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ABSTRACT Despite advances in cancer therapeutics and the integration of personalized medicine, the development of chemoresistance in many 

patients remains a significant contributing factor to cancer mortality. Upon treatment with chemotherapeutics, the disruption of 

homeostasis in cancer cells triggers the adaptive response which has emerged as a key resistance mechanism. In this review, we 

summarize the mechanistic studies investigating the three major components of the adaptive response, autophagy, endoplasmic 

reticulum (ER) stress signaling, and senescence, in response to cancer chemotherapy. We will discuss the development of potential 

cancer therapeutic strategies in the context of these adaptive resistance mechanisms, with the goal of stimulating research that may 

facilitate the development of effective cancer therapy.
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Introduction

The high prevalence and mortality rate of cancer is a major 

burden to human health worldwide1. Unfortunately, despite 

extensive efforts and advances in cancer research, only a slight 

decrease in the cancer death rate has been observed2. The 

limited efficacy of chemotherapy, which is one of the prin-

cipal modes of cancer treatment, is considered to be a major 

hindrance to our ability to effectively treat and manage the 

disease. In order to improve current cancer therapies and to 

develop novel treatment strategies, a better understanding of 

the mechanisms underlying the limitations of chemotherapy 

is urgently needed.

The factors contributing to the limited success of chemo-

therapy are complicated and multifactorial, and our inabil-

ity to accurately predict how cancer patients will respond to 

drug treatment is significant. Recent technological advances 

have facilitated the molecular understanding of cancers and 

the identification of targets for therapeutic interventions3 via 

computational analysis. However, these methods are limited 

by intra-tumor heterogeneity, as characteristics of the major 

tumor cell type may not necessarily predict the features of 

mixed populations4. Furthermore, rare mutations in tumors 

are often undetected due to the limitations of sequencing 

technology. For example, sequencing at the initiation of treat-

ment may fail to detect cancer cells harboring mutations that 

confer resistance to chemotherapeutics, such as mutations in 

KRAS. Over the course of treatment, selective pressure results 

in the expansion and proliferation of drug-resistant cells5. In 

addition, therapeutics may have differing levels of efficacy and 

toxicity in individuals with varied genetic backgrounds. For 

instance, mutations in TP53 have been shown to contribute 

to the risk of treatment failure in patients with relapsed child-

hood acute lymphoblastic leukemia6. These complications 

exemplify the need for individualized and tailored cancer treat-

ment in order to maximize efficacy and minimize unwanted 

side effects. However, the field of personalized medicine is still 

under development, and a myriad of obstacles must be over-

come before it can be applied in clinics7.

The development of drug resistance in cancer cells is argu-

ably one of the most challenging factors limiting the success 

of chemotherapy. Chemoresistance can be broadly catego-

rized into two types: (1) intrinsic resistance and (2) acquired 

resistance. The two groups differ in the origin of resistance: 

intrinsic resistance pre-exists within the cancer (cancer cells 

are resistant to initial treatments by chemotherapeutic agents) 
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while acquired resistance emerges in response to treatment 

(resistance develops in cancer cells after initiation of treatment 

with chemotherapeutic agents). However, they share common 

mechanisms of resistance including reduced drug transport, 

altered drug targets, metabolic adaptations, dysregulation 

of DNA damage repair pathways, defective apoptotic sign-

aling, activation of pro-survival signaling, pro-tumorigenic 

microenvironments, and cellular adaptive responses8.

The cellular response to stress can lead to either the acti-

vation of cell death pathways or the adaptive response that 

maintains the survival of the cells. The adaptive response is 

the ability of a cell, tissue, or organism to better resist stress 

damage by prior exposure to a sublethal stress, including 

changes in temperature, oxygen tension, redox potential, 

extracellular signals, and chemical insults such as chemother-

apeutic drugs9,10. During the adaptive process, cells undergo 

dramatic metabolic and physiological adaptations to pre-

vent cellular damage and to maintain homeostasis. This is 

accomplished through the concerted action of diverse mole-

cular signaling including autophagy, ER stress signaling, and 

senescence10. Accumulating evidence has revealed that these 

adaptive responses are crucial for tumorigenesis, tumor sur-

vival, and tumor progression11-13. This review will focus on 

the mechanisms by which autophagy, ER stress signaling, and 

senescence promote cell survival and contribute to the resist-

ance in cancer cells exposed to targeted therapies (Table 1) 

and chemotherapeutic drugs (Figure 1).

