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A novel recurrence-associated metabolic prognostic model 
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patients with stage I lung adenocarcinoma
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ABSTRACT Objective: The proportion of patients with stage I lung adenocarcinoma (LUAD) has dramatically increased with the prevalence of 

low-dose computed tomography use for screening. Up to 30% of patients with stage I LUAD experience recurrence within 5 years after 

curative surgery. A robust risk stratification tool is urgently needed to identify patients who might benefit from adjuvant treatment.

Methods: In this first investigation of the relationship between metabolic reprogramming and recurrence in stage I LUAD, we 

developed a recurrence-associated metabolic signature (RAMS). This RAMS was based on metabolism-associated genes to predict 

cancer relapse and overall prognoses of patients with stage I LUAD. The clinical significance and immune landscapes of the signature 

were comprehensively analyzed.

Results: Based on a gene expression profile from the GSE31210 database, functional enrichment analysis revealed a significant 

difference in metabolic reprogramming that distinguished patients with stage I LUAD with relapse from those without relapse. We 

then identified a metabolic signature (i.e., RAMS) represented by 2 genes (ACADM and RPS8) significantly related to recurrence-free 

survival and overall survival times of patients with stage I LUAD using transcriptome data analysis of a training set. The training 

set was well validated in a test set. The discriminatory power of the 2 gene metabolic signature was further validated using protein 

values in an additional independent cohort. The results indicated a clear association between a high risk score and a very poor patient 

prognosis. Stratification analysis and multivariate Cox regression analysis showed that the RAMS was an independent prognostic 

factor. We also found that the risk score was positively correlated with inflammatory response, the antigen-presenting process, 

and the expression levels of many immunosuppressive checkpoint molecules (e.g., PD-L1, PD-L2, B7-H3, galectin-9, and FGL-1). 

These results suggested that high risk patients had immune response suppression. Further analysis revealed that anti-PD-1/PD-L1 

immunotherapy did not have significant benefits for high risk patients. However, the patients could respond better to chemotherapy.

Conclusions: This study is the first to highlight the relationship between metabolic reprogramming and recurrence in stage I LUAD, 

and is the first to also develop a clinically feasible signature. This signature may be a powerful prognostic tool and help further 

optimize the cancer therapy paradigm.
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Introduction

Lung cancer remains the most prevalent malignant tumor 

that seriously threatens human health worldwide, with 

approximately 2.1 million new cases and 1.8 million deaths 

each year1. Non-small cell lung cancer (NSCLC) is the pre-

dominant histological tumor type found in patients. Of the 

cases of NSCLC, approximately two-thirds are lung adenocar-

cinoma (LUAD)2. LUAD is diagnosed during the advanced or 

metastatic stages in most patients. However, the incidence of 

early-stage LUAD diagnosis is increasing sharply as low dose 

computed tomography (LDCT) screening has been more 

widely adopted in recent years3-5. Except for some pathology 

result-based high risk patients that require adjuvant chemo-

therapy, complete surgical resection is the recommended 

curative treatment for early stage LUAD (including stages I 

and II)6,7. However, for stage I LUAD, a clinical staging system 
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seems to be only a weak predictor of relapse risk and long-term 

survival probability8. Large clinical trials have not found a sig-

nificant benefit among unselected patients with stage I LUAD 

for whom the toxic effects associated with chemotherapy out-

weigh the potential survival benefits. Therefore, curative sur-

gery remains the most popular therapeutic strategy to improve 

the prognoses of patients with stage I LUAD5,9,10. Nevertheless, 

high percentages of postoperative relapse or metastasis present 

a challenge for the long-term overall survival of patients with 

stage I LUAD11. Up to 30% experience tumor recurrence or 

metastasis within 5 years after curative surgery12. Therefore, 

robust discrimination criteria are needed that can be used to 

categorize stage I LUAD tumors after local resection and deter-

mine which patients have tumors at high risk for recurrence 

and could benefit from the use of adjuvant systemic therapy. 

Patients at low risk of tumor recurrence could be spared the 

use of this additional therapy.

Recently, there is increasing consensus that cancer meta-

bolism is recognized as a well-established hallmark of tumor 

cells and also as an emerging source of novel potential drug 

targets13,14. Cancer cells must reprogram their metabolism 

to support various kinds of steps during carcinogenesis and 

cancer progression15. For example, they need to regulate meta-

bolic programs to meet energy demands associated with rapid 

proliferation and migration. Cancer metabolism is modified 

partly by changes in cancer cell signaling and transcriptional 

programs activated by alterations in oncogenes or tumor sup-

pressor genes16. Many commonly-mutated genes associated 

with LUAD regulate metabolic programs (e.g., TP53, KRAS, 

EGFR, KEAP1, and PIK3CA, PTEN)17. Specific driver muta-

tions are associated with tumor progression, and KRAS muta-

tions are related to disease recurrence in patients with stage 

I LUAD18. Thus, we examined whether metabolism-related 

genes could be a recurrence-associated gene signature that 

predicted recurrence in stage I LUAD.

