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ABSTRACT Tumor tissues contain both tumor and non-tumor cells, which include infiltrated immune cells and stromal cells, collectively called 

the tumor microenvironment (TME). Single-cell RNA sequencing (scRNAseq) enables the examination of heterogeneity of tumor 

cells and TME. In this review, we examined scRNAseq datasets for multiple cancer types and evaluated the heterogeneity of major 

cell type composition in different cancer types. We further showed that endothelial cells and fibroblasts/myofibroblasts in different 

cancer types can be classified into common subtypes, and the subtype composition is clearly associated with cancer characteristic and 

therapy response.
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Introduction

The hallmarks of cancer consist of complex biological pro-

cesses include uncontrolled cell growth, induction of angi-

ogenesis, and activation of invasion and metastasis1. Cancer 

cells growing in Petri dishes can only reflect a part of cancer 

biology. Tumor tissues contain not only tumor cells but also a 

complex environment supporting tumor cell growth, includ-

ing blood vessels, infiltrated immune cells, stromal cells, sign-

aling molecules, and extracellular matrix, which is collectively 

called the tumor microenvironment (TME)2. Tumor–TME 

interactions are important for tumor progression3, chemo-

therapy response4, and immune therapy response5. Single-cell 

RNA sequencing (scRNAseq) technology has revolutionized 

our ability to examine heterogeneity of tumor cells and TME 

as well as tumor–TME interactions in detail. scRNAseq has 

been applied to study TMEs in multiple cancer types, including 

gastric cancer6, melanoma7-9, uveal melanoma10, breast can-

cer11,12, colon cancer12,13, hepatocellular carcinoma (HCC)14, 

head and neck squamous cell carcinoma (HNSCC)15, lung 

cancer12, ovarian cancer12, bladder cancer16, and kidney can-

cer17. How tumor-infiltrating immune cells in TME affect 

tumor progression, and immune therapies has been exten-

sively studied and reviewed18-20. In this review, we focus on the 

heterogeneity of stromal cells in TME.

A brief history of scRNAseq research

The dramatic decrease in sequencing cost and increase in 

sequencing throughput around 2010 made it possible to 

examine individual cells instead of individual tumor, person, 

or species. Navin et al.21 reported sequencing single-cell DNA 

to elucidate tumor cell evolution in breast cancer progression 

and metastasis in 2011. Around the same time, multiple groups 

reported sequencing individual cells at the transcription level, 

scRNAseq, such as Dalerba et al.22 on transcriptional heteroge-

neity in human colon tumors and Ramskold et al.23 on individ-

ual circulating tumor cells. The early challenges of scRNAseq 

studies include how to isolate single cells and how to unbi-

asedly amplify individual cell’s genome or transcriptome24. 

The early computational challenges include how to cluster and 
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visualize single-cell data25 and how to infer missing values in 

the data26,27. Initial applications of scRNAseq focus on discov-

ering novel cell types or cell states. With accumulation of more 

and more scRNAseq data, the chance of discovering novel cell 

types/subtypes are diminishing while other  challenges arise, 

e.g., how to integrate different scRNAseq datasets and consist-

ently classify cells into common cell types, how to classify and 

annotate cells based on information derived from other stud-

ies28, commonly known as transfer learning29.

In this review, we collected multiple solid-cancer  scRNAseq 

datasets consisting of >2,000 cells profiled (Table 1). To 

overcome differences due to data generation platforms (10x 

Genomics, Smart-seq, etc.), we reprocessed all datasets using 

a single data-processing pipeline (details in the Methods 

 section), then clustered the cells into major cell types. After 

the initial clustering step, we collected stromal cells and fur-

ther classified them into subtypes defined in pan-cancer 

analyses by Qian et al.12 so that we can examine stromal cell 

heterogeneity across different tumors and adjacent normal 

tissues.

Major cell types in scRNAseq datasets

Cells in each dataset were clustered individually following 

the procedure described by Qian et al.12 and annotated using 

common cell-specific markers12,13,16,17. The resulting cell frac-

tions in TME (summarized in Figure 1A and detailed in Table 

2) were similar to the ones reported in the original studies. 

