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PERSPECTIVE

Roles of eIF5A in the immunosurveillance of cellular 
senescence
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Senescence is a cellular stress response program that prevents 

the proliferation of oncogenically activated, genetically unsta-

ble, and/or damaged cells. Senescence was first described in 

1961, when normal cultured human fibroblasts were found 

to enter irreversible growth arrest after multiple cell divisions, 

in a process known as replicative senescence1. Several types of 

senescence have since been identified, such as stress-induced 

senescence, oncogene-induced senescence, and virus-induced 

senescence. Despite having distinct features due to their dif-

ferent triggers, senescent cells share several key features. 

Generally, they have an enlarged and flattened morphology. In 

response to cellular stresses, they enter a stable cell cycle arrest 

resulting from the activation of p53–p21 or p16INK4A, crucial 

mediators of cell cycle arrest pathways. Moreover, all types of 

senescent cells produce a dynamic and bioactive secretome 

called the senescence-associated secretory phenotype (SASP)2. 

The SASP includes proinflammatory cytokines, chemok-

ines, matrix metalloproteinases, bioactive lipids, vesicles, and 

growth factors.

Although senescence is considered a protective mecha-

nism against tumorigenesis in young organisms, the accu-

mulation of senescent cells in tissues of older organisms is 

detrimental, owing to the formation of a proinflammatory 

microenvironment. Thus, developing strategies to selectively 

eliminate senescent cells has been a matter of great interest in 

recent years. Immunosurveillance in vivo is one of the most 

important processes to eliminate premalignant and malignant 

cells undergoing senescence. This process is mediated by SASP 

components and by the direct interaction between immune 

and senescent cells3.

The eukaryotic translation initiation factor 5A (eIF5A) is 

a ubiquitous and highly conserved protein. eIF5A is overex-

pressed in multiple types of tumors, and its expression is nega-

tively correlated with survival4. Originally, it was characterized 

as a translation initiation factor, but recent studies have indi-

cated that eIF5A promotes ribosome elongation at polypro-

line or other specific tripeptide motifs5,6. eIF5A is involved in 

multiple molecular functions such as cell proliferation, differ-

entiation, and apoptosis. Recent data suggest that eIF5A plays 

an important role in cellular senescence, potentially through 

affecting the expression of SASP components, as well as func-

tions of the immune and vascular systems.

Potential role of eIF5A in 
translational control of the SASP

eIF5A has a unique post-translational modification known as 

hypusination, a process in which the enzymes deoxyhypusine 

synthase (DHPS) and deoxyhypusine hydroxylase (DOHH) 

convert a lysine residue at the N-terminus of eIF5A to the 

unusual amino acid hypusine4. The polyamine spermidine is 

the only substrate for hypusination. To date, eIF5A is the only 

known protein containing hypusine, which is crucial for eIF5A 

function4.

The p53-p21 axis is a key signaling pathway activated at the 

onset of senescence7. Although p53 is not required to initiate 

the SASP, it can either promote secretion of several factors or 

restrain the SASP. eIF5A functions collaboratively in regulat-

ing p53 activity8. In a UV-irradiated cellular model, Martella 
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et al.9 have shown that exposure to UV light increases the bind-

ing of hypusinated eIF5A to ribosomes, thereby promoting the 

translation of p53. Enhanced p53 transcription factor activity 

further increases the expression of p21. Interestingly, a recent 

study has revealed a major role of p21 in establishing the SASP. 

p21 activates retinoblastoma protein (Rb)-dependent tran-

scription and produces a complex secretome10. In contrast, our 

unpublished data have suggested that activation of p53 during 

cellular senescence stimulates the hypusination of eIF5A by 

transcriptionally regulating genes involved in the polyamine 

pathway. Collectively, the interplay between p53 and hypusi-

nated eIF5A may play a role in modulating SASP components.

Expression of the SASP is controlled by inflammasome- 

mediated IL-1a signaling11. Mechanistic target of rapamy-

cin (mTOR) promotes the translation of IL-1a, nuclear fac-

tor-κB (NF-κB) activation12, and MAPKAPK2 levels during 

 senescence13. In yeast, TOR signaling inhibition by rapamycin 

leads to downregulation of the mRNA and protein levels of the 

2 eIF5A isoforms (TIF51A and TIF51B)14. eIF5A expression is 

regulated by the TORC1 pathway under conditions of abun-

dant nutrients; however, whether eIF5A is involved in regu-

lation of the SASP in an mTOR-dependent or-independent 

fashion during senescence is unknown.

