
Cancer Biol Med 2021. doi: 10.20892/j.issn.2095-3941.2020.0071

ORIGINAL ARTICLE

The cancer-testis gene, MEIOB, sensitizes triple-negative 
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ABSTRACT Objective: The newly defined cancer-testis (CT) gene, MEIOB, was previously found to play key roles in DNA double-strand break 

(DSB) repair. In this study, we aimed to investigate the effects and mechanisms of MEIOB in the carcinogenesis of triple-negative 

breast cancers (TNBCs).

Methods: The Cancer Genome Atlas database was used to quantify the expression of MEIOB. Cox regression analysis was used to 

evaluate the association between MEIOB expression and the prognosis of human TNBC. The effects of MEIOB on cell proliferation 

and migration in TNBCs were also assessed in vitro. Patient-derived xenograft (PDX) models were used to assess the sensitivity of 

breast cancers with active MEIOB to PARP1 inhibitors.

Results: We confirmed MEIOB as a CT gene whose expression was restricted to the testes and breast tumors, especially TNBCs. Its 

activation was significantly associated with poor survival in breast cancer patients [overall, hazard ratio (HR) = 1.90 (1.16–2.06); 

TNBCs: HR = 7.05 (1.16–41.80)]. In addition, we found that MEIOB was oncogenic and significantly promoted the proliferation 

of TNBC cells. Further analysis showed that MEIOB participated in DSB repair in TNBCs. However, in contrast to its function in 

meiosis, it mediated homologous recombination deficiency (HRD) through the activation of polyADP-ribose polymerase (PARP)1 

by interacting with YBX1. Furthermore, activated MEIOB was shown to confer sensitivity to PARP inhibitors, which was confirmed 

in PDX models.

Conclusions: MEIOB played an oncogenic role in TNBC through its involvement in HRD. In addition, dysregulation of MEIOB 

sensitized TNBC cells to PARP inhibitors, so MEIOB may be a therapeutic target of PARP1 inhibitors in TNBC.
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Introduction

Triple-negative breast cancer (TNBC) accounts for approx-

imately 10%–15% of all breast cancers and is defined as 

breast cancer that is negative for the estrogen receptor, pro-

gesterone receptor, and human epidermal growth factor 

 receptor 2 (HER2)1. Due to the absence of these three recep-

tors in TNBC, chemotherapy remains the standard-of-care for 

TNBC patients both in early and advanced stages2,3. Although 

chemotherapy can improve the conditions of patients with 

early TNBC, the recurrence and metastasis rate of TNBC 

patients is high for patients with advanced disease4-6. Thus, 

novel targeted approaches are urgently needed for the treat-

ment of TNBC. Recently, olaparib, a polyADP-ribose poly-

merase (PARP) inhibitor, was approved by the US Food and 

Drug Administration for the treatment of breast cancers 

with BRCA1/2 mutations7. BRCA1/2 mutations in cancers 
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are prototypic molecular alterations that confer homologous 

recombination deficiency (HRD) and sensitivity to DNA dam-

aging therapy8,9. In addition, some studies show that cancers 

with genetic deficiencies involved in homologous recombina-

tion repair other than BRCA mutations, such as deficiencies 

in ATM, ATR, PALB2, and FANC, are also highly susceptible 

to PARP inhibitor treatment10,11. A group of cancer-testis 

(CT) genes is essential for homologous recombination12,13. 

These genes include the meiotic topoisomerase that catalyzes 

DNA double-strand breaks14, components of the synaptone-

mal complex (SYCP1)15,16, and multiple proteins that mediate 

homologue alignment or recombination (MEIOB)17,18. Luo 

et al.17 revealed that MEIOB is involved in highly ordered DNA 

doubled-strand break (DSB) repair during meiotic homolo-

gous recombination, by forming a complex with its cofactor, 

SPATA22. In our previous study, we identified MEIOB as a 

new CT gene involved in the carcinogenesis of lung cancer19. 

Nevertheless, its role and precise mechanism in TNBC remain 

unknown. We therefore characterized the involvement of 

MEIOB in the DNA repair process in TNBC patients, and fur-

ther examined whether dysregulated MEIOB in TNBC con-

ferred sensitivity to PARP inhibitors.

