaluation of 

melanoma brain metastases83, in which SWI artifacts inside 

metastases are attributed primarily to microbleeds. Recently, 

SWI has been used to differentiate osteolytic from osteoblas-

tic spine metastases84; to show intratumoral hemorrhages in 

uterine sarcomas as a diagnostic differentiator85; or to evaluate 

treatment response in patients with prostate cancer receiving 

androgen deprivation therapy86.

Quantitative susceptibility mapping, the quantitative exten-

sion of SWI, has been proposed to provide local magnetic sus-

ceptibility values and evaluate their spatial distribution87,88. 

This method has been investigated as a potential biomarker of 

tumor severity in glioma, in which basal ganglia iron content 

increases with glioma severity89. Further studies are needed to 

assess its utility in oncological research and clinical imaging.

T1-, T2-, and T2* mapping sequences

Relaxation time mapping sequences sample the MR sig-

nal decay to obtain measures for the relaxation times90-92. 

Although T1, T2, and T2* mapping techniques were initially 

used primarily in cardiac imaging to adequately characterize 

myocardial edema and disease91, or cardiac iron overload92, 

they have also been applied in oncology93. Their use beyond 

cardiac imaging has increased, owing to better reconstruction 

and k-space sampling techniques, e.g., for mapping peritu-

moral infiltration zones in glioblastoma and anaplastic astro-

cytoma with T2 mapping94, or to identify histological types 

of lung cancer with T1 mapping95. T1 mapping has also been 

used to predict Gleason scores in prostate cancer96, whereas 

T2 mapping in prostate cancer has been used to differentiate 

between healthy and cancerous gland tissue97.

The quantitative property of relaxation time maps, via a 

combination of several relaxation times, or ideally with other 

quantitative parameters such as ADC values, makes them 

well-suited to characterize heterogeneous tumor tissue and 

also to future robust extraction of tumor-intrinsic imaging 

patterns, e.g., in radiomics and deep-learning analyses of 

pathological tissue, as described below. A multiparametric 

quantification may uncover differences between specific dis-

ease subgroups within multidimensional parameter spaces 

that would otherwise not be detected, and therefore aid in 

further integrative diagnostic endeavors. The potential role 

of multiparametric MR mapping in breast, prostate, and liver 

cancer has been reviewed98-100. Quantitative parameters (T1, 

T2) from synthetic breast MRI have been found to discrim-

inate among breast cancer receptor statuses or proliferation 

rates101, whereas combined T1/T2 relaxation time mapping, 

ADC mapping, tumor size, and cancer subtype modeling have 

been shown to effectively predict pathological response in 

breast cancer after one neoadjuvant chemotherapy cycle102. In 

prostate cancer, T2 mapping has revealed significantly lower 

T2 values in cancerous regions103, and has shown high diag-

nostic accuracy in differentiating between chronic prosta-

titis and cancer104. In contrast, T1 mapping has been found 

to predict Gleason scores96. In liver cancer, multiparametric 

MRI (T1, T2 relaxation times) has been found to be useful 

in detecting sinusoidal obstruction syndrome after oxalipla-

tin-based chemotherapy105. T2 relaxation times have been 

shown to be more sensitive and accurate in identifying malig-

nant liver lesions than ADC values106, whereas T1 mapping has 

enabled differentiation among tumorous liver regions accord-

ing to extracellular matrix composition in a rabbit hepatic 

cancer model107, as well as accurate detection of liver metasta-

ses in a mouse model at 7 Tesla108.

MR perfusion and permeability sequences

Many tumors thrive with microvascular proliferation, most 

prominently the aggressive brain tumor glioblastoma, which 

requires MR techniques to image and quantify intra- and per-

itumoral perfusion or the permeability of leaky tumor ves-

sels. DSC imaging typically uses single-shot (or multi-shot) 

echo-planar imaging with repetition times of 1–2 seconds 

over a contrast agent bolus. The local tissue contrast agent 

concentration can then be inferred from the altered MR signal 

(during contrast agent bolus passage) in relation to its base-

line signal109, thus allowing for the calculation of perfusion 

parameters such as mean transit time, local blood volume and 

flow, and time-to-peak. DSC imaging is currently used almost 

exclusively in brain imaging to reveal cerebral hemodynamics 
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and show increased blood volume in cerebral tumor tissue110. 