Autophagy

Macroautophagy (hereafter denoted as autophagy) is a 

dynamic process in which double-membrane vesicles, or 

autophagosomes, are formed to sequester cytoplasm or orga-

nelles. Autophagosomes are then targeted to lysosomes where 

the autophagosomal cargo is degraded and recycled for the 

needs of the cell. Autophagy is an important mechanism for 

maintaining intracellular homeostasis. Unfolded proteins or 

dysfunctional mitochondria can be eliminated through selec-

tive autophagy, thereby preventing the excessive production of 

reactive oxygen species (ROS), which cause genome instability 

and elicit tumorigenesis. In addition, autophagy is considered 

a distinct type of programmed cell death (type II programmed 

cell death).

Due to its involvement in cell death, autophagy may be 

a tumor-suppressive mechanism. Indeed, the monoallelic 

deletion of BECN1 (encoding Beclin1), a gene essential for 

autophagy, is observed in 40%–75% of human ovarian, breast, 

and prostate cancer tissues14. The heterozygous disruption of 

BECN1 has also been shown to promote tumorigenesis in 

a mouse model14. However, there is evidence demonstrat-

ing that autophagy actually supports tumorigenesis in some 

settings and may promote tumor growth and cancer cell 

survival in established tumors15,16. The tumor- promoting 

activity of autophagy may partly come from its ability to 

restore nutritional and oxidative homeostasis under stress 

conditions including hypoxia, tumor acidosis, extracellular 

matrix detachment, and oncogene-induced transformation. 

Importantly, several studies have demonstrated that inhibi-

tion of autophagy may be a therapeutic strategy for cancer 

patients of certain stages16,17.

The paradoxical involvement of autophagy in both tumor 

suppression and progression is also in line with its complex 

role in the cellular response to chemotherapy. Upregulation 

of autophagy has been found in drug-resistant cells and has 

been shown to be a protective mechanism against therapeutic 

stress18 (Table 2). Alternatively, enhancing autophagy could 

potentially lead to autophagy-associated cell death, syner-

gizing with chemotherapy to suppress tumor growth. As a 

 context-dependent mediator of chemotherapeutic responses, 

the role of autophagy is influenced by different factors such as 

the tumor stroma and oncogenic signaling in cancer cells, as 

detailed below.

Autophagy under the influence of the 
tumor stroma

Endothelial cells

The tumor stroma includes (i) the extracellular matrix,  

(ii) mesenchymal cells such as fibroblast and myofibroblast/

cancer-associated fibroblasts (CAFs), (iii) blood and lym-

phoid vessels, and (iv) nerve and inflammatory cells. It is a 

complex, three-dimensional compartment that surrounds 

the parenchyma and influences tumor growth, metasta-

sis, and therapeutic responses19,20. Anti-angiogenic cancer 

therapies directly target the tumor stroma by destroying 

the tumor vasculature, thereby depriving the tumor of oxy-

gen and nutrients21. Although preclinical and clinical trials 

afford demonstrable efficacy of anti-angiogenic therapy, the 

benefits are at best transitory and are followed by a restora-

tion of tumor growth and progression22. Multiple resistance 
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mechanisms to anti-angiogenic therapy have been pro-

posed and recent studies have indicated that the activation 

of autophagy is one of them23,24. Hypoxia, resulting from the 

anti-angiogenic therapy-mediated devascularization of tum-

ors, was shown to activate autophagy via pathways controlled 

by hypoxia-inducible factor 1α (HIF-1α) and adenosine 

monophosphate (AMP)-activated protein kinase (AMPK)24. 

HIF-1α activation led to the expression of genes encoding 

the Bcl-2 homology 3 (BH3)-only proteins BCL2/adenovirus 

E1B 19-kDa-interacting protein 3 (BNIP3) and BNIP3-like 

(BNIP3L). The atypical BH3 domains of these proteins can 

induce autophagy through disruption of the Bcl-2–Beclin1 

complex, thereby releasing Beclin1, a major autophagy activa-

tor25,26. AMPK has been shown to activate Unc-51-like kinase 

1 (ULK1), a key initiator of autophagy, through phospho-

rylation and inhibition of mammalian target of  rapamycin 

 complex 1 (mTORC1) activity, leading to the induction of 

autophagy in cancer cells27.