Materials and methods

Patient data

We determined the expression of MEIOB in breast cancer 

tissues by reanalyzing the raw RNA sequencing data of 1,058 

patients from The Cancer Genome Atlas (TCGA) datasets. A 

standard STAR-HTSeq-DESeq2 pipeline was used to quantify 

gene expression20. We used normalized read counts > 5 as the 

cutoff to define the expression of MEIOB. The clinical infor-

mation was obtained from Firehose Broad GDAC (http://gdac.

broadinstitute.org/, version 2016_01_28). To define signature 

3, we converted all mutation data from WGS datasets into a 

matrix (M) composed of 96 features comprising mutation 

counts for each mutation type (C>A, C>G, C>T, T>A, T>C, 

and T>G) using each possible 5′ and 3′ context for all sam-

ples, and applied the R package deconstructSigs12 to deter-

mine the proportion of each known mutational signature. The 

 tissue array used in immunohistochemistry (IHC) analysis was 

obtained from Shanghai Outdo Biotech, Shanghai, China. This 

study was approved by the ethics committee of Nanjing Medical 

University (Approval No. 2015-SRFA-112), and all patients 

completed the Clinical Sample Informed Consent Form.

Cell culture and cell line authentication

MDA-MB-231 and MDA-MB-468 cells were obtained from 

the American Type Culture Collection (Manassas, VA, USA), 

and the SUM1315MO2 cell line was provided by Stephen 

Ethier (University of Michigan), as previously described21. 

The cells were cultured in Dulbecco’s Minimal Eagle’s Medium 

(DMEM) (Gibco, Gaithersburg, MD, USA) containing 10% 

fetal bovine serum (FBS; Gibco) and incubated at 37 °C in 5% 

CO2 and saturated humidity. The transient overexpression or 

knockdown of MEIOB was performed using siRNA or MEIOB 

plasmids. The 3 cell lines were cultured in low glucose DMEM. 

All cell lines were cultured at 37 °C in a humidified cham-

ber with 5% CO2, tested negative for mycoplasma (Lonza, 

Rockville, MD, USA), and were authenticated using short tan-

dem repeat profiling within the last 3 years (FuHeng Biology, 

Xian, China).

RNA isolation and qRT-PCR

Total RNA was extracted using TRIzol reagent (Thermo Fisher 

Scientific, Waltham, MA, USA) and reverse transcribed using 

the PrimeScript RT Reagent Kit (Takara, Mountain View, CA, 

USA). Expression of cDNA was quantified using the TaqMan 

Gene Expression Master Mix (Thermo Fisher Scientific) with 

an ABI 7900HT System (Applied Biosystems, Foster City, CA, 

USA). Primer sequences and their respective amplicon sizes 

for RT-PCR are summarized in Supplementary Table S1.

Western blot analysis

The cells were washed 3 times with phosphate-buffered saline 

(PBS), and the total protein was isolated using protein lysis 

buffer. After centrifugation at 12,000 × g for 15 min at 4 °C, 

the cell debris was removed, and the supernatant (cell lysate) 

was used for Western blot. Protein concentrations were meas-

ured using a BCA assay (Beyotime, Beijing, China). Equal 

amounts of protein were separated by 10% SDS-PAGE and 

then transferred to polyvinylidene difluoride membranes 

(Millipore, Billerica, MA, USA). The membranes were blocked 

in blocking buffer (Tris-buffered saline, pH 7.6, 5% skim milk, 

and 0.05% Tween) at room temperature for 1.5 h. Then, the 

membranes were incubated at 4 °C overnight with primary 

antibody diluted in blocking buffer, followed by incubation 

with the corresponding secondary anti-IgG horseradish per-

oxidase conjugate (Santa Cruz Biotechnology, Santa Cruz, 

http://gdac.broadinstitute.org/
http://gdac.broadinstitute.org/
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CA, USA) for 1.5 h. The antibody binding was visualized 

with ECL solution (Pierce Biotechnology, Rockford, IL, USA). 