In this study, we performed gene set enrichment analy-

sis (GSEA) on gene expression profiles from the GSE31210 

dataset. We found significant differences in metabolic repro-

gramming that could be used to distinguish stage I LUAD 

tumors with a relapse from those without a relapse. We 

then developed a recurrence-associated metabolic signature 

(RAMS) in 162 stage I LUAD samples from the GSE31210 

dataset. This signature was validated using an independent 

set of 81 tumor samples from the GSE30219 dataset. To fur-

ther test the reliability and practical application of the signa-

ture, we validated its prognostic power using protein values 

for selected genes and recurrence free survival (RFS) data 

for patients with stage I LUAD in a cohort recruited from 

the Cancer Hospital/Institute, Chinese Academy of Medical 

Sciences (CICAMS). Considering the promising prospects 

for immunotherapy in patients with lung cancer, we also 

comprehensively analyzed the clinical significance, immune 

checkpoint profiles, and immune cell infiltration of the novel 

RAMS. The results of this analysis provides the opportunity 

to further optimize the paradigm of cancer therapy, particu-

larly of immunotherapy, and effectively reduce the relapse 

percentage of these tumors.

Materials and methods

Public gene expression datasets

We collected information on 243 cases of stage I LUAD cases 

with RFS data from 2 different Gene Expression Omnibus 

(GEO, http://www.ncbi.nlm.nih.gov/geo) datasets (162 cases 

from GSE31210 and 81 cases from GSE30219). The transcrip-

tome data were log2 transformed and standardized across 

patients using a quantile normalized method. All correspond-

ing characteristics of enrolled patients and clinical outcomes 

were publicly obtainable. The results for the patient infor-

mation from the 2 cohorts are presented in Supplementary 

Table S1.

Construction and validation of RAMS

We extracted 2,031 metabolism-related genes from the pub-

licly accessible ccmGDB database (http://bioinfo.mc.van-

derbilt.edu/ccmGDB)19. We then performed univariate Cox 

proportional hazards regression modeling to evaluate their 

prognostic value for RFS using stage I LUAD data from the 

GSE31210 dataset. Based on minimal criteria, a least absolute 

shrinkage and selection operator (LASSO) Cox proportional 

hazards regression model was used to select the genes with 

the largest predictive values. Next, we used a multivariate Cox 

proportional hazards regression model to determine the target 

genes that formed a RAMS for prognostication. We designed 

a formula to calculate the RAMS value of each patient, which 

included weighting the normalized expression value of the tar-

get genes by their respective coefficients. In the formula, the 

expression values of the target genes were normalized with a 

mean value = 0 and a standard deviation (SD) = 1 to obtain a 

uniform cut-off value to assign patients into low risk or high 

http://www.ncbi.nlm.nih.gov/geo
http://bioinfo.mc.vanderbilt.edu/ccmGDB
http://bioinfo.mc.vanderbilt.edu/ccmGDB
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risk groups20. The prognostic power of the novel RAMS for 

RFS and overall survival (OS) was evaluated in three different 

cohorts using receiver operating characteristic (ROC) curve 

and Kaplan-Meier survival analyses. We also performed uni-

variate and multivariate Cox regression analyses to determine 

whether RAMS was an independent prognostic risk factor.

Patients in the CICAMS cohort and specimen 
collection

The CICAMS cohort enrolled 74 NSCLC patients who under-

went radical surgery with systematic lymph node dissection 

from December 2012 to December 2013. The tumors of all eli-

gible patients were diagnosed as stage I LUAD based on patho-

logical characteristic (American Joint Committee on Cancer 

8th TNM system). The patients did not undergo any preoper-

ative treatments, such as chemotherapy or radiotherapy. The 

results for the clinicopathological information of the included 

patients are presented in Supplementary Table S1. Follow-up 

information was obtained through hospital visits or telephone 

contact with the patients or their relatives. The follow-up 

schedule consisted of a clinic visit every 3 months during the 

first 2 years, every 3–6 months from the third to fifth years, and 

at 1 year intervals thereafter. The Ethics Committee of CICAMS 

approved this study (approval number CH-L-043). All enrolled 

patients signed the written informed consent form before the 

study, in accordance with local ethics committee oversight.

