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ABSTRACT	 Objective: Macrophages are a major component of the tumor microenvironment. M1 macrophages secrete pro-inflammatory factors 

that inhibit tumor growth and development, whereas tumor-associated macrophages (TAMs) mainly exhibit an M2 phenotype. Our 

previous studies have shown that the interleukin-33/ST2 (IL-33/ST2) axis is essential for activation of the M1 phenotype. This study 

investigates the role of the IL-33/ST2 axis in TAMs, its effects on tumor growth, and whether it participates in the mutual conversion 

between the M1 and M2 phenotypes.

Methods: Bone marrow-derived macrophages were extracted from wildtype, ST2 knockout (ST2−/−), and Il33-overexpressing mice 

and differentiated with IL-4. The mitochondrial and lysosomal number and location, and the expression of related proteins were 

used to analyze mitophagy. Oxygen consumption rates and glucose and lactate levels were measured to reveal metabolic changes.

Results: The IL-33/ST2 axis was demonstrated to play an important role in the metabolic conversion of macrophages from OXPHOS 

to glycolysis by altering mitophagy levels. The IL-33/ST2 axis promoted enhanced cell oxidative phosphorylation, thereby further 

increasing M2 polarization gene expression and ultimately promoting tumor growth (P < 0.05) (Figure 4). This metabolic shift was 

not due to mitochondrial damage, because the mitochondrial membrane potential was not significantly altered by IL-4 stimulation 

or ST2 knockout; however, it might be associated with the mTOR activity.

Conclusions: These results clarify the interaction between the IL-33/ST2 pathway and macrophage polarization, and may pave the 

way to the development of new cancer immunotherapies targeting the IL-33/ST2 axis.
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Introduction

Many studies have indicated that the presence of macrophages 

in the tumor microenvironment is associated with enhanced 

tumor progression: macrophages have been shown to promote 

tumor growth, spreading, angiogenesis, and immunosuppres-

sion1. In most tumor microenvironments, macrophages are 

the predominant matrix component, composing as much as 

50% of the entire microenvironment2-4. Therefore, the mac-

rophagic mechanism of action is receiving increasing atten-

tion, and tumor-associated macrophages (TAMs) have been 

considered as potential therapeutic targets1,5. As observed 

in murine and human tumors, TAMs are poor producers 

of nitric oxide, and they express low levels of inflammatory 

cytokines such as interleukin-1 (IL-1), tumor necrosis factor 

(TNF), and IL-66. In addition, TAMs exhibit defective nuclear 

factor-κB (NF-κB) pathway activation in response to lipopol-

ysaccharides (LPS) and TNF stimulation7-9. This phenotype is 

similar to that of M2 macrophages.

Macrophagic plasticity affects tumor growth and progres-

sion, because different metabolic characteristics shape dif-

ferent macrophagic phenotypes2. Metabolism regulates the 

activation and polarization of macrophages. M1 macrophages 

exhibit metabolic characteristics dominated by aerobic glyco-

lysis, similarly to the Warburg effect in tumor cells. Microbes 
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and other environmental stimuli require rapid responses7; 

thus, M1 macrophages increase autophagy10,11 as an adap-

tive mechanism to such stimuli. In contrast, M2 macrophages 

use oxidative phosphorylation (OXPHOS) as the main met-

abolic method, and autophagy is inhibited or blocked10,12,13. 

Therefore, understanding the distinct aspects of mitochondrial 

metabolism (aerobic glycolysis and OXPHOS) of macrophages 

under physiological and pathological conditions might pro-

vide new targets for anti-tumor therapies14. Mammalian target 

of rapamycin (mTOR) is a serine/threonine kinase that regu-

lates cell metabolism and is involved in macrophage activa-

tion15,16. In M2 macrophages, mTOR complex 1 (mTORC1) is 

activated in response to IL-4 stimulation, thereby promoting 

the formation of adaptive metabolic patterns and ultimately 

macrophage activation16-18. Autophagy occurs downstream of 

the mTOR signaling pathway and is inhibited by the phospho-

rylation of serine 757 of ULK115. Therefore, the main purpose 

of this study was to elucidate the mechanisms of autophagy 

and metabolism, which affect the adaptive activation and 

polarization status of macrophages.