The expression of proteins was assessed by immunoblotting 

and was normalized to that of glyceraldehyde 3-phosphate 

 dehydrogenase (GAPDH). The antibodies were as follows: 

anti-GAPDH (KC-5G4; Kang Chen Tech, Shanghai, China), 

anti-MEIOB (ab178756; Abcam, Cambridge, MA, USA), anti- 

green fluorescent protein (GFP; 66002-I-Ig; Proteintech, 

Wuhan, China), anti-RAD51 (ab63801; Abcam), anti-

YBX1 (ab76149; Abcam), anti-PARP1 (sc-8007; Santa Cruz 

Biotechnology), and anti-PAR (ALX-804-220-R100; Enzo Life 

Sciences, Farmingdale, NY, USA).

Cell Counting Kit (CCK)-8 assay

CCK-8 was purchased from Dojindo Molecular Technologies 

(Kumamoto, Japan). Briefly, 2 h before each indicated time 

point, 10 µL of the CCK-8 solution was added to each well in 

a plate containing 100 µL of DMEM. Then, the absorbance at 

450 nm was recorded using a microplate absorbance reader. 

Each count was determined as an average of 3 repeats, and 

each data point was the average of at least 3 experiments. All 

data were normalized to the control group.

Colony formation assay

The colony formation assay of MEIOB knockdown or 

MEIOB-overexpressing MDA-MB-231 cells and MEIOB-

overexpressing SUM1315MO2 cells was performed using 

6-well dishes (500 cells/well), with 6 wells per condition. The 

number of colonies containing more than 50 cells was counted. 

Cells were fixed and then stained with Crystal Violet. Images 

were captured under a microscope, and 3 wells were counted 

by 2 independent investigators.

Cell migration and invasion assays

Migration and invasion assays were performed using Transwell 

migration chambers (Corning, Corning, NY, USA). The cells 

were seeded at a density of 4 × 104
 cells/well. A volume of 100 µL 

of the cells was added to the upper chamber, while 600 µL of 

DMEM containing 10% fetal bovine serum was added to the 

lower chamber and incubated at 37 °C in 5% CO2. The cells 

attaching to the upper surface of the membrane were removed 

with a cotton swab, and the cells on the under side were fixed 

and stained with Giemsa (Dingguo Bio, Shanghai, China) for 

3–5 min and counted (9 random fields) by 2 independent inves-

tigators. The results were normalized to those of the controls.

Cell cycle analysis of tumor cells

The cell cycle was analyzed by flow cytometry. For cell cycle 

analysis, transfected lung cancer cells were suspended in 75% 

ethanol overnight and centrifuged at 1,000 rpm. The cell pel-

lets were washed twice with PBS and re-suspended in PBS con-

taining 50 mg/mL propidium iodide and 100 g/mL DNase-free 

RNase A. The cell suspension was incubated for 30 min at 37 °C 

and analyzed by flow cytometry. Cell cycle distribution was 

further analyzed with Cell Quest software (Becton Dickinson, 

San Jose, CA, USA) and Mod Fit LT (Verity Software House, 

Topsham, ME, USA).

Immunohistochemical staining

Xenografts were formalin-fixed for at least 24 h and paraffin- 

embedded. Sections were evaluated by hematoxylin & eosin 

staining. IHC was performed on additional sections to detect 

MEIOB (ab178756; Abcam), PARP1 (sc-8007; Santa Cruz 

Biotechnology), and Ki67 (GB13030-2; Servicebio, Wuhan, 

China) following the manufacturers’ instructions.

The DSB repair reporter assay for HRD

DSB repair efficiency was measured using a DSB reporter assay 

as previously described22. We are grateful to Prof. Mansour 

for providing vectors used in the DSB repair reporter assay. 

The GFP-based repair substrates were cloned using pEG-

FP-N1 (Invitrogen, Carlsbad, CA, USA) and pBluescriptII-KS 

(Stratagene, Amsterdam, The Netherlands) as backbones, 

with pGC for homology-directed GC. For the GC substrate, 

pGC, the 18-bp I-SceI recognition site was inserted into the 

unique BcgI site of pEGFP-N1, thereby inactivating the GFP-

coding sequence. This intermediate, named pGC-intermedI, 

and linked to a modified fragment of pBluescriptII-KS, 

was generated as previously described22. To induce DSBs, 

SUM1315MO2 cells containing the stably integrated reporter 

construct for gene conversion of pGC were transfected with 

the I-SceI expression vector, pCMV3xnls-I-SceI (1 µg), using 

Fugene HD (Promega, Madison, WI, USA) as a transfection 

reagent. Forty-eight hours after transfection, the cells were 

assessed for green fluorescence using Western blot and flow 

cytometry (FACScan, BD Bioscience, San Jose, CA, USA).
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Immunofluorescence staining