Although experiments in cultured cells have suggested a 

decreased rate of protein synthesis in senescent cells15, pro-

duction of the SASP requires increased transcription, stabili-

zation, and translation of mRNAs encoding secretory factors. 

Mechanisms specifically promoting protein synthesis of the 

SASP during senescence remain poorly understood. One pos-

sible explanation for the increased production of SASP factors 

during times of translational repression is that SASP compo-

nents might be preferentially translated. Codon choice may 

be among the mechanisms underlying selective translation. 

Several studies have shown that eIF5A facilitates translational 

elongation of stretches of consecutive prolines5 and many 

non-polyproline specific motifs6.

Functions of eIF5A in immune cells 
and vascular senescence

Senescent cells are subjected to immunosurveillance by mul-

tiple components of innate and adaptive immunity. SASP fac-

tors attract distinct subsets of immune cells, including natural 

killer (NK) cells, neutrophils, dendritic cells, monocytes/mac-

rophages, B cells, and T cells. Among them, NK cells, T cells, 

and macrophages physically interact with senescent cells in 

pathological and physiological conditions. In a mosaic mouse 

model of liver carcinoma, reactivation of p53 in p53-defi-

cient tumors induces a cellular senescence program that trig-

gers a potent innate immune response removing tumor cells 

in vivo. The recruited immune effectors include neutrophils, 

NK cells, and macrophages in the liver16. In contrast, hepatic 

expression of NRas (G12V) elicits oncogene-induced senes-

cence in hepatocytes. In this context, Ras-specific T helper 1 

(Th1) lymphocytes have been detected in mice. CD4+ T cells 

require monocyte-derived macrophages to execute clearance 

of pre-malignant senescent hepatocytes, thus suggesting that a 

combination of innate and adaptive immunity is stimulated17.

eIF5A and polyamine metabolism have multifaceted roles 

in maintaining the functions of various subsets of immune 

cells. First, polyamine synthesis is a hallmark of T cell activa-

tion and proliferation. Recent work from Puleston and col-

leagues18 has elucidated the functional implications of pol-

yamine metabolism in Th cell subset fidelity. Disruption of 

polyamine synthesis or eIF5A hypusination results in failure 

of T cells to use the correct subset specification. Mechanistic 

investigations have indicated that a loss of polyamine or hypu-

sinated eIF5A causes profound epigenetic changes driven by 

histone acetylation and alterations in mitochondrial activity. 

Second, eIF5A hypusination, catalyzed by DHPS, is a feature 

of macrophages that reside in the adipose tissue of obese 

mice. DHPS supports the production of proteins that pro-

mote NF-κB signaling in macrophages. Moreover, it stim-

ulates the expression of mRNAs involved in promoting a 

proinflammatory M1-like state19. In contrast, Puleston et al.20 

have demonstrated that hypusinated eIF5A maintains tricar-

boxylic acid cycle and ETC integrity in macrophages by mod-

ulating mitochondrial protein expression. Inhibition of the 

polyamine-eIF5A-hypusine pathway blocks mitochondrial 

oxidative phosphorylation-dependent alternative activation 

of macrophages.

Several immune system cell types also undergo senes-

cence21,22. Recent studies have identified a role of eIF5A during 

immune senescence. Zhang et al.21 have reported that hypu-

sinated eIF5A specifically regulates the synthesis of the auto-

phagy transcription factor transcription factor EB (TFEB) in 

B cells. eIF5A has also been associated with autophagy  levels 

in T cells from aged mice. In addition, eIF5A is activated by 

Kruppel-like factor 5, an essential transcriptional factor dur-

ing vascular smooth muscle cell senescence. Depletion of 

eIF5A may lead to vascular disorders, owing to mitochondrial 
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fission and excessive ROS production23. Senescent cells may 

accumulate in aged and diseased tissues, because of a decline 

of immune system efficiency or the presence of immune-im-

pairing factors in the tissue microenvironment. Therefore, 

restoring the ability of the immune system or modulating tis-

sue microenvironment may benefit surveillance of senescence 

(Figure 1).