This method is part of the standard MRI protocol in glioma 

and other malignant brain tumors111. However, it has also 

been used to differentiate benign from malignant soft tissue 

tumors112, or benign from malignant head and neck tumors or 

parotid tumors113,114. Its potential to describe tumor vascula-

ture in other tumor entities still must be explored.

DCE MRI uses baseline T1 mapping and subsequent acqui-

sition of T1-weighted images during contrast agent bolus pas-

sage. The MR signal change can then be associated with the 

local contrast agent concentration via pharmacokinetic mod-

els such as the extended Tofts model115,116, which assume an 

exchange in contrast agent particles between the blood vessel 

plasma and the extravascular space, by using the plasma-ex-

travascular space transfer constant K-trans as a measure for 

permeability. DCE MRI is particularly established in imaging 

of breast and prostate cancer, for which DCE is part of the 

standard MRI protocols, and its interpretation is included in 

the BI-RADS and PI-RADS criteria. This method is also fre-

quently used in imaging intracranial tumor imaging117, liver 

imaging118, and head and neck cancer imaging119.

Blood-oxygen-level-dependent MRI

The differing magnetic properties of oxygenized and deox-

ygenized hemoglobin were first described by Pauling and 

Coryell in 1936120: oxyhemoglobin is diamagnetic, whereas 

deoxyhemoglobin is paramagnetic, thus signifying their dif-

ferent magnetic susceptibilities. This effect was first used by 

Ogawa to develop a blood-oxygen-level-dependent (BOLD) 

imaging contrast between arterial (oxygenated) and venous 

(deoxygenated) blood121. Because firing neurons require 

blood-delivered oxygen to generate energy, in the so-called 

hemodynamic response, BOLD contrast can be used to detect 

task-activated brain regions in functional MRI (fMRI), which 

is extensively, although controversially, used in psychiatric 

and psychological studies122,123. However, typically on the 

basis of multi-gradient-echo sequences, BOLD imaging is 

easily implementable in clinical routines, and it can be used 

to measure tumor hypoxia, a hallmark of cancer associated 

with therapy resistance and tumor progression124. Hypoxia 

also affects the T1 relaxation time in tumors, thus giving rise 

to tissue-oxygen-level-dependent (TOLD) MRI contrasts, 

wherein an inhaled gas challenge between air and 100% oxy-

gen leads to heterogeneous changes in T1 relaxation rates 

within the tumor tissue125. For instance, a strong association 

the between BOLD response and partial pressure of oxygen 

in prostate cancer, and between TOLD and delayed tumor 

growth after irradiation therapy126, have been demonstrated. 

More recent developments include the combination of TOLD 

and DCE MRI to identify tumor regions refractory to oxygen 

challenge within renal cancer xenografts, to more accurately 

determine tumor hypoxia127; the differentiation between 

musculoskeletal tumors through power spectrum analyses of 

the BOLD time series signals128; and the induction of cerebro-

vascular dysregulation, according to glioma grade, through 

time-shifted fMRI traces129.

Magnetic resonance elastography (MRE)

MRE is a phase-contrast-based MRI method that quantifies 

the mechanical properties of biological tissue, such as elas-

ticity or stiffness. Because the stiffness changes in most tum-

ors can be quantified by the calculation of a shear and elastic 

modulus, MRE is increasingly being used in experimental 

oncological imaging, e.g., in brain tumors130. It relies on the 

generation of mechanical waves, which are generated with 

dedicated vibrating devices placed on patients’ bodies131. 