For immunofluorescence staining, tissues were first washed in 

PBS 3 times to remove excess Optimal Cutting Temperature 

(OCT) buffer, and then they were blocked with goat serum 

for 30 min at room temperature. Then, they were incubated 

with primary antibodies at 4 °C overnight. Before incubation 

with secondary antibodies, the tissues were washed 3 times in 

PBS. The 4′,6-diamidino-2-phenylindole (DAPI) stain was 

simultaneously added with 2 antibodies (Alexa Fluor 488 and 

cyanine 3; Thermo Fisher Scientific) from different species for 

2 h at room temperature. After washing the sections 3 times 

with PBS and mounting them with mounting medium, the 

images were acquired by confocal microscopy. The reagents 

were as follows: DAPI stain (G1012; Servicebio), anti-MEIOB 

(ab178756; Abcam), and anti-γ-H2AX (ab26350; Abcam).

Patient-derived xenografts

Patient-derived xenografts were generated from primary 

or metastatic breast tumors using previously described 

 procedures23. All animal procedures were reviewed and 

approved by the Institutional Animal Care and Use Committee 

and the Ethics Committee of Nanjing Medical University 

(Approval No. IACUC-1601117). We selected 6 of the estab-

lished breast tumor samples, including 3 MEIOB-negative and 

3 MEIOB-positive tumors, for further use in xenograft models.

Statistical analysis

MEIOB gene expression data from TCGA data were analyzed 

for differential expression in tumor tissues vs. adjacent nor-

mal tissues. The association between MEIOB expression in 

all tumor tissue samples and survival was analyzed by Cox 

regression. Kaplan-Meier analysis was used to fit the survival 

curves, and significance was evaluated using the log-rank test. 

For experimental data, continuous values are described as the 

mean ± SE and tested by analysis of variance. A value of P < 

0.05 was accepted as statistically significant. All statistical anal-

yses of in vitro and in vivo assays were performed using Prism 

6.01 (GraphPad, San Diego, CA, USA).

Data availability

The data that support the findings of this study are available 

from the corresponding author upon reasonable request.

Results

MEIOB is expressed in TNBCs and is 
associated with poor survival in TNBC  
patients

To thoroughly evaluate the expression pattern of MEIOB, 

we conducted RT-PCR using cDNA of 16 normal human 

adult tissues, including the testis. The results showed that the 

expression of MEIOB in the testis was higher than that in any 

other normal tissue (Figure 1A), which was consistent with 

the results from the GTEx database. Furthermore, we found 

that MEIOB was aberrantly expressed in breast cancer tumor 

tissues based on TCGA data set analyses (Figure 1B), and 

the ratio of expression was the highest in TNBCs when com-

pared with other subtypes of breast cancer (expression ratio: 

TNBC, 11.3%; luminal, 4.5%; HER2+, 1.7%; normal-like, 

0%; Figure 1C). The results of IHC analysis of breast cancer 

tissues confirmed the upregulation of MEIOB protein levels 

in TNBCs when compared with both luminal cancers and 

adjacent tissues (NTNBC = 52, NLuminal = 32, NAdjacent = 32; 

Figure 1D and 1E). In addition, Kaplan-Meier analysis showed 

that high MEIOB expression was positively correlated with 

poor overall survival in breast cancer patients, especially in 

TNBC patients from TCGA database [hazard ratio (HR) = 

1.90 and 7.05, Figure 1F and 1G]. These findings suggested the 

tumor- promoting roles of MEIOB in the tumorigenesis and 

prognosis of breast cancer, especially TNBC.

MEIOB alters cell viability in TNBCs

To validate the hypothesis that MEIOB affected the viability 

of breast cancer cells, we first conducted RT-PCR and Western 

blot to examine the mRNA and protein expressions of MEIOB 

in various types of breast cancer cell lines. The results showed 

that both mRNA and protein levels of MEIOB were dramat-

ically upregulated in two TNBC cell lines, MDA-MB-231 

and MDA-MB-468, while they were significantly lower in 

either normal breast epithelium or luminal breast cancer 

cells (Supplementary Figure S1A and S1B), indicating that 

MEIOB might play an important role in a subset of TNBCs. 