IL-33 is a pleiotropic cytokine with important roles at all 

stages of the macrophage-related immune response, includ-

ing initiation19, maintenance20-22, and the final resolution 

stage23,24. IL-33 promotes both M1 and M2 macrophage polar-

ization19,25,26; however the underlying mechanism remains 

unclear. Our previous studies have shown that mitochondrial 

metabolism is a core player in the macrophage polarization 

process. The IL-33/ST2 axis plays an important role in the 

metabolic reprogramming of M1 macrophages, through reg-

ulating the level of peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC1α), which is associated with 

mitochondrial biosynthesis27. However, the role of IL-33 in 

regulating M2 macrophage polarization remains elusive20,25,28.

In this study, the importance of the IL-33/ST2 pathway in 

IL-4-stimulated macrophage metabolic reprogramming is 

illustrated. These results might aid in understanding of how 

macrophages initiate stimulation-induced responses.

Materials and methods

Animal experiments

Specific-pathogen-free 6–9-week-old male BALB/c mice 

were purchased from Beijing Vital River Laboratory Animal 

Technology Co., Ltd. (Beijing, China) and housed in spe-

cific-pathogen-free conditions at Jilin University (15). 

ST2−/− mice were kindly provided by Prof. Weihua Xiao from 

the University of Science and Technology of China (Hefei, 

China), and Il33 transgenic mice were kindly provided by Prof. 

Ying Sun from Capital Medical University (Beijing, China). 

Both strains had a BALB/c background23. Melanoma B16 cells 

(RRID: CVCL_F936) (5.0 × 106) were injected subcutaneously 

into the backs of mice. The tumor volumes (volume = 1/2 × 

long diameter × short diameter2) and the weights of the mice 

were measured every 7 days. On the 28th day, the mice were 

sacrificed. All animal experiments were performed in accord-

ance with the National Guidelines for Experimental Animal 

Welfare, with approval from the Animal Welfare and Research 

Ethics Committee at Jilin University (Approval No. 2019-40) 

(Changchun, China).

Cell culture

Primary bone-marrow derived macrophages (BMDMs) were 

generated and cultured as previously described27. IL-4 was 

purchased from BioLegend (San Diego CA, US). All other tis-

sue culture reagents were purchased from Sigma-Aldrich (St. 

Louis, MO, US) unless otherwise stated.

Quantitative polymerase chain reaction 
(qPCR)

Total RNA was extracted from BMDMs as previously 

described27. Genomic DNA digestion and reverse transcrip-

tion were performed according to the manufacturer’s instruc-

tions. The primers used were as follows:

Mrc1 F: 5′-CTCTGTTCAGCTATTGGACGCCG-3′
R: 5′-TGGCACTCCCAAACATAATTTGA-3′;

Arg1 F: 5′-CTCCAAGCCAAAGTCCTTAGAG-3′
R: 5-AGGAGCTGTCATTAGGGACA-3′;

Ym1 F: 5′-ATGAAGCATTGAATGGTCTGAAAG-3′
R: 5′-TGAATATCTGACGGTTCTGAGGAG-3′;

Actb F: 5′-CGTTGACATCCGTAAAGACC-3′
R: 5′-AACAGTCCGCCTAGAAGCAC-3′.

Measuring mitochondrial ROS production

The mitochondrial ROS were measured with a mitochon-

drial active oxygen kit (Thermo Fisher Scientific) according 

to the manufacturer’s instructions, by flow cytometry with a 

BD Accuri C6 instrument (BD Biosciences, Franklin Lakes, NJ, 

US).
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Detecting glucose uptake and lactic acid 
production

Culture medium was collected for glucose and lactate meas-

urements with glucose and lactate assay kits (Beyotime, 

Haimen, Jiangsu, China), as previously described29.

Analysis of the oxygen consumption rate (OCR) 
and extracellular acidification rate (ECAR)

The OCR and ECAR were measured with Mito-Xpress and 

pH-Xtra fluorescent probes (Luxcel Bioscience, Cork, Ireland), 

as previously described27.

Measuring intracellular ATP production

Intracellular ATP production was measured with an Enhanced 

ATP Test Kit (Beyotime), as previously described27.