Immunohistochemistry (IHC) analysis

Paraffin-embedded LUAD samples from the CICAMS cohort 

were collected to examine the protein levels of 2 metabolic 

genes. Expression of ACADM and RPS8 were detected by IHC 

using an ACADM assay (anti-human ACADM rabbit recombi-

nant monoclonal antibody, ab92461, Abcam, Cambridge, MA, 

USA) and a RPS8 assay (anti-human RPS8 rabbit polyclonal 

recombinant antibody, 18228-1-AP, Proteintech, Rosemont, 

IL, USA). All IHC slides were evaluated by 2 experienced 

pathologists, according to previously published evaluation 

criteria20-22. Each pathologist was blinded to the clinical para-

meters. The staining score of each sample was calculated using 

the following: staining score = staining intensity × percentage 

of positive tumor cells × 100. Staining intensity was scored 

according to the following: no color development was rated as 

0 (negative), pale yellow as 1 (weak), yellow as 2 (moderate), 

and brown yellow as 3 (strong). Ten randomly-chosen fields 

were examined using a high power microscope (×400). The 

average value was used to calculate the percentage of tumor 

cells that positively stained, when compared with all tumor 

cells in the field of view. The results for representative staining 

images of ACADM and RPS8 at different levels are presented 

in Supplementary Figure S1.

Immune cell infiltration analysis

The deconvolution algorithm, CIBERSORT (https://ciber-

sort.stanford.edu/), was performed to calculate the fractions 

of 22 tumor-infiltrated immune cells in each sample, based 

on transcriptome data. The results were further filtered using  

P < 0.0523,24. The gene expression profile data was standard-

ized across samples using a quantile-normalization method to 

remove effects of confounding variables.

Clinical drug response prediction

Tumor Immune Dysfunction and Exclusion modeling (TIDE, 

http://tide.dfci.harvard.edu) was used to estimate TIDE pre-

diction scores. Normalized mRNA data from each sample 

were included as model inputs. Patients whose TIDE predic-

tion scores were greater than zero were identified as respond-

ers. Patients whose TIDE prediction scores were less than zero 

were identified as nonresponders. Transcriptome data were 

standardized across samples using a quantile-normalization 

method. The expression value of each gene was normalized by 

subtracting the average value among all samples. A zero value 

implied an average level of expression25.

After selecting frequently used clinical drugs from the 

Genomics of Drug Sensitivity in Cancer (GDSC) (https://

www.cancerrxgene.org/) database, we performed the pre-

diction analysis using the R package “pRRophetic” (https://

github.com/paulgeeleher/pRRophetic). The analysis used 

ridge regression to estimate the half-maximal inhibitory con-

centration (IC50) of each sample. The prediction accuracy of 

the model was tested using 10-fold cross-validation based on 

a GDSC training set. All parameters in the program were set 

based on the default values, and duplicate gene expression was 

identified as the mean value26,27.

Statistical analysis

Prism software (version 5.0; GraphPad, San Diego, CA, USA) 

and R software (version 3.6.0; The R Foundation, Vienna, 

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
http://tide.dfci.harvard.edu
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://github.com/paulgeeleher/pRRophetic
https://github.com/paulgeeleher/pRRophetic
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Austria) were used to perform the statistical analyses. The sur-

vival curves for RFS and OS from the Kaplan-Meier survival 

analyses were compared using log-rank tests. Chi-square and 

Mann-Whitney U tests were used for between-group compar-

isons. All reported P-values were two-tailed. For all analyses, 

a value of P < 0.05 was considered a statistically significant 

result, unless otherwise specified.

Results

Relationships between relapse and metabolic 
phenotypes in stage I LUAD

To examine the distinct features of biological processes in 

relapsed stage I LUAD compared with non-relapsed tumors, 

we analyzed gene expression profiles in a cohort of 97 stage 

I LUAD tumors from GSE31210. We compared tumors from 

cases who remained recurrence-free for a minimum of 5 years 

with those from cases whose disease relapsed within 2 years of 

complete resection. GSEA of LUAD samples with (n = 17) and 

without (n = 80) relapsed tumors at baseline was performed. 

Except for hypoxia and immune responses, the GSEA results 

revealed that tumor relapse was strongly correlated with pos-

itive regulation of diverse metabolic pathways, including the 

metabolism of proteins pathway (NES = 1.77, P = 0.008), 

the fructose and mannose metabolism pathway (NES = 1.76, 

P = 0.01), and the glycolysis pathway (NES = 1.54, P = 0.04) 

(Figure 1A). To further investigate the associations between 

relapse and metabolic phenotype in stage I LUAD, we analyzed 

the expression profiles of 2,031 metabolism-related genes 

extracted from the ccmGDB database. Among these genes, 

64 were found to be differentially expressed in LUAD samples 

with and without relapsed tumors (Figure 1B). Next, a Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrichment 

analysis was used to identify metabolic pathways associated 

with these 64 significant genes. The genes were involved in 
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drug metabolism, galactose metabolism, and pentose and glu-

curonate interconversions (Figure 1C).