For infiltrated immune cells, uveal melanoma had the lowest 

T-cell infiltration and the highest B-cell infiltration compared 

with other solid tumor types, which may explain why uveal 

melanoma had very low response rate to immune checkpoint 

inhibitors30. Meanwhile, kidney tumors had the highest frac-

tion myeloid cells infiltrated into the tumors, which explains 

why myeloid cells play a profound tumor-promoting role in 

kidney cancer31. Among stromal cells, HCC had the highest 

endothelial cell (EC) fraction, whereas HNSCC had the high-

est fibroblast/myofibroblast fraction.

When comparing cell fractions in tumor tissues and adja-

cent normal tissues (Figure 1B, Table 3), T-cell infiltration was 

higher in tumor tissues than in the corresponding adjacent 

normal tissues for all cancers except gastric cancer. The larg-

est difference in T-cell infiltration between tumor and normal 

tissues was in the kidney. Similarly, kidney tumors had much 

higher fraction of infiltrated myeloid cells than adjacent nor-

mal tissues, indicating the tumor-promoting role of myeloid 

cells in kidney cancer31. It is worth noting that the B-cell frac-

tion in normal colon tissues was much higher than that in 

tumor tissues, consistent with the role of B cell in response to 

gut microbiota32.

Endothelial cells

Angiogenesis is a key feature of tumor growth. We previously 

showed that the fraction of ECs in tumor tissues were associ-

ated with patient survival16, especially in kidney cancers. Based 

on pan-cancer scRNAseq data analysis, Qian et al.12 classified 

ECs into 5 subtypes: C1_ESM1 for tip cells with high expres-

sion of ESM1, C2_ACKR1 for venous ECs with high expres-

sion of ACKR1, C3_CA4 in capillary ECs with high expression 

of CA4, C4_FBLN5 in arterial ECs with high expression of 

FBLN5, and C5_PROX1 lymphatic ECs with high expression 

of PROX1. Qian et al.12 also identified 40 EC subtype–specific 

genes for each subtype. Instead of pooling all ECs in different 

datasets together and clustering, in which biology differences 

of different cancers and batch effects are confounded, we lev-

eraged transfer learning approaches to classify EC cells into 

the 5 subtypes based on the known subtype-specific genes 

described above, and the resulting heatmaps (Figure 2) show 

clear subtype-specific patterns. Thus, the EC subtype–spe-

cific genes were generally applicable across different cancer 

types in classifying cells profiled using different scRNAseq 

platforms.

The EC subtype frequency in different cancers are shown 

in Figure 3A. Among ECs, kidney tumor tissues contained 

the highest fraction of tip ECs (C1_ESM1), which is consist-

ent with the fact that kidney cancer responds well to anti- 

angiogenesis vascular endothelial growth factor (VEGFR) 

tyrosine kinase inhibitors (TKIs)33, whereas melanoma tissues 

contained the highest lymphatic ECs (C5_PROX1) consistent 

with prone lymph node metastasis of melanoma34.

Compared with adjacent normal tissues, tumor tissues con-

tained consistently higher fractions of tip ECs (C1_ESM1) 

(Figure 3B), suggesting higher angiogenesis activity in tumor 

tissues, and anti-angiogenesis therapies are used in colorec-

tal (CRC), breast, lung, and ovarian cancers35-38. Meanwhile, 

tumor tissues contained lower fractions of capillary ECs (C3_

CA4). The most noticeable difference is that adjacent normal 

lung tissues contained the highest fraction of capillary ECs 

(>70% of all ECs), consistent with general lung function.

When patients were split into according to age, young (age 

<60 years) and old (age ≥60 years) groups, several interesting 
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patterns were revealed (Figure 3C). Tumor tissues of young 

patients with breast, ovarian, liver cancers, and melanoma 

contained much higher fraction of tip ECs than the corre-

sponding fraction in tumor tissues of old patients. It has been 

observed that older patients with melanoma respond poorly to 

anti-VEGFR anti-angiogenesis therapy39. The melanoma tis-

sues of older patients contained higher fraction of lymphatic 

ECs (C5_PROX1) than those of younger patients, consistent 

with the observation that melanoma in older patients is more 

aggressive40.