Measuring mitochondrial membrane potential

MMP in BMDMs was determined with the JC-1 probe from 

the Membrane Potential Assay Kit (Beyotime) and then ana-

lyzed with FlowJo software (version 10.0.7; FlowJo, LLC, OR, 

US), as previously described29.

Immunofluorescence

According to the manufacturer’s instructions, MitoTracker 

RED and LysoTracker GREEN (Thermo Fisher Scientific) 

were used to monitor the content and location of mitochon-

dria and lysosomes in living cells.

The cells were incubated with primary antibodies against 

Parkin (Proteintech, Wuhan, Hubei, China) and VDAC1 

(Santa Cruz Biotechnology, Dallas, US), then incubated with 

fluorescent secondary antibody (Proteintech, Wuhan, Hubei, 

China). Cells were imaged with a fluorescence microscope 

(ECHO, San Diego, US).

Western blot analysis

Antibodies against VDAC1, Cytc, Hsp60, Parkin, PINK1, p62, 

p70s6k, P-p70s6k, and LC3 I/II were obtained from Santa 

Cruz Biotechnology (Dallas, TX, US); antibody to β-actin 

and all secondary antibodies were obtained from Proteintech 

(Wuhan, Hubei, China). The specific assay procedures were as 

previously described27.

Gene Expression Profiling Interactive Analysis 
(GEPIA)

GEPIA is a newly developed interactive web server for ana-

lyzing the RNA sequencing expression data of 9,736 tumor 

and 8,587 normal samples from the TCGA and GTEx projects. 

GEPIA performs survival analysis on the basis of gene expres-

sion levels.

Statistical analysis

Data are expressed as means ± standard error of the mean 

(SEM). The statistical significance between 2 groups was ana-

lyzed with one-way ANOVA followed by Student’s t-test in 

Prism software (GraphPad Software, La Jolla, CA, US). ∗ rep-

resents P < 0.05 and was considered statistically significant. All 

experiments were repeated at least 3 times.

Results

ST2−/− decreases expression of M2 marker 
genes in macrophages and increases glucose 
uptake and lactic acid production

To examine the role of the IL-33/ST2 axis in macrophages, 

we investigated the expression of M2 marker genes and com-

pared the metabolic characteristics of BMDMs at baseline 

vs. after IL-4 stimulation. ST2−/− BMDMs showed decreased 

expression of M2 marker genes under IL-4 stimulation  

(P < 0.05) (Figure 1A–1C). Furthermore, ST2−/− BMDMs 

showed increased ATP levels (P < 0.05) (Figure 1D) and 

glucose consumption (P < 0.05) (Figure 1E) under IL-4 

stimulation as compared with basal conditions. In the ST2−/− 

compared with the wildtype (WT), the production of lac-

tate (Figure 1F) was not significantly different. Therefore, 

we detected OCR and ECAR through a sensitive fluores-

cence real-time monitoring method to comprehensively 

evaluate the changes in cell metabolism. The OCR decreased  

(P < 0.05) (Figure 1G), and the ECAR increased under stim-

ulation by IL-4 (P < 0.05) (Figure 1H). The OCR to ECAR 

ratio represents the proportion of OXPHOS and glycolysis.  

A decrease in this ratio was observed in ST2 deficient 

BMDMs, thus indicating that, by hindering the IL-33/ST2 
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signaling pathway after IL-4 stimulation, these macrophages 

undergo aerobic glycolysis similar to the Warburg effect.

Fewer mitochondria in ST2-deleted 
macrophages are associated with increased 
mitochondrial autophagy

Metabolic changes in macrophages are closely associated 

with mitochondrial number and function. Mitochondria-

related indicators were examined to investigate the mech-

anism underlying the IL-33/ST2 axis in macrophage meta-

bolism. The number of mitochondria was significantly lower 

in ST2−/− than WT BMDMs (Figure 2B and 2C). Under IL-4 

stimulation, the expression of the outer mitochondrial mem-

brane protein voltage-dependent anion channel 1 (VDAC1), 

membrane gap protein cytochrome c, and inner membrane 

protein cytochrome c oxidase subunit IV (COXIV) was 

lower than that in WT macrophages (Figure 2A). In addi-

tion, the expression of microtubule associated protein light 

chain 3, MAP-LC3 (LC3II/LC3I), PTEN-induced putative 

kinase 1 (PINK1) (full length), and Parkin was higher, and 

p62 was lower, than that in WT macrophages (Figure 2A). 