Development of RAMS for stage I LUAD in the 
training cohort

We found significant differences in metabolic reprogram-

ming between patients with stage I LUAD with and with-

out relapsed tumors at baseline. Therefore, we sought to 

develop a RAMS to improve prognostic prediction of stage 

I LUAD using a training cohort of 162 stage I LUAD sam-

ples from the GSE31210 database. Univariate Cox propor-

tional hazards regression analysis was performed to identify 

 metabolism-related genes correlated with RFS. Based on 

a value of P < 0.05, 727 genes out of 2,031 metabolism-re-

lated genes were identified as prognostic genes for RFS. We 

used LASSO Cox proportional hazards regression modeling 

to select genes with the greatest predictive values. Twenty-

three genes were selected based on the minimum criteria 

(Figure 2A and 2B). Multivariate Cox regression analysis 

was then performed to further generate a RAMS for prog-

nostication, and a novel prognostic signature consisting of 

only 2 genes (ACADM and RPS8) was built (Figure 2D). 

Subsequently, the risk score model for each patient was 

determined using the formula: risk score = -4.868 × nor-

malized expression value of ACADM – 10.934 × normalized 

expression value of RPS8. Patients were assigned into low 

risk and high risk groups based on the optimal cut- off value 

(–28.842), which was obtained from the median value of the 

risk score model in the training cohort (Figure 2F).

To evaluate the predictive power of the novel RAMS, 

we calculated the area under the curve (AUC) values of the 

ROC, and performed Kaplan-Meier survival analysis. The 

results showed that the AUC value at 5-year RFS was 0.867 

(Figure 2C). Patients in the high risk group had signifi-

cantly worse RFS than those in the low risk group (P < 0.001; 

Figure 2E). To determine whether the risk score was an inde-

pendent risk factor for RFS of patients with stage I LUAD, we 

performed univariate and multivariate Cox regression anal-

yses of the training set. The Cox regression results indicated 

that both RAMS and stage were predictor factors (RAMS: P < 

0.001; stage: P = 0.001; Figure 2G). However, the results after 

adjusting for clinicopathological factors including age, gender, 

smoking, stage, and mutation status indicated that RAMS was 

a significant independent prediction factor of RFS (P < 0.001; 

Figure 2H). The AUC value of RAMS was greater than for the 

stage (Figure 2I). A stratified analysis of stages IA and IB also 

revealed that a high risk score identified high risk patients 

(Supplementary Figure S2).

ROC and Kaplan-Meier survival analyses were also per-

formed to test the robustness and practical application 

of RAMS for OS. The results indicated that the AUC val-

ues of the RAMS for OS were 0.905 at 5 years and 0.904 at 

10 years (Figure 2J). High risk patients had an increased risk 

of mortality, compared with low risk patients (P < 0.001; 

Figure 2K). The results of the univariate and multivariate 

Cox regression analyses indicated that RAMS was an inde-

pendent prognostic factor for OS (P < 0.001; Supplementary 

Figure S5A–S5B).

Validation of RAMS for stage I LUAD in the 
test cohort

To verify the discriminatory power of RAMS for stage I 

LUAD, the same formula was used in the test set consisting 

of 81 cases from the GSE30219 database. Based on the cut-

off values obtained from the training cohort, 81 patients were 

assigned to the low risk group (n = 40) or the high risk group 

(n = 41) (Figure 3C). The RAMS for stage I LUAD in the test 

cohort was identified as a robust prognostic model; its AUC 

value at a 5-year RFS was 0.824 (Figure 3A). Kaplan-Meier 

survival analysis showed that patients with a high risk score 

had significantly poorer RFS than those with a low risk score 

(P < 0.001) (Figure 3B). Due to a lack of stage IB cases, we 

only confirmed that a high risk score identified high risk 

patients using stage IA patients in the GSE31209 database 

(Supplementary Figure S3). Next, we examined whether 

RAMS was an independent risk factor of RFS for patients 

with stage I LUAD in the test set. We performed univariate 

and multivariate Cox regression analyses using the data from 

81 patients. The results revealed that both RAMS and stage 

were prediction factors (RAMS: P < 0.001; stage: P = 0.041) 

(Figure 3D), and were also significant independent predictor 

factors of RFS (RAMS: P < 0.001; stage: P = 0.001) (Figure 

3E). However, the AUC value of RAMS was greater than for 

the stage (Figure 3F). These results suggested that the RAMS 

had greater discriminatory power. We also performed ROC 

and Kaplan-Meier survival analyses to confirm the prognos-

tic value of RAMS for OS. The results indicated that the per-

formance of RAMS was stable; the AUC value was 0.843 at 

5 years and 0.791 at 10 years (Figure 3H). The results of the 

Kaplan-Meier survival analysis suggested that patients in the 
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high risk group had significantly poorer OS than those in the 

low risk group (P < 0.001) (Figure 3G). We also performed 

univariate and multivariate Cox regression analyses and 

found that RAMS was a significant independent prognostic 

factor of OS (P < 0.001; Supplementary Figure S5C–S5D).