MRE functions with many pulse sequences, including spin 

echo and gradient-recalled echo sequences, with or with-

out echo-planar imaging, and is typically performed at fre-

quencies between 20 and 100 Hz in clinical imaging, and 

200 and 1,500 Hz in preclinical imaging, preferably with 3.0 

Tesla scanners to achieve higher signal-to-noise and con-

trast-to-noise ratios131. The resolution of MRE is usually 

lower than that of conventional MR images, and it assumes 

an isotropic material composition, which is clearly not the 

case for many tissue types such as white matter fibers or 

muscle tissue. Like ultrasound elastography, MRE is used in 

breast imaging to detect early changes in tissue stiffness due 

to neoplastic disease132. However, most applications to date 

have been in brain and liver imaging130,133. Recent studies 

have indicated that MRE can be used to assess therapy out-

comes and tissue damage before and after microwave abla-

tion of liver tumors134, and liver stiffness has been found to 

be a predictor of early recurrence in hepatocellular carci-

noma after therapy135. Simulation and phantom studies of 

MRE imaging have linked MRE parameters to intratumoral 

pressure136, and experimental preclinical studies have indi-

cated that MRE may be suitable for specifically studying 

tumors with nondestructive growth patterns, such as pros-

tate cancer137.
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Arterial spin labeling (ASL)

ASL technique does not require external contrast agent but 

instead uses labeling of blood water spins in larger arteries 

with specific radiofrequency pulses to obtain perfusion meas-

ures, such as blood flow and blood volume in downstream 

tissue areas, through the subtraction of labeled and control 

images138. Several ASL techniques have been proposed. The 

most common variant is pseudocontinuous ASL, which uses 

multiple short pulses during continuous labeling of water 

molecules that pass through a labeling plane. Most applica-

tions of ASL are in translational or preclinical research; how-

ever, some institutes use ASL measurements to assess perfu-

sion in pediatric tumors without a need for contrast agent 

administration139. Owing to difficulties in finding adequate 

labeling planes, ASL is typically used in brain, head and neck, 

and renal tumors140-143, but has also been investigated in other 

organs, such as the liver144, heart145, and prostate146. The low 

resolution of ASL images with respect to that of conventional 

MR sequences limits its use in oncological screening; how-

ever, the benefit of avoiding contrast agent administration is 

expected to result in increased use of this technique in pedi-

atric imaging, in oncological patients with many follow-up 

exams, and in oncological wards aiming to replace contrast-

agent-based perfusion MRI with less expensive imaging. 

Novel pulse sequence designs and deep learning techniques 

to improve ASL robustness and accuracy are currently being 

developed147.

Magnetic resonance spectroscopy (MRS) and 
chemical exchange saturation transfer imaging

MRS measurements enable probing of metabolic tissue prop-

erties in vivo. MRS is frequently used in clinical settings, e.g., to 

determine metabolite content in brain tumors148. This method 

is based on a chemical shift of the local resonance frequency in 

the external, static magnetic field, because of the shielding effect 

of electron clouds that are associated with bonding electrons of 

the prevalent molecules within the tissue. The effect is propor-

tional to the magnetic field strength and therefore is particularly 

relevant at high and ultra-high field strengths, such as 3 Tesla 

and 7 Tesla. The resulting spectrum of molecule peaks reveals 

the molecular composition of the probed tissue. For instance, in 

aggressive brain tumor glioblastoma, increases are observed in 

the peaks of choline, a marker of cellular membrane turnover; 

lactate, a marker of anaerobic metabolism; and lipids, a markers 

of severe tissue damage and necrosis, whereas N-acetylaspartate 

(NAA), a marker of neuronal viability, is decreased149. The use 

of MRS is often limited to low-grade gliomas in neuroimaging, 

to refine lesion differential diagnostics, as well as to single large 

tissue voxels to produce robust and reproducible spectra; other-

wise, MRS is used primarily in research studies. However, with 

advanced MRS processing techniques, whole-brain MRS is clin-

ically feasible and may be used to study large-scale metabolic 

alterations during tumor growth12.

Furthermore, MRS has been applied in many other tumors, 

particularly prostate cancer, thus revealing low levels of citrate, 

a key metabolite in oxidative phosphorylation150, in colorec-

tal cancer151, cancers of the head and neck152, or breast cancer 

with elevated choline peaks153.

The recent development of chemical saturation exchange 

(CEST) imaging in brain tumors, e.g., to identify genetic mark-

ers such as isocitrate dehydrogenase mutation status or 1p/19q 

deletion status in gliomas, has received substantial attention 

in the oncological imaging community154. CEST imaging 

enables mapping of tissue pH levels via amide proton trans-

fer CEST155, wherein backbone amide protons of mobile pro-

teins and peptides provide the endogenous CEST contrast156. 