After the addition of chloroquine (CQ) to inhibit lysosomal 

functions, the expression trends for VDAC1, Cytochrome C, 

COXIV, LC3II, LC3I, and full length PINK1 were reversed 

(Figure 2A).

To further determine the occurrence of mitophagy, we 

tagged mitochondria, lysosomes, VDAC1, and Parkin with 

immunofluorescent labels. Compared with the WT mac-

rophages, ST2-deleted BMDMs presented greater mitochon-

drial and lysosomal fusion (Figure 2D) and colocalization of 

VDAC1 and Parkin (Figure 2E). These results suggest that the 

increase in mitophagy may be the reason for the metabolic 

changes observed in ST2−/− BMDMs.
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Figure 1  ST2−/− reduces M2 marker gene expression in macrophages, and increases glucose uptake and lactic acid production. BMDMs 
were stimulated with IL-4 (25 ng/mL) for 24 h. The expression of Arg1 (A), Ym1 (B) and Mrc1 (C) was detected by qPCR. The extracellular relative 
ATP level (D), relative glucose uptake (E), and relative lactic acid production (F) were measured after the above treatment. The extracellular 
oxygen consumption rate (OCR) (G) was measured immediately with an oxygen-sensitive probe. The extracellular acidification rate (ECAR) (H) 
after incubation at 37 °C for 3 h. Quantitative graph of the ratio of OCR to ECAR (I). Vertical bars = SEM (n = 3). * P < 0.05 ST2KO vs. WT at 
the same treatment.



176� Xu et al. IL-33/ST2 reshapes macrophage polarization by regulating mitophagy

Mitochondrial autophagy defects increase the 
expression of M2 marker genes, and decrease 
glucose uptake and lactic acid production in 
ST2−/− macrophages stimulated with IL-4

Having demonstrated the reason for the metabolic changes 

in ST2−/−, we next examined related indicators after blocking 

mitophagy. ST2−/− BMDMs showed lower M2 marker gene 

expression than that in WT macrophages after stimulation 

with IL-4 (Figure 1A–1C). However, these gene expression 

patterns were reversed after CQ treatment (P < 0.05) (Figure 

3A–3C). The glucose consumption (P < 0.05) (Figure 3D) and 

lactic acid production (P < 0.05) (Figure 3E) in macrophages 

extracted from ST2-deficient mice were lower after CQ treat-

ment compared with those in the untreated controls under 

basal and IL-4 stimulation conditions. This result indicates 

that increased mitophagy may be the reason for the metabolic 

changes observed in ST2−/− macrophages and the eventual 

weakening of the M2 polarization tendency of macrophages.

Metabolic changes caused by ST2−/− are not 
associated with mitochondrial damage

In general, the disruption of mitochondrial membrane poten-

tial (MMP) is a direct cause of mitophagy. However, the absence 

of ST2 did not decrease the MMP (Figure 3F), and mitochon-

drial ROS levels did not increase but instead showed a relative 

decrease (Figure 3G and 3H) under both basal and IL-4 stimu-

lation conditions. This result demonstrates that the impairment 

of the IL-33/ST2 axis in macrophages did not cause mitochon-

drial damage. Interestingly, the ratio of phosphorylated p70s6k 

to p70s6k was lower in ST2−/− macrophages, but higher in the  

CQ-treated group, than in the corresponding untreated group 

(P < 0.05) (Figure 3I and 3J). This result indicated that mTOR 
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Figure 2  A decreased mitochondrial number in ST2−/− macrophages is associated with increased mitochondrial autophagy. BMDMs were 
cultured as described above with/without IL-4 (25 ng/mL) and CQ (10 μM) for 24 h. Analysis of VDAC1, Cytc, COXIV, Parkin, PINK1, p62, LC3II 
and I by Western blot (A), and incubation with MitoTracker probe at 37 °C for half an hour, and flow cytometry (B) and fluorescence staining (C) 
(scale bar: 20 μm) to detect the number of labeled mitochondria are shown. BMDMs were cultured as described above. Fluorescence staining 
was used to detect the localization of mitochondria and lysosomes (scale bar: 10 μm) (D). Different fluorescent tags were used to detect the 
localization of VDAC1 and Parkin (scale bar: 10 μm) (E). Data are representative of 3 experiments.
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activity was decreased in ST2−/− macrophages and may be 

responsible for the increase in mitophagy.