Table 1 List of clinical targeted therapeutic agents inducing an adaptive response in cancer cells

Adaptive 
response

  Drugs (generic 
name)

  Trade name  Drug type   Target protein   Cancer   Reference

Autophagy  Afatinib   Gilotrif   Tyrosine kinase inhibitor   EGFR   NSCLC   204 

  Bevacizumab   Avastin   Monoclonal antibody   VEGF-A   CRC   30

          GBM   205

  Bortezomib   Velcade   Proteasome inhibitor   26S proteasome   Breast cancer   97,206

  Cetuximab   Erbitux   Fv (variable, antigen-binding) 
regions of monoclonal antibody

  EGFR   Lung cancer, CRC   59

  Dasatinib   Sprycel   Tyrosine kinase inhibitor   BCR/ABL, Src family   NSCLC   207

  Gefitinib   Iressa   Tyrosine kinase inhibitor   EGFR   Breast cancer   65

  Idelalisib   Zydelig   PI3K inhibitor   P110 delta   CML   98

  Lapatinib   Tykerb   Tyrosine kinase inhibitor   EGFR, HER2   Breast cancer   208

          HCC   209

  Osimertinib   Tagrisso   Tyrosine kinase inhibitor   EGFR   NSCLC   210

  Sorafenib   Nexavar   Tyrosine kinase inhibitor   Raf, PDGF, VEGFR2/3, Kit  RCC   211

  Sunitinib   Sutent   Tyrosine kinase inhibitor   PDGFR, VEGFR, KIT   HCC   212

          mRCC   213

          PanNET   214

  Trametinib   Mekinist   MEK kinase inhibitor   MEK1/2   Melanoma   215

          Leukemia   216

  Trastuzumab   Herceptin   Monoclonal antibody   HER2   Breast cancer   217-219

  Vemurafenib   Zelboraf   Competitive kinase inhibitor   BRAF (V600E)   Melanoma   220

  Vismodegib   Erivedge   Cyclopamine-competitive 
antagonist

  SMO   CML   221

ER stress   Bortezomib   Velcade   Proteasome inhibitor   26S proteasome   Breast cancer   97

  Trastuzumab   Herceptin   Monoclonal antibody   HER2   Breast cancer   222

SASP   Sunitinib   Sutent   Tyrosine kinase inhibitor   PDGFR, VEGFR, KIT   Breast cancer   193

EGFR, epidermal growth factor receptor; VEGF-A, vascular endothelial growth actor A; HER2, human epidermal growth factor receptor 2; 
MEK1/2, mitogen-activated protein kinase kinase 1/2; VEGFR, vascular endothelial growth factor receptor; SMO, smoothened; NSCLC, non-
small cell lung cancer; CRC, colorectal cancer; GBM, glioblastoma; CML, chronic myeloid leukemia; HCC, hepatocellular carcinoma; mRCC, 
metastatic renal cell carcinoma; PanNET, pancreatic neuroendocrine tumors.
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Autophagy promotes tumor cell survival under 

 anti-angiogenic treatment by clearing damaged organelles, 

reducing oxidative metabolism, and providing nutrients 

when blood perfusion is limited25,26. Preclinical studies 

have shown that autophagy-related genes were upregulated 

upon treatment with the vascular endothelial growth  factor 

(VEGF)-neutralizing antibody bevacizumab in glioblas-

toma, hepatocarcinoma, and colon cancer28-30. In addition, 

in the glioblastoma xenograft model, in vivo targeting of 

the essential autophagy gene ATG7 resulted in tumor sup-

pression when combined with bevacizumab28. Importantly, 

tumors from glioblastoma patients resistant to bevacizumab 

were shown to have increased regions of hypoxia and ele-

vated levels of BNIP3 expression compared with the pre-

treatment specimens from the same patients28. Furthermore, 

the combination of the autophagy inhibitor chloroquine 

with bevacizumab significantly increased apoptosis of can-

cer cells under hypoxia, suggesting that the combinatorial 

treatment may be effective in curbing resistance to anti-an-

giogenic therapy29,30.

Interestingly, recent studies have reported that the induction 

of autophagy in both tumor and endothelial cells may nega-

tively regulate angiogenesis31-34. While the exact mechanisms 

remain to be elucidated, some studies indicate that it may be 

in part due to the degradation of angiogenic factors through 

autophagy. For example, gastrin-releasing peptide (GRP) is a 

gut neuropeptide that promotes endothelial cell proliferation 

and stimulates angiogenesis in various cancers35. Following 

the induction of autophagy, enhanced degradation of GRP 

and subsequent inhibition of endothelial cell proliferation 

and tubule formation were observed32. However, it remains to 

be seen whether the inhibition of angiogenesis by treatment- 

induced autophagy will exacerbate hypoxic conditions of the 

tumor microenvironment, thereby establishing a vicious cycle 

that further increases chemoresistance.