Validation of RAMS for stage I LUAD in the 
CICAMS cohort

To further confirm the reliability and practical application 

of RAMS, we examined the predictive performance of RAMS 

using protein expression values in an independent cohort 

(CICAMS) of 74 patients with stage I LUAD. The protein 

expression levels of 2 metabolism-related genes (ACADM 

and RPS8) that formed the RAMS were detected using 

immunohistochemistry. The risk score of each patient was 

then calculated based on the same formula. As expected, 

the RAMS for stage I LUAD was still identified as a relia-

ble prognostic model at the protein level; the AUC value for 

5 years of RFS was 0.929 (Figure 4A). We then divided the 

74 patients into a high risk group (n = 24) and a low risk 

group (n = 50) based on the same cut-off value (Figure 4C). 

Kaplan-Meier survival analysis showed a remarkable differ-

ence in RFS between the 2 groups (P < 0.001; Figure 4B). We 

also found that a high risk score identified high risk patients 

in a stratified analysis of stages IA and IB (Supplementary 

Figure S4). The results further confirmed that RAMS was an 

independent predictor factor of RFS (P < 0.001) (Figure 4D 

and 4E). Considering the simple and convenient application 

of RAMS, a predictive nomogram for RFS according to the 

normalized protein values of ACADM and RPS8 was also 

generated (Figure 4F). We also tested its ability to predict OS. 

We found that patients in the high risk group had shorter OS 

times than those in the low risk group (P = 0.01) (Figure 4G). 

We identified RAMS as a robust prognostic model; the AUC 

value was 0.887 for the 5-year OS. The results indicated that 

the prognostic ability of RAMS was independent of other 

risk factors for OS (P = 0.022) (Supplementary Figure S5E–

S5F). We also constructed a predictive nomogram of OS 

according to the normalized protein values of ACADM and 

RPS8 (Supplementary Figure S5G).

Association between RAMS and the immune 
response in stage I LUAD

To identify biological pathways related to RAMS, we divided 

162 stage I LUAD cases from the GSE31210 database into a 

high risk group (n = 81) and a low risk group (n = 81) based 

on the cut-off values. We then performed a GSEA to deter-

mine the distinct features of biological processes between 

the 2 groups. The results indicated that patients at high risk 

had characteristics that were strongly associated with posi-

tive regulation of diverse immune pathways, including the 

antigen processing cross presentation pathway (NES = 1.99, 

P < 0.001), the class I MHC-mediated antigen processing 

presentation pathway (NES = 1.89, P = 0.002), the inter-

feron alpha response pathway (NES = 1.71, P = 0.01), and 

the interferon gamma response pathway (NES = 1.69, P = 

0.03) (Figure 5A).

To better understand the association between RAMS and 

immune response, we analyzed the expression of 7 previously 

described clusters of inflammatory metagenes (HCK, IgG, 

interferon, LCK, MHC-I, MHC-II, and STAT1) between the 

high risk and low risk groups (Figure 5B)28. Gene set varia-

tion analysis was performed to further characterize the expres-

sion of metagene clusters between the 2 groups. The analy-

sis revealed a strong correlation between risk score and the 

hemopoietic cell kinase pathway, interferon response pathway, 

MHC class I processing pathway, and STAT1 signal transduc-

tion pathway (Figure 5C)29. The results for expression levels 

of 4 significantly differentially expressed metagene clusters 

for all samples between the 2 groups are presented in Figure 

5D. To validate the findings and improve interpretation of the 

associations, we used a cross-correlogram to display correla-

tions among these variables. The results showed that risk score 

had positive associations with HCK, interferon, MHC-I, and 

STAT1. However, RPS8 had a negative association with these 4 

metagene clusters (Figure 5E).

of RFS for patients with stage I LUAD based on the RAMS. (F) Heat map of 2 gene expression profiles, risk score distributions, and recurrence 
status of each patient in the high and low risk groups. (G and H) Univariate (G) and multivariate (H) regression analyses of the associations 
between RAMS and clinical variables for the predictive value of RFS. (I) Performance was compared between RAMS and stages based on ROC 
curve analysis. (J) Time-dependent ROC curve analysis of the RAMS for overall survival (OS). (K) Kaplan-Meier survival curves of OS for patients 
with stage I LUAD, based on the RAMS. ***P < 0.001.