Furthermore, immunofluorescence staining showed that 

MEIOB was localized in the nuclei of MDA-MB-231 cells 

(Supplementary Figure S1C). To better understand the role 

of MEIOB in breast cancer, we then knocked down MEIOB 
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by using siRNA in MDA-MB-231 cells (Supplementary 

Figure S2A and S2B) and found that depletion of MEIOB in 

MDA-MB-231 cells led to a significant decrease in both cell 

proliferation and migration (Figure 2A–2C). We also overex-

pressed MEIOB in MDA-MB-231 cells (Supplementary Figure 

S2C and S2D), which significantly increased cell proliferation 

and migration (Figure 2D–2F). These results were further con-

firmed in SUM1315MO2 cells (Figure 2G–2I; Supplementary 

Figure S2E and S2F). Thus, we concluded that MEIOB may 

promote tumor proliferation in TNBCs.
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Figure 2 MEIOB is critical for triple-negative breast cancer (TNBC) cell proliferation and migration. (A) CCK-8 assays were conducted to 
determine the viability after knocking down MEIOB in MDA-MB-231 cells. Data are presented as the mean ± SEM, **P < 0.01. (B) Colony for-
mation assays were conducted to determine proliferation after knocking down MEIOB in MDA-MB-231 cells. Data are presented as the mean 
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MEIOB induces homologous recombination 
deficiencies in TNBCs

Cisplatin, a common chemotherapy agent that creates DNA 

interstrand and intrastrand crosslinks, can lead to DNA 

DSBs after its removal in both replicating yeast and mam-

malian somatic cells, and has been used to treat many breast 

cancer types, including TNBC24-27. We therefore treated 

SUM1315MO2 cells with cisplatin (20 µmol/L) to induce 

the DNA damage response and then measured the degree 

of DNA damage by monitoring anti-γ-H2AX nuclear  

staining signals28. The accumulation of γ-H2AX was signif-

icantly decreased in MEIOB-overexpressing SUM1315MO2 

cells treated with cisplatin (Figure 3A and 3B), indicating 

that MEIOB promoted the DSB repair response in TNBC 

cells.

Homologous recombination is inhibited during the G1 

phase of the cell cycle, but is active in both the S and G2 

phases29. Our results further showed that the overexpres-

sion of MEIOB in SUM1315MO2 cells resulted in cell cycle 

arrest at the G1 phase, which indicated that MEIOB might 

be absent from homologous recombination while being 

involved in the non-homologous end joining (NHEJ) repair 

process (Figure 3C). As reported in past studies, CDK4 and 

CDK2 are necessary for cells to enter the G1 phase from 

the G0 phase30. In MEIOB-overexpressing SUM1315MO2 

cells, we observed increased expressions of CDK2 and 

CDK4, which further confirmed that MEIOB induced 

SUM1315MO2 cells to maintain G1/G0 phase arrest (Figure 

3D). DSBs that occur during G1 phase are mainly repaired 

through NHEJ, whereas those formed during S and G2 

phases are predominantly repaired by homologous recombi-

nation mechanisms31. Furthermore, the pHR-GFP reporter 

vector was used to assess the effect of MEIOB expression 

on DNA damage repair by homologous recombination in 

SUM1315MO2 breast cancer cells32. Homologous recom-

bination activity was assessed by quantifying GFP protein 

expression and GFP-positive cells 72 h after  co-transfection 

of pHR-GFP and pSce. As a result, we found that GFP 

intensity was significantly downregulated in MEIOB-

overexpressing SUM1315MO2 cells when compared with 

control cells (Figure 3E). Similar results were observed in 

GFP-positive cells, as detected by flow cytometry (Figure 3F 

and 3G). Thus, we concluded that MEIOB overexpression in 

SUM1315MO2 cells resulted in HRD.