Fibroblast

Fibroblasts that acquire activated phenotypes in response 

to the pro-fibrotic factors secreted by cancer cells, such as 
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Figure 1 Mechanisms of adaptive response induced by chemotherapy in the cancer cells. The administration of chemotherapy may lead to the 
disruption of cellular homeostasis followed by the activation of multiple signaling pathways including autophagy, endoplasmic reticulum (ER) stress 
signaling, and senescence. Cellular homeostasis may be restored by autophagy through the removal of damaged organelles and the recycling of 
nutrients, or by the induction of ER stress signaling through the recovery of ER homeostasis and the upregulation of chaperones. Some oncogenic 
signaling pathways can also be activated through the autophagy, ER stress signaling, or in the senescent cells with the senescence-associated 
secretory phenotype (SASP), thereby promoting cell survival and chemoresistance. On the contrary, depending on the type, intensity, and duration 
of the therapy-associated stress, adaptive response signaling may fail to be activated and eventually lead to cell death or growth arrest.
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transforming growth factor-β (TGF-β), platelet-derived 

growth factor (PDGF), and fibroblast growth factor 2 (FGF2), 

are termed myoblasts or CAFs19. CAFs have been implicated 

in tumorigenesis, tumor progression, and chemoresistance 

in several cancers36,37. Their role and mechanisms in can-

cers have been recently reviewed38,39. The loss of caveolin-1 

Table 2 List of clinical chemotherapeutic drugs inducing autophagy in cancer cells

Drug (generic name)   Trade name   Drug type   Cancer   Reference

5-Fluorouracil   Adrucil   Antimetabolite   CRC   83,223-225

      HCC   82

Asparaginase   Elspar/Kidrolase   Enzyme   ALL   226

Cisplatin   Platinol   Alkylating agent   Ovarian cancer   227

      Esophageal cancer   228

      Desmoid tumors   229

      NSCLC   230

      HGSOC   231

Dexamethasone   Decadron   Glucocorticosteroid   Lymphoid malignancy  232

Docetaxel   Taxotere   Plant alkaloid/taxane/
antimicrotubule agent

  Prostate cancer   233

Doxorubicin   Adriamycin/Rubex   Anthracycline antibiotic   Leukemia   234

      Multiple myeloma   235

      Melanoma   236

      CRPC   237

Enzalutamide   Xtandi   Anti-androgen   Prostate cancer   238

Epirubicin   Ellence   Anthracycline antibiotic   TNBC   239

      Breast cancer   240

      HCC   241

Etoposide   Etopophos   Anthracycline antibiotic   SCLC   242

Gemcitabine   Gemzar   Antimetabolite   Pancreatic cancer   243

Irinotecan (CPT-11)   Camptosar   Plant alkaloid/
topoisomerase I inhibitor

  CRC   244

Oxaliplatin   Eloxatin   Alkylating agent   CRC   30,245

      HCC   82

Paclitaxel   Taxol/Onxal   Plant alkaloid/taxane/
antimicrotubule agent

  Cervical cancer   246

      Ovarian cancer   247

      Breast cancer   248

Pemetrexed   Alimta   Antimetabolite   HCC   249

Vincristine   Oncovin   Plant alkaloid   Leukemia   234

CRC, colorectal cancer; HCC, hepatocellular carcinoma; ALL, acute lymphocytic leukemia; NSCLC, non-small cell lung cancer;  
CRPC, castration-resistant prostate cancer; TNBC, triple negative breast cancer; SCLC, small cell lung cancer.
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(Cav-1) in CAFs is associated with poor prognosis and 

tamoxifen resistance in human breast cancer patients40,41. 

Martinez-Outschoorn et al.42,43 demonstrated that breast 

cancer cells induced high oxidative stress and activated auto-

phagy in CAFs, leading to their autophagic degradation of 

Cav-1 via HIF-1α and nuclear factor kappa B (NFκB) acti-

vation. Proteomic analysis revealed that the loss of Cav-1 in 

the stroma further elevated oxidative stress in CAFs and pro-

moted their transformation44. CAFs have also recently been 

shown to increase the cell viability of tongue squamous cell 

carcinoma treated with cisplatin45. In addition, autophagic 

CAFs have been shown to contribute to chemoresistance 

by upregulating the expression of TP53-induced glycolysis 

regulatory phosphatase (TIGAR) in adjacent cancer cells46. 