Harnessing eIF5A to control 
senescence

During early stages of senescence, the SASP plays primarily 

a protective role by stimulating the immune system to clear 

pre-malignant cells. However, long-term exposure to the 

SASP is generally considered detrimental because of asso-

ciations with chronic inflammation, malignant conversion 

of neighboring cells, and spontaneous cell-cycle re-entry of 

cancer senescent cells with latent stem-like properties. In this 

context, selective modulation of specific components of the 

SASP (senostatics) is a promising approach to treat inflam-

mation-associated diseases and cancer. Although many tran-

scriptional regulators of the SASP have been characterized, 

targeting the SASP at the transcriptional level presents mul-

tiple challenges. For example, transcription factors lack bind-

ing pockets and present structural disorder, thus limiting the 

use of small molecule inhibitors. Investigating regulators of 

the SASP at the translational level is a rational strategy for 

senostatics.

mTOR inhibitors can selectively inhibit the SASP and 

decrease inflammation caused by senescent cells. The SASP 

includes inflammatory cytokines such as IL6, IL8, and mono-

cyte chemoattractant proteins, which alter tissue environ-

ments and attract innate immune cells. mTOR inhibition can 

compromise senescence and its associated immune surveil-

lance, thus resulting in potentially detrimental effects dur-

ing early stages of cancer or ageing. In contrast,  substantial 

levels of hypusinated eIF5A in senescent cells maintain the 

expression of diverse SASP components, which in turn may 

affect immunosurveillance. Moreover, eIF5A appears to be 

crucial in controlling T cell fidelity and macrophage acti-

vation. Hypusinated eIF5A levels decline with age but can 

be boosted by dietary spermidine. For example, spermidine 

supplementation reverses B cell senescence and stimulates 

autophagy in aged CD8+T cells22. This evidence suggests that 

sustaining the levels of hypusinated eIF5A may be important 
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Figure 1 Scheme of the immunosurveillance of senescent cells. Cells enter senescence in response to stresses and begin to produce the 
SASP, which plays a key role in recruiting and activating immune cells. Senescent cells are then removed through innate or/and adaptive 
immunity. eIF5A may not only regulate the synthesis of SASP factors but also affect the activity of immune cells during cellular senescence.
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for reversing immune senescence or retaining the integrity of 

the immune system. Replenishing spermidine could conceiv-

ably contribute to immunosurveillance in these senescent 

conditions.

Senescent cancer cells accumulate in tissues after genotoxic 

therapies. Therefore, the following questions arise. 1) What 

are the biological roles of eIF5A during stress/therapy-in-

duced senescence? 2) How does the eIF5A-regulated SASP 

differ among senescence types? 3) Does a functional switch 

from an eIF5A pro-growth translation program to a pro-se-

nescence program exist? The underlying mechanisms remain 

elusive. Late in cancer, proliferating malignant cells have been 

speculated to outgrow the senescent cells after genotoxic ther-

apy. The innate and adaptive immunity elicited by the early 

SASP might be less potent in completely eliminating malig-

nant cells via mechanisms of immunosurveillance. As the 

SASP evolves over time, the late SASP components may even 

contribute to immune evasion. Excessive expression of eIF5A 

may not necessarily boost immune cell activity. eIF5A may be 

assumed to have dominant negative effects on senescence in 

certain contexts. Thus, inhibition of eIF5A activation or its 

downstream targets appears to be a rational strategy to tar-

get cancer senescent cells. To date, no inhibitor directly tar-

geting eIF5A has been developed. However, inhibiting DHPS 

or DOHH provides a potent route to regulate eIF5A activity. 

GC7 is the most specific inhibitor of DHPS. However, owing 

to its adverse effects, wide clinical use is not considered feasi-

ble. For instance, mice treated with GC7 show negative effects 

in T cell proliferation with a selective decrease in Th1 cells24. 

Tanaka et al.25 have conducted synthetic studies and obtained 

bromobenzothiophene, a new compound that targets DHPS, 

thus opening the door to novel clinical approaches targeting 

eIF5A.

Conclusions

Many gaps remain in the mechanistic understanding of the 

regulation of senescence-associated translation. eIF5A is an 

intriguing translation factor that may potentially regulate 

subsets of SASP factors and may have profound effects on the 

activity of immune effectors and vascular cells. Exploring its 

targets among different senescent contexts will be extremely 

important to provide a deeper understanding of translational 

control during cellular senescence, and potentially yield new 

avenues to precisely control senescence in age-associated dis-

eases, including cancer.
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