IL-33 overexpression increases M2 marker 
gene expression in macrophages and decreases 
glucose uptake and lactic acid production

To further elucidate the role of the IL-33/ST2 axis in mac-

rophages, we investigated the expression levels of M2 marker 

genes and the metabolic characteristics of IL-33-overexpressing 

BMDMs under basal and IL-4 stimulation conditions. In con-

trast to ST2−/− BMDMs, the IL-33-overexpressing BMDMs 

showed greater expression of M2 marker genes (Arg1 and YM1) 

than that in WT BMDMs under basal and IL-4 stimulation 

conditions (P < 0.05) (Figure 4A and 4B). Furthermore, IL-33 

overexpression increased the ATP levels in BMDMs (P < 0.05) 

(Figure 4C) but decreased glucose consumption (P < 0.05) 

(Figure 4D) and lactic acid production (P < 0.05) (Figure 4E). 

Because the OCR increased in IL-33 overexpressing BMDMs 

while the ECAR decreased, these macrophages presented an 

increased OCR to ECAR ratio (P < 0.05) (Figure 4F), whereas 

the ECAR showed a decreasing trend (P < 0.05) (Figure 4G), 

and the ratio of OCR to ECAR increased (P < 0.05) (Figure 

4H). These results indicated that enhanced IL-33/ST2 signal-

ing promotes OXPHOS in macrophages, but decreases glucose 

uptake and lactic acid production.

IL-33-overexpressing macrophages present 
increased mitochondrial numbers and 
consequently decreased mitochondrial 
autophagy

The number of mitochondria was significantly higher in 

IL-33-overexpressing BMDMs than WT BMDMs (Figure 5B 

and 5C). After IL-4 stimulation, the expression of the mito-

chondrial inner membrane protein Hsp60 was greater in IL-33 

overexpressing BMDMs than in WT macrophages (Figure 

5A). IL-33-overexpressing BMDMs, compared with WT 
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BMDMs, also showed lower expression of LC3II/LC3I, PINK1 

(full length), and Parkin, and higher expression of p62 (Figure 

5A). Rapamycin (Rap) was used to inhibit mTOR activity, 

thus reversing the aforementioned protein expression trends 

(Figure 5A). In addition, mitochondrial and lysosomal fusion 

and colocalization of VDAC1 and Parkin were lower in IL-33-

overexpressing BMDMs than WT macrophages (Figure 5D 

and 5E). These results suggested that inhibition of mitophagy 

may be the reason for the metabolic changes observed in IL-33 

overexpressing macrophages.

Rapamycin increases glucose uptake and 
lactate production in IL-33-overexpressing 
BMDMs after IL-4 stimulation

According to the results presented above, IL-33 overexpression 

led to greater ATP levels (P < 0.05) (Figure 6A), glucose con-

sumption (P < 0.05) (Figure 6B), and lactic acid production 

(P < 0.05) (Figure 6C) than those observed in the BMDM 

group stimulated with IL-4 but not treated with Rap. This 

result indicated that inhibition of mitophagy may be a reason 

for the metabolic shift of IL-33-overexpressing macrophages 

to OXPHOS. Furthermore, overexpression of IL-33 did not 

cause a significant MMP change relative to that of BMDMs 

under basal or IL-4 stimulation conditions (Figure 6D). In 

IL-33-overexpressing macrophages, in contrast to ST2−/−  

macrophages, the ratio of phosphorylated p70s6k to p70s6k 

was higher, and p70s6k activation was significantly lower after 

Rap treatment (Figure 6E). Overall, the data suggest that the 

IL-33/ST2 axis affects macrophage mitophagy by regulating 

mTOR activity, thereby leading to metabolic reprogramming 

and polarization changes.