Fibroblasts and myofibroblasts

Compared with ECs, fibroblasts are more heterogeneous41 and 

some subtypes are tissue type–specific12. When analyzing CRC, 

ovarian, and lung cancers together, Qian et al.12 identified 3 

colon tissue–specific fibroblast subtypes, 3 ovary–specific 

fibroblast subtypes, and 5 fibroblast/myofibroblast subtypes 

common across all 3 cancer types. In this analysis, we focused 

on subtypes common across cancer types: C7_MYH11 myofi-

broblasts with high expression of MYH11, C8_RGS5 pericytes 

involving in angiogenesis and vessel maturation, C9_CFD 

adipogenic fibroblasts with high expression of adipsin CFD, 

C10_COMP fibroblasts with high activity in transforming 

growth factor beta (TGF-β) signaling and glycolysis pathways, 

and C11_SERPINE1 fibroblasts with high expression of genes 

involved in cell migration and wound healing. Similar to the 

above analysis of ECs, we collected fibroblasts/myofibroblasts 

after clustering cells into major cell types. Then, we classi-

fied fibroblasts/myofibroblasts into subtypes defined by Qian 

et al.12. Since we encompassed more cancer types in the anal-

ysis, there could be tissue-specific fibroblast/myofibroblast 

subtypes that are not covered by Qian et al.12, and we classi-

fied these cells as unknown subtypes in the transfer learning 

process (Methods section). For all the datasets analyzed here, 

a majority of fibroblasts/myofibroblasts could be classified 

into 1 of the 5 common fibroblast/myofibroblast subtypes as 

indicated in the heatmaps of subtype-specific gene expression 

(Figure 4).

Excluding tissue-specific subtypes, we calculated subtype 

frequencies among the 5 common fibroblast/myofibroblast 

subtypes in each cancer type (Figure 5A). Among all cancer 

types, HNSCC contained the highest fraction of C7_MYH11 

myofibroblasts, consistent with significant roles of myofibro-

blasts in HNSCC invasion and progression42. Liver cancer 

had the second highest fraction of C7_MYH11 myofibroblast 

(Figure 5A). Liver myofibroblasts, which can be derived from 

hepatic stellate cells and portal mesenchymal cells43, are closely 

associated with liver fibrosis, liver cancer tumorigenesis, and 

progression44. Compared with other cancer types, kidney 
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cancer had a much higher fraction of C8_RGS5 pericytes 

(Figure 5A). The result, together with a larger fraction of tip 

ECs in kidney cancer (Figure 3A), suggests high angiogene-

sis activity in kidney cancer45. Compared with other cancer 

types, kidney cancer had the lowest fraction of C10_COMP 

fibroblasts (Figure 5A), which activate TGF-β signaling and 

glycolysis pathways, but normal kidney tissue had the high-

est fraction of C10_COMP fibroblasts compared with normal 

tissues of other origins (Figure 5B). In normal renal cells, acti-

vation of the TGF-β signaling pathway has protective effects 

against kidney injury46. Similar to the observation that C9_

CFD fibroblasts exist mainly in normal colon, lung, and ovary 

tissues12, the fraction of C9_CFD fibroblasts in normal tissue 

was much higher than that in tumor tissue of the same tissue 

origin (Figure 5B).