Further applications include glucose CEST (glucoCEST)157, 

to detect intercellular glucose delivery and transport; the first 

applications outside brain tissue, e.g., detection of ductal pan-

creatic adenocarcinoma158; kidney assessment via renal pH 

levels159; prostate cancer detection160; and diagnosis of breast 

cancer via glucosamine CEST in clinical settings161.

Advances in cardiac MRI

Cardiac imaging in oncology is used not only to characterize 

cardiac malignant masses, but also cardiac dysfunction or cardi-

otoxic effects associated with cancer therapy, including periph-

eral vascular disease and vascular dysfunction162,163. Recent 

advances in cardiac MRI have seen the development of simul-

taneous multi-parametric acquisition and reconstruction tech-

niques (SMART) to accelerate acquisition times in cardiac imag-

ing. SMART is particularly helpful in patients with complicated 

heart rhythms or with poor compliance during breath-hold 

instructions164. Simultaneous collective acquisition of several 

MR parameters such as T1 and T1 relaxation time would there-

fore significantly improve cardiac MRI efficiency165. Further 

new and emerging imaging techniques include electrocardio-

gram gated double inversion recovery fast spin echo sequences 

(or “black-blood” sequences), which can more reliably be used 
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for characterization of cardiac masses or detection of cardiac 

edema due to nulling of blood166; detection of coronary artery 

disease, as a cardiotoxic effect of cancer-associated therapy 

with high speed coronary magnetic resonance angiography or 

ultrafast imaging of the coronary arteries167,168; visualization 

of pulmonary arteries and their implication in oncological 

disease through 3D pulmonary MR angiography169; and eval-

uation cardiac flow velocities at high spatial and temporal res-

olution with four-dimensional flow MRI170. These techniques 

are currently being established to, e.g., evaluate the role of 

anthracycline-induced cardiotoxicity171, or detect early cardiot-

oxicity during immuno- and radiotherapy172.

Model-based quantitative imaging

NMR signal decay is influenced by local magnetic susceptibil-

ity gradients and water diffusion, both of which depend on 

the microstructural arrangement of tissue, as first described 3 

decades ago for local susceptibility differences between blood-

filled idealized, i.e., cylindrical, vascular structures and static 

water molecules (static dephasing)173. This method is still 

widely used in MR signal decay simulations. However, MR 

signal modeling can now be used for increasingly complex 

arrangements of vessels and/or small particles such as iron-ox-

ide nanoparticles174,175, and with the inclusion of diffusion 

effects176-181, in microstructural quantification in vivo182,183, 

also termed histological MRI (hMRI)184,185. Correlative anal-

yses of MR signal decay and microvascular arrangements in 

tumor tissue can be studied with these modeling approaches 

and dedicated microscopy experiments (Figure 4)185-187. 

Similarly, myelinated axons and fiber tracts can be quanti-

fied by using the effects of anisotropic susceptibility within 

and around the myelin sheath188,189, and advanced models 

of microstructure derived from diffusion-weighted imaging, 

using multi-compartment environments as in nerve fibers, 

have been described190-193.

However, the increasingly complex theoretical models are 

often too computationally intensive to be implemented in rou-

tine clinical imaging. Moreover, multiparameter models may 

produce relevant fitting errors that do not allow for robust and 

reliable microstructure quantification. This gap is being filled 

by empirical signal models that obtain information on micro-

vascular arrangements via surrogate parameters, such as vessel 

size and vessel architectural imaging (VSI, VAI)194-196. These 

methods are being used to detect microvascular changes, e.g., 

during antiangiogenic treatment in glioblastoma197.

Hybrid imaging: positron-emission 
tomography CT and MRI

PET is a functional imaging method that uses radioactive trac-

ers to visualize biological processes within the human body. 