IL-33/ST2 signaling in macrophages promotes 
tumor growth in mice

To investigate the role of the IL-33/ST2 axis in macrophages 

and its influence on tumor growth, we randomly injected B16 
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cells into the backs of WT, ST2−/−, and IL-33-overexpressing 

mice. Compared with those in the WT mice, the average tumor 

weight (P < 0.05) (Figure 6G), volume (P < 0.05) (Figure 6H), 

and body weight (P < 0.05) (Figure 6I) in ST2−/− mice were 

lower, but the opposite effects were observed in the IL-33-

overexpression group (P < 0.05) (Figure 6K–6M). These 

findings demonstrated that a lack of IL-33/ST2 signaling in 

macrophages inhibits tumor growth (Figure 6F), whereas 

enhanced signaling accelerates growth (Figure 6J).

Discussion

After stimulation from the environment, the adaptive meta-

bolic state of macrophages is essential for their polarization 

and functionality under physiological and pathological con-

ditions30. IL-33/ST2 signaling plays an important role in 

macrophage polarization; however, the underlying mecha-

nism of action remains unclear25,31. Our results suggest that 

the IL-33/ST2 pathway enhances the M2 polarization of mac-

rophages through reshaping macrophage metabolism by regu-

lating mitophagy (Figure 7).

The role of the IL-33/ST2 pathway in cells is complex, 

because it both protects against certain diseases and ampli-

fies the negative effects of inflammation32. Therefore, regu-

lation of IL-33/ST2 signaling may represent a possible target 

for immune function regulation. Clinically, IL-33 and ST2 

receptors are associated with the occurrence and development 

of autoimmune, allergic, cardiovascular, and neurodegen-

erative diseases19,32-36. For instance, the levels of soluble ST2 

protein and IL-33 mRNA in the serum are significantly ele-

vated in people with asthma37 but are not associated with the 

pathogenesis of chronic urticaria31. IL-33 is also elevated in 
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infections with Leishmania Donovania, Toxoplasma gondii, 

and some nematodes38-41. IL-33/ST2 signaling pathway-me-

diated microglia transition from the proinflammatory M1 

state to the anti-inflammatory and the tissue-repairing M2 

state might be an effective treatment strategy for ischemic 

stroke35,42. In addition, strategies targeting the IL-33/ST2 sig-

naling pathway show promising prospects for the treatment 

of tumors43. Cancer-associated fibroblasts produce high levels 

of IL-33, which act on TAMs and induce their transition from 

M1 to M2. Genomic analysis of transition-associated genes 

in IL-33-stimulated TAMs has shown a 200-fold increase in 

MMP9 expression44. Yang and colleagues have illustrated the 

interaction mechanism between perivascular cells and TAMs 

and their ability to promote metastasis through an IL-33/ST2-

dependent pathway in a tumor-xenograft mouse model45.

However, data from patients with melanoma show some 

contradictory results: higher IL-33 levels are associated with 

better survival rates within 80 months (Supplementary 

Figure S1). This finding might be explained by the pleiotropic 

effects of IL-33; under different microenvironments IL-33 can 

enhance anti-tumor M1 macrophage polarization27. Therefore, 

although targeting IL-33/ST2 is a potential treatment for a vari-

ety of diseases, including cancers, greater understanding of the 

mechanisms of the IL-33/ST2 pathway in macrophage polari-

zation is required before clinical applications can be considered.

Macrophage activation and polarization are essential for 

the immune response and monitoring2,46. The IL-33/ST2 

pathway plays an important role in different types of mac-

rophage polarization. After LPS stimulation, IL-33 upregulates 

the ability of M1 macrophages to secrete TNF-α, IL-6, IL-1β, 

and certain chemokines47. In addition, breast cancer studies 

in mice have demonstrated that the IL-33/ST2 pathway leads 

to the release of cytokines, such as IL-4, IL-5, and IL-13, and 

promotes polarization of M2 macrophages24. These results 
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are also consistent with our findings. Our previous study has 

demonstrated that deletion of ST2 delays the response to LPS 

by enhancing the mitochondrial functions of macrophages. 