When compared with tissues from young patients 

(Figure 5C), tumor tissues from old patients contained a higher 

fraction of C7_MYH11 myofibroblasts except lung and gastric 

cancers. It is worth noting that the fraction of C11_SEPINE1 

fibroblasts, which are associated with tumor invasion, in tis-

sues of young CRC and gastric cancer patients was higher than 

that in old patients, consistent with the observation that tum-

ors of young patients with CRC and those with gastric cancer 

are more invasive47,48. Meanwhile, the C11_SEPINE1 fibro-

blasts fraction in tissues from old patients with melanoma was 

higher than that in younger patients, suggesting melanoma in 

older patients is more aggressive40.Ta
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Table 3 Cell numbers of major cell types in adjacent normal 
tissues of different cancer types in the scRNAseq datasets listed 
in Table 1

Cell type CRC_Qian LC_Qian OVC_Qian Kidney Gastric

B 3,309 387 53 514 3,623

DC 0 540 0 0 0

EC 688 2,383 806 2,870 615

Fibroblast 3,329 0 5,689 554 1,173

Mast cell 261 230 0 35 97

Myeloid 1,209 10,075 1,599 1,624 1,191

T 1,694 9,046 1,072 3,419 8,672

Alveolar 0 3,555 0 0 0

Enteric glia 691 0 0 0 0

Epithelial 2,324 378 238 39,233 2,937

Myofibroblast 553 672 1,188 1,669 0
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Prognosis and chemo-response–related 
gene signatures in stromal and tumor 
cells

The epithelial–mesenchymal transition (EMT) process con-

fers tumor cell plasticity and is associated with tumor inva-

sion and metastasis and cancer patient survival49. Similarly, 

the TGF-β-signaling pathway activity is associated with tum-

origenesis, tumor progression, and cancer patient survival 

in a more cancer type–specific manner50. EMT and TGF-β 

signaling pathway activities in tumor are also associated 

with resistance to chemotherapies51 and, more recently, to 

resistance to checkpoint blockade inhibitors as well52,53. In 

tumor tissues, the EMT process and TGF-β signaling path-

way activity in tumor cells are not self-regulated; rather, they 

depend on paracrine signaling from TME54,55. With scR-

NAseq data available in multiple cancer types, we compared 

expression of genes in EMT and TGF-β signaling pathways 

in different EC subtypes, fibroblast/myofibroblast subtypes, 

and tumor cells (Figure 6). In all cancer types except uveal 

melanoma, the EMT and TGF-β signaling pathway activities 

were higher in stromal cells than in tumor cells (Figure 6), 

and their activities were the highest in cancer-associated 

Figure 2 Heatmaps of endothelial cell subtypes in different cancer types. (A) CRC, (B) lung cancer, (C) breast cancer, (D) ovarian cancer, 
(E) bladder cancer, (F) kidney cancer, (G) gastric cancer, (H) HCC (GSE125449), (I) uveal melanoma (GSE139829), (J) melanoma (GSE115978), 
(K) melanoma (GSE72056), and (L) HNSCC (GSE103322). The subtype-specific genes were from Qian et al.
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fibroblasts (C10_COMP and C11_SERPINE1 fibroblasts), 

consistent with the observations of Qian et al.12. At individ-

ual gene level, the expression of genes in the EMT pathway 

was much higher in fibroblasts/myofibroblasts than in tumor 

cells (Figure 7). Among fibroblast/myofibroblast subtypes, 

EMT genes expressed at a higher level in C10_COMP and 

C11_SERPINE1 fibroblast subtypes than in other subtypes 

(Figure 7). For genes in the TGF-β signaling pathway, their 

expression in both ECs and fibroblasts/myofibroblasts was 

higher than in tumor cells. These results suggest that the 

EMT process and TGF-β signaling pathway activity in tumor 

cells highly depend on paracrine signaling from stromal cells. 

Among genes in TGF-β signaling pathways, their expression 

was highly heterogeneous across different genes in the path-

way, cancer types, and stromal cell subtypes. The expression 

of genes within cells of the same subtype in the same cancer 

type was also heterogeneous. For example, ACVR1, a mem-

ber of the TGF-β signaling pathway, was expressed at a very 

low level in all ECs, fibroblasts/myofibroblasts, and tumor 

cells. TGFBR2, was expressed at a higher level in all EC sub-

types than in fibroblasts/myofibroblasts and tumor cells, and 

its expression level showed a bimodal distribution in ECs in 

most cancer types.