MEIOB binds with YBX1 and activates  
PARP1-related repair

To determine the mechanism by which MEIOB affected the 

DNA damage repair process, we performed liquid chroma-

tography-tandem mass spectrometry to identify the proteins 

interacting with MEIOB. The results showed that the YBX1 

protein, which can physically interact with PARP1 in vitro to 

inhibit PARG24 degradation of its polyADP-ribose, interacted 

with MEIOB (Supplementary Figure S3A, Table S2). This 

interaction was further verified by co-immunoprecipitation 

analysis of FLAG-tagged MEIOB (Figure 4A, Supplementary 

Figure S3B). We also found that the score of signature 3 in 

YBX1 high-expressing tumors was significantly higher than 

that in YBX1 low-expressing tumors in TCGA breast cancer 

datasets (Figure 4B). Next, we found that MEIOB caused an 

increase in PARP1 polyADP-ribose levels and a decrease in 

RAD51 expression, which is a key marker of the homologous 

recombination repair process (Figure 4C, Supplementary 

Figure S3C)33. Finally, the activated PAR-related DNA repair 

process in MEIOB-overexpressing cells was again silenced after 

YBX1 was knocked down (Figure 4D, Supplementary Figure 

S3D). Taken together, our results suggested that MEIOB was 

involved in PARP1-related HRD, probably by interacting with 

YBX1.

Biallelic inactivation of BRCA1/2 is associated with a pat-

tern of HRD known as signature 334. According to the results 

described above, we hypothesized that MEIOB might result in 

genomic alterations similar to the loss of BRCA1/2. Notably, 

we found that the score of signature 3 was correlated with 

MEIOB and was significantly higher in patients with high 

MEIOB expression in TCGA breast cancer datasets (Figure 5A 

and 5B). To exclude the influence of BRCA1/2, we found that 

MEIOB expression was mutually exclusive with mutations in 

BRCA1/2 in both breast cancers and TNBCs (P < 0.01, Figure 

5C and 5D). These results suggested that MEIOB might be a 

new biomarker of HRD in TNBC patients, except in patients 

with BRCA1/2 mutations.

MEIOB increases the sensitivity of TNBCs to 
the clinical PARP1 inhibitor, olaparib

We hypothesized that TNBC cells overexpressing MEIOB 

would be more sensitive to PARP inhibitors than MEIOB-null 

cells. We evaluated the sensitivity of TNBC cells with different 



Cancer Biol Med Vol 18, No 1 January-March 2021 81

MEIOB expression patterns to PARP1 inhibitors, by treat-

ing cells with multiple concentrations of the PARP1 inhibi-

tors, AG-14361 and olaparib. Figure 6A shows that MEIOB-

expressing MDA-MB-231 and MDA-MB-468 cells were more 

sensitive to AG-14361 than MEIOB-null SUM1315MO2 cells. 

Similar results were observed in cells treated with olaparib.

We then established a patient-derived xenograft (PDX) 

mouse model of TNBC that had characteristics similar 
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to those of human primary tumors. A schematic of the 

PDX model is shown in Supplementary Figure S4A. Fresh 

TNBC tissues were obtained from patients and divided into 

two groups according to MEIOB protein expression levels 

(MEIOB-null and MEIOB-expressing) (Supplementary 

Figure S4B). All tumors were implanted subcutaneously 

in NOD/SCID mice. Both groups were treated with olap-

arib when the patient-derived tumor volume had reached 

200 mm3. Tumor volumes were measured once a week 

after treatment with olaparib (Figure 6B). Six weeks after 

administration, the tumors were harvested and weighed 

(Figure 6C). The results showed that the volumes of tum-

ors expressing MEIOB significantly decreased to less than 

30% of MEIOB-null tumors after treatment with olaparib 

(Figure 6D), suggesting that MEIOB-expressing tumors, 

in vivo, were more sensitive to olaparib than MEIOB-null 

tumors.

In olaparib-treated PDX tumors, IHC labeling was con-
ducted using antibodies to cell proliferation markers, Ki67 
and PARP1. After treatment with olaparib, the number of 
Ki67-positive proliferating cells was dramatically decreased 
in the MEIOB-expressing tumors when compared with the 
MEIOB-null tumors (Figure 6E). In addition, PARP1 was 
strongly inhibited by olaparib in MEIOB-expressing tum-
ors (Figure 6F). These results indicated that tumors that 
expressed elevated levels of MEIOB were more sensitive to 
olaparib.