WT macrophages downregulate PGC1α and consequently 

limit mitochondrial proliferation, thereby promoting glycoly-

sis over OXPHOS27. However, few studies have investigated the 

role of the IL-33/ST2 pathway in M2 polarization. This study 

focused on the metabolic regulators of macrophage polari-

zation and demonstrated that mitophagy plays an important 

role in M2 phenotype regulation through IL-33/ST2 signaling.

M1 (classical) and M2 (alternative) polarization states have 

long been paradigms for studying macrophage activation1,2. 

During microbial infection, LPS triggers M1 activation, which 

is characterized by increased production of proinflammatory 

and anti-microbial cytokines. M2 macrophages coordinate 

type 2 immunity by upregulating fibrosis and tissue repair. 

This type of immunity is activated by stimuli such as IL-4 and 

IL-13, which are present during parasitic infection1,48. These 

different macrophage functions are probably supported by 

different metabolic programs49. M1 macrophages upregulate 

glycolytic metabolism, thereby allowing for rapid production 

of ATP, which might be required during infections with rapid 

replicating microorganisms. IL-4 polarized M2-like mac-

rophages have similar metabolic characteristics to non-polar-

ized macrophages, with enhanced oxidative respiration, thus 

increasing energy efficiency (i.e., more ATP production) and 

therefore compatibility with host defenses against slow-grow-

ing and endemic parasites2. The recruitment of monocytes is 

a major event in tumor development. These cells are detected 

in early primary and secondary human lesions50. The pheno-

type of TAMs is affected by the microenvironment in devel-

oping tumors. Environmental factors promote M2 polariza-

tion. Therefore, understanding the mechanism of metabolic 

regulation of M2 polarization is crucial for tumor treatment. 

Previous studies investigating the metabolic regulation of 

M2 polarization have shown upregulation of transcriptional 

induction of the IL-4-mediated nuclear receptors PPAR-°C 

and PPAR-δ and their coactivator PGC1β, and increased 

β-oxidation51,52. In macrophages lacking PPAR-γ, PPAR-δ, 

and PGC1β, which are major regulators of fatty acid oxidation 

and mitochondrial biogenesis, IL-4 suppresses β-oxidation 

and M2 marker gene expression10. A recent study has shown 

that Myc is upregulated by IL-4 stimulation and controls M2 

activation45. Generally, Myc is considered a key regulator of 

oxidative metabolism and other metabolic processes; however, 

its role in macrophage activation remains unclear and requires 

further research53,54. Our study also focused on the effects of 

macrophage metabolism on polarization and identified the 

role of mitophagy in the polarization regulation processes.

Here, we investigated the macrophage metabolic changes 

under basal and IL-4-stimulated conditions in the absence 

of ST2 and under overexpression of IL-33. We found that 

the IL-33/ST2 pathway plays an important role in the meta-

bolic conversion of macrophages from OXPHOS to glycolysis 

(Warburg effect) by changing the level of mitophagy. We also 

demonstrated that this metabolic reprogramming is not due 
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Figure 7  Schematic diagram of how the IL-33/ST2 axis affects 
tumor growth in the microenvironment by regulating mitophagy 
of macrophages, thus reshaping their polarization. During the 
polarization of M2 macrophages induced by IL-4, the IL-33/ST2 
axis in differentiated macrophages stimulated by M-CSF inhibits 
mitophagy by promoting the activity of mTOR, thereby weaken-
ing cellular glycolysis. Cellular oxidative phosphorylation is further 
enhanced, so that the M2 polarization of macrophages is further 
increased and ultimately promotes tumor growth. In addition, with 
further tumor development, the microenvironment continues to 
recruit IL-4 secreting immune cells (such as Th2 and mast cells), 
which further promote the transformation of macrophages to 
tumor-promoting M2 through the IL-33/ST2 axis; positive feedback 
promotes the continuous growth of tumors.
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to mitochondrial damage, because MMP was not significantly 

altered by IL-4 stimulation or ST2 knockout, but might be 

associated with mTOR activity. These results provide a bet-

ter understanding of the interaction between IL-33/ST2 and 

macrophage metabolism, and might provide new targets for 

immunotherapy treatment.
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