Discussion

In this pan-cancer scRNAseq data analysis, we determined 

that there was heterogeneity of major cell type compositions 

in TME of different cancer types. We further demonstrated 

that the subtype-specific genes of ECs and fibroblasts/

myofibroblasts defined by Qian et al.12 could be used to 

robustly classify stromal cells in all cancer types analyzed 

here (Figures 3 and 7). The composition of stromal cell sub-

types varied in different cancer types and age groups and 

was associated with therapy response. For example, kidney 

tumor contained the highest fraction of tip ECs (C1_ESM1) 

and responds well to anti-angiogenesis TKIs33, whereas mel-

anoma in old patients contained a much lower fraction of 

tip ECs, and old patients with melanoma respond poorly 

to anti-VEGFR anti-angiogenesis therapy39. We showed 

that the EMT process in cancer cells highly depended on 

paracrine signaling in stromal cells (Figure 6). Cancer cell 

lines have very different chemo-sensitivity with and without 

interaction with stromal cells56. As stromal cells are hetero-

geneous and have disparate effects in interacting with cancer 

cells and response to anti-cancer drugs, future drug sensi-

tivity screening studies and therapeutic interventions need 
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Figure 3 Endothelial cell (ECs) in tumor microenvironment. (A) Fractions of EC subtypes in different cancer types. (B) Comparison of different 
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to consider interactions between cancer cells and different 

subtypes of stromal cells.

Methods

scRNAseq datasets

We collected multiple large scRNAseq datasets with at least 

2,000 cells profiled on solid tumors existing in literature 

including gastric cancer6, melanoma7-9, uveal melanoma10, 

breast cancer11,12, colon cancer12,13, HCC14, head and neck 

cancer15, lung cancer12, ovarian cancer12, bladder cancer16, and 

kidney cancer17. As we focused on stromal cells in TME, we 

kept only 12 CD45− or unsorted scRNAseq datasets in our 

analyses. The description of patient cohorts and information 

of these datasets are summarized in Table 1.

Data preprocessing

Different datasets were generated using different single-cell 

RNAseq platforms and analyzed with different pipelines. 

To reduce biases caused by different processing and analysis 

methods, we reanalyzed the datasets from raw data with an 

identical pipeline. For datasets generated using 10x Genomics 

and other platform with UMI, following the criteria used by 

Qian et al.12, cells with >200 genes and <6,000 genes, with 

Figure 4 Heatmaps of fibroblast/myofibroblast subtypes in different cancer types. The subtype-specific genes were from Qian et al.
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mitochondrial read fraction <25%, and with >400 UMIs were 

selected for further analyses. Cell cycle score per cell was cal-

culated based on cell cycle genes from Tirosh et al.8. The gene 

expression for each cell was log-normalized with scale factor 

of 10,000. The top 2,000 most variable genes were selected for 

clustering analysis based on the variance-stabilizing transfor-

mation (VST) method57. These genes’ expression was scaled 

using linear regression to remove effects associated with mito-

chondrial reads fraction, sample identity, number of UMIs, 

and cell cycle scores.
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Figure 6 Comparison of the epithelial–mesenchymal transition (EMT) and transforming growth factor beta (TGF-β) signaling pathway activ-
ities in different subtypes of stromal cells and cancer cells in tumor tissues. The 2 rows in each panel are activities of the EMT and TGF-β 
signaling pathways, respectively. Columns represent different cell types. Blue, endothelial subtypes (C1_ESM1 tip ECs, C2_ACKR1 venous ECs, 
C3_CA4 capillary ECs, C4_FBLN5 arterial ECs, and C5_PROX1 lymphatic ECs); greens, fibroblast/myofibroblast subtypes (C7_MYH11 myofibro-
blasts, C8_RGS5 pericytes, C9_CFD adipogenic fibroblasts, C10_COMP fibroblasts, and C11_SERPINE1fibroblasts); orange, tumor cells.
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For datasets generated using Smart-seq2 and other platform 

using full transcript, the transcript length–normalized data 

such as FPKM were transformed to TPM. The log2(TPM/10 

+ 1) transformation was used as input for further analyses. 