To validate the downstream mechanisms of olaparib 
treatment, RNA-seq was performed with the olaparib-treated 
and untreated MEIOB-expressing tumors. We then selected 
differentially expressed genes for further Gene Ontology (GO) 
analysis. The results confirmed that olaparib therapy led to 
an accumulation of DNA DSBs and cell cycle arrest (Figure 
6G)35,36. Representative gene expression levels involved 
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in the DNA repair process were then verified by RT-PCR. 
Supplementary Figure S4C shows that expressions of the 
PARPBP37, POLQ38, and RTEL139 genes, which participate in 
NHEJ, were inhibited by olaparib. A previous study showed 
that olaparib monotherapy provided a significant benefit over 
standard therapy in breast cancers with BRCA mutations7. 
Taken together, these results suggested that PARP inhibitors 
may have additional applications in the treatment of TNBC.

Discussion

It has long been acknowledged that the processes of germ cell 

development and tumorigenesis share important similarities, 

including meiosis during gametogenesis and aneuploidy dur-

ing tumorigenesis12. MEIOB is a newly identified CT gene that 

is expressed both in the testes and in tumor tissues from TNBC 

patients19.
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TNBC is the most aggressive subtype of breast cancer40 

and has no specific treatment guidelines41. It is generally 

thought that some TNBCs are susceptible to DNA damag-

ing agents due to a dysfunctional DNA repair system. Several 

studies have shown that PARP inhibitors might be a prom-

ising therapeutic strategy for TNBC patients with BRCA1/2 

mutations42,43, which can lead to the failure of double strand 

break repair, accumulation of genomic instability, and even-

tual tumor cell death44. However, TNBCs involve a hetero-

geneous group of breast cancers, and many TNBC patients 

do not have BRCA1/2 mutations45. A growing number of 

studies have suggested that sporadic TNBCs with genetic 

deficiencies other than BRCA1/2 generally bear signature 

3, the marker of HRD, and are highly susceptible to PARP 

inhibitors34. We found that sporadic MEIOB-expressing 

TNBC patients bear substantial mutation signature 3 

expressions, using multi-omics analyses of TCGA data-

base. In addition, its expression was mutually exclusive with 

BRCA1/2 mutations. Furthermore, our results both in vitro 

(cells) and in vivo (PDX models) showed that the overexpres-

sion of MEIOB increased the sensitivity of TNBC to PARP1 

inhibitors in patients without BRCA1/2 mutations. Thus, it 

is possible that MEIOB dysregulation might be considered a 

biomarker for the selection of TNBC patients that could be 

responsive to PARP inhibition.

In this study, MEIOB was involved in the error-prone 

NHEJ repair process in TNBCs, which was characterized by 

an increase in PAR and a reduction in RAD5146. In contrast, it 
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was reported that MEIOB binds with SPATA2217 and plays key 

roles in the early repair of the meiotic homologous recombi-

nation repair process18. This suggested that MEIOB plays dif-

ferent roles during two biological processes; MEIOB strongly 

activates the homologous recombination repair pathway in 

meiosis18; and in a different manner, it induces another major 

DSB repair pathway, error-prone NHEJ, and results in HRD 

in TNBC. In TNBCs, MEIOB binds to YBX1, a protein that 

physically interacts with PARP1 to inhibit its polyADP-ribose 

degradation47. YBX1 was previously found to interfere with 

PARP1 activation on the damaged DNA by multimerization 

or interaction with its DNA-binding domain48. Furthermore, 

we observed an increase in PAR caused by MEIOB, which was 

attenuated after YBX1 was knocked down. These results led 

us to hypothesize that YBX1 may function as a cofactor of 

MEIOB in the synthesis of PAR.

Conclusions

Taken together, our study showed that the CT gene, MEIOB, 

promoted breast cancer cell viability and mediated HRD by 

activating the PARP1-dependent DNA damage response. 

Additionally, MEIOB sensitized TNBC to PARP1 inhibi-

tors, which might expand the use of PARP1 inhibitors for 

the  treatment of MEIOB-positive TNBCs (Supplementary  

Figure S4D).
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