Cancer Biol Med Vol 18, No 3 Month 2021 741

0.00

0

41
40

23
36 36 27 18 11 7 6 3 1 0

17 10 9 5 2 1 1 0 0

2

P < 0.001

4 6 8 10

Risk High risk Low risk

Recurrence-free survival

12 14 16 18 20

0

Age 0.165

0.687

0.980

0.870

0.001

0.140

< 0.001

Hazard ratio

Time (year)

Hazard ratio

1.034 (0.986–1.085)

0.772 (0.245–2.436)

2.462 (1.039–5.834)

1.760 (1.275–2.430)

2.718 (2.073–3.564)

0.648 (0.365–1.153)

3.019 (1.532–5.948)

1.058 (0.537–2.084)

0.991 (0.501–1.963)

1.010 (0.962–1.060)

Gender 0.659

Stage 0.041

< 0.001Risk score

Age

Gender

High risk
Low risk

Relapse
Non-relapse

Stage

Smoking

Risk score

Mutation

2 4 6

P value

Hazard ratioP value

8 10 12

0 1 2 3 4 5

Hazard ratio

0

1.0

0.8

0.6

0.4

0.2

0.0

High risk
Low risk

0 2 4

Risk High risk Low risk

6 8 10 12 14 16 18 20

0

41 26 18

P < 0.001

12 9 5 2 2 1 0 0
40 38 37 28 20 12 8 7 4 1 0

2 4 6 8 10
Time (year)

12 14 16 18 20

Su
vi

va
l p

ro
ba

bi
lit

y

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

False positive rate

Overall survival

Tr
ue

 p
os

iti
ve

 ra
te

0.8

Risk score (AUC = 0.824)
Stage (AUC = 0.613)

Five–year OS (AUC = 0.843)
Ten–year OS (AUC = 0.791)

1.0

False positive rate

0.0 0.2 0.4 0.6 0.8 1.0

1 2 3 4 5

14 16 18 20

High risk
Low risk

0.25

0.50

0.75

1.00

–26

–28

–30

–32

15

10

5

0

0 20

Ri
sk

 s
co

re
Ti

m
e 

(y
ea

rs
)

40 60 80

Patients (increasing risk score)

0 20 40 60 80

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ri
sk

ROC curve (AUC = 0.824)A

C D

E

F

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 ra
te

G H

B

0.20.0 0.4 0.6 0.8 1.0

Type Type

Age High risk
Low risk

Female
Male

1A
1B

< 60
≥ 60

Age
Gender

Gender

Stage
1

0.9

0.8

0.7

0.6

0.5

0.4

Stage
ACADM

RPS8

0.0

0.2

0.4

0.6

0.8

1.0
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Correlation between RAMS and immune cell 
infiltration or immune checkpoint profiles in 
stage I LUAD

Given that immune response is closely related to the immune 

cell landscape, we used a CIBERSORT algorithm to analyze 

intratumoral immune cell compositions between the high risk 

and low risk groups in the GSE31210 database. The results 

indicated that samples from high risk patients were charac-

terized by neutrophil enrichment (P < 0.001) and a lack of 

gamma delta T cells and resting mast cells (P < 0.01) (Figure 

6A). To further verify the association between risk score and 

immune cell infiltration, cross-correlograms were used to 

identify associations among these variables. The results con-

sistently indicated that risk score was positively correlated with 

neutrophil infiltration level (r = 0.41) but was negatively cor-

related with resting mast cell level (r = –0.33) (Figure 6B).

Next, to gain new insights into the correlations between 

RAMS and immune checkpoint profiles, we included 16 

immune checkpoint molecules in the analysis. We included the 

B7-CD28 family (CD28, CD80, CD86, ICOS, ICOSLG, PD-1, 

PD-L1, PD-L2, B7-H3, B7-H4, HHLA2, and TMIGD2) and 

several other hotspot immune checkpoint members (Tim-3, 

galectin-9, LAG-3, and FGL-1) (Figure 6C)30-33. The results 

indicated that higher levels of CD80, CD86, PD-L1, PD-L2, 

B7-H3, galectin-9, and FGL-1 were expressed in the high risk 

group (Figure 6C and 6D). We used a cross-correlogram to 

better characterize the associations between risk scores and the 

types of immune checkpoint molecules. We found that risk 

score had a positive correlation with B7-H3 (r = 0.49) and 

galectin-9 (r = 0.42) (Figure 6E).

Relationship between RAMS and the drug 
response in stage I LUAD

Because RAMS was highly related to immune response, 

immune checkpoint profiles, and immune cell infiltration, 

we investigated whether RAMS predicted the immunothera-

peutic response of immune checkpoint inhibitors. The TIDE 

algorithm was used to predict immune checkpoint inhibitor 

response using pretreatment RNA-seq data between the high 

risk and low risk groups in the GSE31210 database. The objec-

tive response rates were 5 of 81 (6.17%) for the high risk and 2 

of 81 (2.47%) for the low risk groups (Figure 7A). The results 

indicated that although high risk patients may respond better 

to anti-PD-1/PD-L1 immunotherapy, the difference was not 

statistically significant (P = 0.247) (Figure 7B).