TIGAR is a novel p53-inducible protein that has been shown 

to decrease intracellular ROS levels and reduce the sensitivity 

of the cell to p53 and other ROS-associated apoptotic signals 

induced by drugs43,46.

Autophagy under the influence of 
oncogenic signaling

Aberrant activation of signaling pathways contributes to 

tumorigenesis and tumor progression and mediates the 

cellular response to chemotherapy in many human malig-

nancies. Several studies have demonstrated that cancer cells 

utilize autophagy to cope with oncogenic stress47. The links 

between autophagy and oncogenic signaling pathways, and 

how this interplay regulates chemoresistance in cancer cells, 

are gradually emerging. Epidermal growth factor receptor 

(EGFR) is a receptor tyrosine kinase that is over-activated 

in most epithelial cancers due to EGFR mutations and/or 

overexpression48. Small-molecule receptor tyrosine kinase 

inhibitors (TKI), such as erlotinib and gefitinib, have been 

shown to be effective in blocking EGFR activity, especially 

in non-small cell lung cancers (NSCLCs) with an in-frame 

deletion in exon 19 or the single base substitution resulting 

in an L858R mutation49,50. However, approximately 30% of 

NSCLC patients demonstrated intrinsic resistance to TKI 

therapy, partly explained by the clonal MET amplifica-

tion51,52. Those responding to therapy inevitably developed 

drug resistance via various mechanisms such as the T790M 

secondary mutation50. Recently, the non-genetic resistance 

through the activation of Aurora A and Aurora B has been 

reported to be associated with acquired resistance to EGFR 

TKIs53,54, and the treatment with Aurora kinase inhibitors 

could enhance and prolong the EGFR inhibitor response 

in preclinical models53,54. Studies have also indicated that 

autophagy is implicated in TKI resistance. In lung cancer 

cell lines with either wild-type or mutant EGFR, treatment 

with erlotinib and gefitinib induced autophagy, and the 

degree of induction was greater in resistant cells, suggest-

ing that autophagy is involved in both innate and acquired 

resistance to EGFR-target therapy55-58. In addition, higher 

basal autophagy levels have been demonstrated in geftinib- 

resistant cell lines compared to parental cells57. Similarly, 

the EGFR-blocking antibody cetuximab has been shown to 

induce autophagy in lung cancer cell lines, promoting cell 

survival59,60. Treatment with TKIs and cetuximab was shown 

to induce autophagy through the inhibition of the class I 

phosphatidylinositol 3-kinase (PtdIns3K)/protein kinase 

B (Akt)/mTOR pathway as well as activating the class III 

PtdIns3K (hVps34)/Beclin1 autophagic pathway55,60. Of 

note, glioblastoma patients expressing EGFRvIII, an EGFR 

mutation variant associated with therapy resistance, were 

recently found to be particularly responsive to treatment 

with the autophagy inhibitor chloroquine61, suggesting the 

involvement of autophagy in the EGFRvIII+ tumors.

The mechanisms by which TKI inhibitors induce resist-

ance by regulating autophagy are emerging. As mentioned 

already, TKI treatment can induce autophagy activation 

through its inhibition of the phosphatidylinositol-3-kinase  

(PI3K)/Akt/mTOR pathway. Some studies have also demon-

strated that EGFR itself directly interacts with the core 

autophagy machinery, and the treatment of TKI may dis-

rupt this interaction, leading to the activation of autophagy 

and cell survival. For example, Wei et al.62 demonstrated 

that active EGFR mediates Beclin1 phosphorylation, lead-

ing to its inhibition and decreased autophagy. TKI ther-

apy,  however, disrupts Beclin1 phosphorylation, restoring 

autophagy. Furthermore, K721A kinase-dead (KD) EGFR, 

which mimics the blocking of EGFR by TKIs, was able to 

cooperate with lysosomal-associated transmembrane pro-

tein 4B (LAPTM4B) and Sec5 at endosomes to cause the 

disassociation of the autophagic inhibitor Rubicon from 

Beclin1, thereby initiating autophagy63. These data suggest 

that EGFR inhibition may directly promote autophagy, and 

that co-targeting EGFR and autophagy may be a promis-

ing approach for overcoming chemoresistance under TKI 

treatment. Indeed, some preclinical studies have reported 

synergism between the autophagy inhibitors chloroquine or 
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hydroxychloroquine and EGFR TKIs in NSCLC, breast can-

cer, and glioblastoma55,56,64,65.