The radiotracers frequently used for routine PET imaging 

in oncology are 18F-fluorodeoxyglucose (FDG) and pros-

tate-specific membrane antigen (PSMA); their roles in cancer 

phenotyping and recommendations for their use in oncolog-

ical imaging have been reviewed198,199. Increased local FDG 

uptake in the PET images reflects increased regional glucose 

transporter activity on a cellular level, which in turn indicates 

increased cellular metabolic activity (Figure 5)200, as observed 

as an unspecific finding in a variety of metabolic active and 

growing cancers and their metastases. Consequently, FDG-PET 

imaging is a valuable tool to provide diagnostic certainty when 

CT or MRI morphologic findings are otherwise unclear and 

lack functional information on biologic activity. In contrast, 

CT and MRI add essential anatomic information that PET is 

lacking. Hybrid imaging approaches are therefore synergistic: 

PET has been combined with CT (PET-CT) or MR (PET-MR) 

to enable fusion of CT and MRI images with areas of increased 

metabolic activity. PET-CT is the modality of choice for the 

staging and therapy monitoring of many cancers, such as head 

and neck, breast, lung, esophageal, colon cancers, melanomas, 

and aggressive lymphomas201-203. PET-CT imaging is currently 

being investigated for its clinical benefits in a wide range of 

malignant tumors, e.g., melanoma staging204, bone and soft 

tissue tumors205,206, and distant metastases and recurrence of 

head and neck tumors206.

PET in combination with MRI is available only at few hos-

pitals and research centers. However, the prospects of correlat-

ing metabolic functional imaging with functional and struc-

tural MRI parameters may be attractive not only for answering 

research questions but ultimately for translation to clinical 

imaging207. E.g., FDG-PET-MRI has been found to outperform 

MRI in evaluating tumor size and nodal metastases in rectal 

cancer208, and MRI and CT for nodal staging in breast cancer209.

Apart from FDG and PSMA, several other tracers are currently 

being used and investigated in PET imaging, most prominently 

FAPI, which uses the tumor expression of fibroblast-activating 

protein (FAP) to diagnose and stage patients with cancers of the 

stomach or pancreas, and cholangiocarcinoma210. Other trac-

ers are 18F-fluoroethyl-L-tyrosine (FET) and 11C-methionine 

(MET), which correlates with microvessel density in proliferating 
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cells, both of which are used in glioma imaging; 68Ga-DOTATOC 

(DOTA0-Phe1-Tyr3-octreotide), a somatostatin analog used to 

detect neuroendocrine tumors211; and 11C-metomidate PET, 

which is used to detect adrenal masses212.

Medical image computing in 
translational cancer research

Recent years have seen an astonishing increase in supervised 

and unsupervised computational medical image analyses to 

detect, segment, and classify tissue pathologies in oncology213. 