Given that chemotherapy and target therapy are commonly 

used in the comprehensive treatment program for NSCLC, we 

tried to evaluate the sensitivity of many anti-cancer clinical 

drugs based on tumor gene expression levels using the R pack-

age “pRRophetic.” After estimating the IC50 for each sample 

in the GSE31210 cohort, we selected 2 drugs (docetaxel and 

bortezomib), which had significant response sensitivities for 

high risk cases, when compared with low risk cases (docetaxel: 

P = 0.0027; bortezomib: P < 0.0001; Figure 7C and 7D).

Discussion

The percentage of patients with stage I LUAD has dramati-

cally increased as the prevalence of LDCT use for screening has 

increased34. Surgery alone remains the standard treatment for 

these patients, but many are at substantial risk of relapse and 

death without adjuvant treatment35. Clinical staging, which is 

currently the best confirmed predictor of survival and a guide 

for treatment, seems to be only a weak predictor of relapse 

risk and long-term survival of patients with stage I LUAD8. 

A robust discrimination tool is therefore urgently needed to 

identify patients with stage I LUAD who could benefit from 

adjuvant systemic therapy.

Only a few studies have focused on the distinct features of 

biological processes in relapsed patients with stage I LUAD, 

when compared with non-relapsed patients. We there-

fore performed GSEA on gene expression profiles from the 

GSE31210 database to identify significant differences in 

metabolic reprogramming that could be used to distinguish 

patients with stage I LUAD tumors with relapses from those 

without relapses. Consistent with this finding, other studies 

have reported that cancer metabolism has an important role 

in the development of NSCLC, and also in the prognosis of 

NSCLC17,36,37. However, recurrence-associated prognostic 

models based on metabolism-related genes are lacking. In this 

(D) and multivariate (E) Cox regression analyses of the associations between RAMS and clinical variables for the predictive value of RFS. (F) The 
performance compared between RAMS and the stage was based on ROC curve analysis. (G) Time-dependent ROC curve analysis of the RAMS 
for overall survival (OS). (H) Kaplan-Meier survival curves of OS for patients with stage I LUAD based on the RAMS.
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study, we identified a novel metabolic signature (RAMS) sig-

nificantly related to the RFS and OS of patients with stage 

I LUAD. We used transcriptome data analysis of a training 

cohort from the GSE31210 database, which was also well 

validated in a test cohort from the GSE30219 database. The 

subsequent IHC analysis of data from the additional inde-

pendent CICAMS cohort further validated the protein level 

discriminatory power of RAMS.

2 gene expression profiles, risk score distributions, and recurrence status of each patient in the high and low risk groups. (D and E) Univariate 
(D) and multivariate (E) Cox regression analyses of the associations between the RAMS and clinical variables for the predictive value of RFS.  
(F) Nomogram to predict the 1-, 3-, and 5-year RFS of patients with stage I LUAD. (G) ROC curve analysis of the RAMS for overall survival (OS). 
(H) Kaplan-Meier survival curves of OS for patients with stage I LUAD based on the RAMS.
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Figure 5  Associations between RAMS and  immune response  in stage  I LUAD.  (A) Significant enrichment of  immune pathways between 
the high risk and low risk groups. NES: normalized enrichment score. (B) Heat map of the relationships between risk scores and 7 clusters of 
inflammatory metagenes. (C) Volcano plot of 4 clusters of inflammatory metagenes differentially enriched in the high and low risk groups. 
(D) Heat map of 4 clusters of inflammatory metagenes differentially enriched in the high and low risk groups. (E) Cross-correlogram based on 
Pearson’s correlation coefficient values between risk scores and 7 clusters of inflammatory metagenes.
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In this study, 2 metabolism-related genes (ACADM and 

RPS8) were identified and included in the recurrence-associ-

ated prognostic model. They were negatively associated with 

favorable outcomes and were found to participate in tumor 

progression. ACADM (medium-chain acyl-CoA dehydro-

genase) participates in the initial steps of the mitochondrial 

fatty acid beta-oxidation pathway and is involved in pathways 

associated with fatty acid metabolic disorders. These pathways 

are components of tumor transformation38,39. Low expression 

of ACADM is related to unfavorable outcomes and is likely 

involved in the tumorigenesis, invasion, and relapse of clear 

cell renal cell carcinoma; this finding is, to some extent, con-

sistent with our results39. Another study also reported that 

attenuating ACADM activity accelerated cancer progression40. 