Following the criteria of Qian et al.12, cells with >200 genes 

and <6,000 genes and with mitochondrial read fraction <25% 

were selected for further analyses. The cell cycle score for 

each cell was calculated based on cell cycle genes from Tirosh 

et al.8. Similar to the UMI-based datasets, the top 2,000 most 

variable genes were selected for clustering analysis using the 

VST method57. The expression data were scaled by mitochon-

drial reads fraction, sample identity, and cell cycle score.

Identifying major cell types

After the expression data were scaled, dimension reduction 

with PCA was performed for each dataset as outlined by Qian 

et al.12. Elbow plot was used to find the optimal number of 
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Figure 7 Comparison of expression levels of genes in the epithelial–mesenchymal transition (EMT) and transforming growth factor beta 
(TGF-β) signaling pathways in different subtypes of stromal and cancer cells in tumor tissues. TGFB1, TGFBR2, and ACVR1 in the TGF-β signal-
ing pathway were also examined individually. Rows in each panel are expression levels of genes in Hallmark_EMT, genes in TGF_BETA_signaling, 
TGFB1, TGFBR2, and ACVR1, respectively. Blue, endothelial subtypes (C1_ESM1 tip ECs, C2_ACKR1 venous ECs, C3_CA4 capillary ECs, C4_FBLN5 
arterial ECs, and C5_PROX1 lymphatic ECs); greens, fibroblast/myofibroblast subtypes (C7_MYH11 myofibroblasts, C8_RGS5 pericytes, C9_CFD 
adipogenic fibroblasts, C10_COMP fibroblasts, and C11_SERPINE1fibroblasts); orange, tumor cells.
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dimensions for cell clustering. We used common cell type 

markers12,13,16,17 to annotate the resulted clusters. If the refer-

ence provides cell type identity, we cross-referenced our anno-

tation results with original published ones. We found that our 

estimated fractions of major cell types matched well with the 

original results published in literature.

EC subtypes

Based on the above major cell type annotation results, we col-

lected the ECs in each dataset. A model for each EC subtype 

was built based on subtype-specific genes as reported by Qian 

et al.12. Then, each EC was classified by comparing expression 

of the EC subtype–specific genes in each cell with the 5 EC 

subtype models one by one. For the UMI-based platform, nor-

malized counts with a scale factor of 10,000 were used as gene 

expression values. For a full-length transcript-based platform, 

log2(TPM/10 + 1) was used as gene expression values.

Fibroblast and myofibroblast subtypes

We collected fibroblasts and myofibroblasts in clustering in 

each dataset. A model for each fibroblast/myofibroblast sub-

type was built based on subtype-specific genes reported by 

Qian et al.12. The expression data of the fibroblast/myofibro-

blast subtype–specific genes in each cell were compared with 

the 11 tissue-specific and common subtype models. As there 

could be fibroblast/myofibroblast subtypes beyond the 11 sub-

types identified by Qian et al.12, we classified a cell as unknown 

if its expression pattern was not significantly similar to any 

fibroblast/myofibroblast subtype model. Similar to the classifi-

cation of EC subtypes, log-normalized counts with scale factor 

of 10,000 for the UMI-based platform and log2(TPM/10 + 1) 

for the full-length transcript-based platform were used as gene 

expression values.

Pathway activities estimated using 
single-sample gene set enrichment 
analysis

The signature gene sets Gene Hallmark_Epithelial_

Mesenchymal_Transition (EMT) and HALLMARK_TGF_

BETA_SIGNALING (TGFB) were collected from MsigDB58. 

For stromal cells (ECs and fibroblast cells) and tumor cells, we 

applied single-sample gene set enrichment analysis59 version 

2.0 based on the 2 signature gene sets and normalized expres-

sion. For 10x Genomics and other platforms with UMI, we 

used log-normalized counts with scale factor of 10,000. For 

datasets generated using Smart-seq2 and other platforms 

using full transcript, we used log2(TPM/10 + 1).
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