Together with other high-throughput analyses such as genom-

ics, proteomics, or metabolomics, artificial intelligence based 

methods such as radiomics and deep-learning techniques 

have emerged as powerful tools in oncology. These methods 

enable extraction and quantification of imaging character-

istics in radiological imaging, specifically pattern or texture 

analysis, which computationally allocates imaging signatures 

to pathological imaging changes214,215. Combined radiomics 

features (RF) can be used to predict disease status and changes 

during specific therapy regimens, on the basis of machine 

learning approaches in high-throughput agnostic analyses 

(Figure 6)216. Because RF based imaging is increasingly com-

monly used and, access to computational equipment and pow-

erful computational hardware is increasing, RF based image 

interpretation is expected to be applied in clinical diagnostics 

in the coming years217.
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Figure 4  Virtual NMR voxel tumor classification. Left panel, top row: mice are injected with a fluorescent vessel marker, and subsequent 
brain resection, brain clearing, and selective plane illumination microscopy (SPIM) are used to visualize three-dimensional microvasculature; 
details have been described.186 Abnormal microvasculature in the tumor area (here, U87 glioblastoma) is delineated and partitioned into 
voxels with a 0.5 mm side length, which correspond to a voxel in a high-resolution MRI image stack. Similarly, a control mask is created on a 
healthy hemisphere and partitioned as well (far right, top row). Left panel, middle row: the microvasculature in each voxel is segmented, and 
spin dephasing is performed on the specific vascular arrangements to reveal multi-exponential MR signal decays (indicated with a MR signal 
decay relaxation rate component for short times, R2s, and for long times, R2L). Subsequently, relaxation parametrization occurs for each voxel, 
and can be used to train the classification of voxel vascular geometries into healthy and cancerous geometries (lower row) by using support 
vector machines or random forest classifiers; see also Ref.185. Adapted from Ref.186 (CC BY 4.0 license).
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Figure 5  PET-MRI in a patient with multiple myeloma. Focal bone lesions are visible in the axial skeleton (yellow arrows) and in the proximal 
upper and lower extremities (red arrows) in 18F-fluorodeoxyglucose (FDG) PET, in DWI images at different b-values (b = 50, b = 400, b = 800), 
in the ADC map, and in fat saturated contrast-enhanced T1w images (T1w-CE MRI). The combined structural, metabolic, and MR functional 
(DWI) information enables multiparametric, multifunctional characterization of the multifocal disease activity. Adapted from Ref.200 (CC BY 4.0 
license).
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Initially, RF extraction was performed in neuroimaging, e.g., 

to achieve radiomic profiling of glioblastoma tissue to identify 

imaging predictors of patient survival and anti-angiogenic 

treatment response218,219. Many other studies have applied 

RF extraction to all types of tumors and imaging modalities, 

most prominently lung tumors220, often in combination with 

genomic profiling, termed radiogenomics221. In many cases, 

relevant RFs have been found to discriminate between differ-

ent tumor classes, e.g., low- and high-grade gliomas222; to be 

highly sensitive to cancerous tissue as in breast cancer223; or to 

predict treatment response in prostate cancer224. Several pro-

spective clinical trials are currently underway to test the reli-

ability and reproducibility of RFs in different centers and for 

machines of different vendors225. However, radiomics has not 

yet been applied in clinical imaging.

Developments in machine learning algorithms via artificial 

neuronal networks with many layers, or deep learning, often 

with so-called convolutional deep neural networks, have gen-

erated networks that can be trained to independently detect, 

segment, or classify image-based pathologies226,227. The recent 

explosion of deep learning studies in oncology has been due 

to increasing access to large databases of image material, such 

as the Cancer Imaging Archive of the NIH National Cancer 

Institute; to technological developments in graphics process-

ing units; and to a vibrant and dynamic community spanning 

diverse disciplines such as mathematics, computational engi-

neering, radiology, biology, or physics.

Although the applications of machine learning in medical 

image computing are manifold and promising, one major 

disadvantage is the lack of reproducible results, which may 

be attributed to the non-standardized RF parameters in radi-

omics, or to a non-negligible inter-scan variability with differ-

ent acquisition parameters (e.g., in MRI, different flip angles, 

matrix size, TR/TE variations, field strength, etc.); non-expert 

annotation of imaging data and therefore annotation bias; and 

different and/or non-standardized machine learning models, 

many of which are prone to overfitting228,229.

For radiomics, the research community therefore has sought 

to establish standardized parameters in RF selection via the 

image biomarker standardization initiative (IBSI)230, and to 

build large databases to provide access to sufficiently large 

medical (anonymized) patient databases to allow broad testing 

of new algorithms. One commonly cited example is the Cancer 

Genome Atlas Glioblastoma multiforme data collection231.

Yet, with increasingly complex, often deep-learning-based, 

predictive modeling approaches, radiomics and deep learning 

feature selection is a purely statistical concept that focuses 

on predictive power rather than the biological meaning of 

these imaging characteristics, thus increasing the disconnect 

between radiological diagnostic decision-making in routine 

clinical practice and RF-informed image interpretation. This 

gap is expected to affect, and eventually limit extensive trans-

lation into routine clinical imaging232.

Conclusion

The ongoing advances in cross-sectional imaging have signif-

icant impact on the progress in translational cancer research. 

New developments such as CT photon-counting detectors, 

multiparametric microstructural MRI, multimodal and 

hybrid imaging approaches, as well as their combination with 

machine-learning-based image analysis methods provide 

increasingly detailed insight into tumor biology and hetero-

geneity. Integrative assessment with the aid of bioinformatics 

enables combining structural imaging signatures with func-

tional imaging characteristics, genomic or metabolomic pro-

files, and various patient clinical data. These advances in onco-

logic imaging are key pillars for future precision oncology.
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