RPS8 (40S ribosomal protein S8; component of the ribosomal 

40S subunit) participates in tumor development as a rate-lim-

iting factor during translational control41,42. Translational 

regulation appears to have important roles in tumorigenesis, 

differentiation, and apoptosis, but abnormal translation also 

often induces malignant transformation in many cancers43,44. 

Although the molecular mechanism of low RPS8 expression 

in malignant tumors remains unclear, RPS8 and CDK11p46, 

which mainly co-localize in the nucleoplasm where pre-ri-

bosomal subunits are formed, synergistically inhibit protein 

synthesis during the translation process and sensitize cells to 

FasL-induced apoptosis41. Our study is the first to show that 

low expression of ACADM and RPS8 was correlated with an 

unfavorable prognosis in patients with stage I LUAD. However, 

the elucidation of functional signaling processes of the 2 genes 

in LUAD needs further research.

between risk scores and 22 tumor-infiltrated immune cells. (C) Heat map of immune checkpoint profiles in the high and low risk groups. 
(D) Differences in expressions of immune checkpoint molecules between high risk and low risk groups. (E) Cross-correlogram was based 
on Pearson’s correlation coefficient values between risk scores and expressions of immune checkpoint molecules. *P < 0.05; **P < 0.01; 
***P < 0.001.
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Stratification analysis and multivariate Cox analysis found 

that RMAS was an independent prognostic factor for RFS in 

patients with stage I LUAD. Nevertheless, due to a lack of stage 

IB cases in the GSE30219 cohort, we only found that a high 

risk score identified high risk patients in the stratified analysis 

of stages IA and IB in the GSE31210 and CICAMS cohorts. We 

also compared the robustness of RAMS with clinical staging 

and found that the AUC value of RAMS was higher than the 

stage in 3 different cohorts. This result increased our confi-

dence that in the future, RAMS will be an effective prognos-

tic tool. Because postoperative relapse is the main reason for 

cancer-associated death in patients with stage I LUAD, we also 

investigated the predictive power of RAMS for long-term sur-

vival. As expected, we found that RAMS was significantly cor-

related with OS and was an independent prognostic factor in 

patients with stage I LUAD. However, because the data from 

the 3 cohorts were retrospective data, more prospective studies 

are needed to confirm the results and our conclusions.

To investigate the potential underlying mechanism of 

RAMS that discriminated high risk and low risk patients, we 

performed GSEA to determine the distinct features of the 

biological processes between the 2 groups. We found that 

high risk was strongly associated with positive regulation of 

diverse immune pathways. This result indicated that immune 

heterogeneity between the 2 groups may be the main cause 

of the difference in overall prognosis and cancer recurrence. 

A previous study also found that the immune response was 

largely shaped by cell metabolism45. We therefore examined 

RAMS-associated immune variations between the 2 groups. 

Analyses of 7 clusters of inflammatory metagenes, immune 

cell infiltration, and immune checkpoint profiles were used 

to provide additional insight into the immune landscapes 

associated with these 2 groups. We found that risk score had 

a positive relationship with inflammatory response (HCK, 

STAT1, and interferon), antigen-presenting process (MHC-I), 

and the expression levels of many immunosuppressive check-

point molecules, including PD-L1, PD-L2, galectin-9, B7-H3, 

and FGL-1. These results suggested that high risk patients were 

in an immunosuppressive state. The immune systems of low 

risk patients involved high infiltration of gamma delta T cells, 

which indicated the presence of a relatively active anti-tumor 

immune response state.

Considering the pre-existing tumor immunity features of 

high risk patients, we further examined whether anti-PD-1/

PD-L1 immunotherapy resulted in a survival benefit for 

these patients. Unfortunately, the results of TIDE algorithm 

prediction indicated that anti-PD-1/PD-L1 immunotherapy 

did not yield significant benefits for patients in the high risk 

group. There were 2 reasons for this result. First, tumors from 

high risk patients did not only express high levels of PD-L1and 

PD-L2. They also expressed high levels of other immunosup-

pressive checkpoint molecules, such as B7-H3, galectin-9, and 

FGL-1. Second, patients treated with immunotherapy were 

not included in this study. Therefore, the predictive ability of 

RAMS for immunotherapy response was evaluated indirectly. 

Further studies are needed to confirm these findings. It is 

important to note that using the GDSC database, we found 

that tumors from high risk patients could be more sensitive 

to commonly used chemotherapy (e.g., docetaxel). Therefore, 

high risk patients could receive chemotherapy after curative 

surgery to obtain a longer survival. Nevertheless, further com-

prehensive prospective studies are still needed.

Conclusions

Overall, this study was the first to highlight the relationship 

between metabolic reprogramming and recurrence in stage I 

LUAD. We developed a novel RAMS model, which could serve 

as a powerful prognostic tool and potentially be used to guide 

the clinical management of patients with stage I LUAD.
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