Another common mutation that can be targeted therapeu-

tically is the V600E mutation in the v-RAF murine sarcoma 

viral oncogene homolog B1 (BRAF), which constitutively 

activates the BRAF kinase, resulting in sustained extracellu-

lar signal-related kinase (ERK) signaling and increased tumor 

growth66. In melanoma cells with BRAFV600E, hyperactivation 

of ERK induced higher levels of autophagy67. In BRAFV600E-

driven lung tumors in mice, autophagy was essential for 

mitochondria metabolism and tumor growth, and deletion 

of an essential autophagy gene prolonged survival compared 

to the wild-type control mice68. The defect in mitochondrial 

respiration in autophagy-deficient BRAFV600E cancer cells 

was shown to be rescued by the addition of exogenous glu-

tamine, which suggests that autophagy promotes cancer sur-

vival in part through sustaining mitochondrial metabolism 

and by providing essential amino acids. This phenomenon 

is termed “autophagy addiction”69. Furthermore, the activa-

tion of autophagy may also promote drug resistance in cancer 

cells treated with the BRAF inhibitor (BRAFi) vemurafenib, 

as the biopsies from BRAFi-resistant melanoma patients 

exhibited increased levels of autophagy compared with base-

line70. Importantly, both melanoma and brain tumor cells 

with BRAFV600E (but not wild type) displayed synergy when 

chloroquine was combined with vemurafenib, and tumor 

regression was observed in BRAFi-resistant xenografts and 

cancer patients, suggesting that combination therapies may 

delay the acquisition of resistance and improve patient out-

comes70,71. Li et al.72 demonstrated that treatment with BRAFi 

induced autophagy via a transcriptional program coordinat-

ing  lysosomal biogenesis and function mediated by transcrip-

tion factor EB (TFEB), providing a clue to the mechanism of 

BRAFi-induced autophagy.

Kirsten rat sarcoma viral oncogene homolog (K-Ras) is an 

upstream regulator of BRAF and the mutant KRAS is asso-

ciated with aggressive cancer phenotypes and poor patient 

prognosis73. The expression of KRASV12 has been shown to 

upregulate basal autophagy, which was required to maintain 

the pool of functional mitochondria needed to deal with the 

high levels of oxidative phosphorylation and ROS in K-Ras-

driven tumors15,74. Ablation of autophagy was also shown to 

decrease K-Ras-mediated adhesion-independent transfor-

mation, proliferation, and cell survival in several KRASG12D-

driven cancers, such as pancreatic, breast, and lung cancer 

cells15,74-77.

Autophagy and non-coding RNA

The advancements in genomic technology have altered our per-

ception of non-coding RNAs (ncRNAs) from  non-functional 

(sometimes referred to as junk) to regulatory molecules 

that modulate cellular processes and play important roles in 

 diseases like cancer78,79. ncRNA species include microRNAs 

(miRNAs), circular RNAs (circRNAs), and long ncRNAs 

(lncRNAs)79. Recent studies have demonstrated that lncRNAs 

may influence the sensitivity of cancer cells to chemotherapy 

via autophagy80,81. For example, both lncRNAs HULC (highly 

upregulated in liver cancer) and H19 were found to be asso-

ciated with 5-fluorouracil resistance via their modulation of 

autophagy regulator sirtuin 1 (SIRT1)82,83. Their expression 

levels were found to increase in liver and colorectal cancers,  

respectively, and were found to be associated with cancer 

recurrence83. Similarly, gallbladder cancer drug resistance- 

associated lncRNA1 (GBCDRlnc1) was found to be upregulated 

in both gallbladder cancer tissues and doxorubicin-resistant  

gallbladder cancer cells. Knockdown of GBCDRlnc1 may 

increase the sensitivity of Dox-resistant cancer cells via inhib-

iting autophagy84. Importantly, lncRNAs have also been found 

to increase chemoresistance by modulating the expression of 

miRNAs and thus the downstream autophagic signaling. For 

instance, metastasis-associated lung adenocarcinoma tran-

script 1 (MALAT1), a ncRNA known to be a regulator of 

metastasis in NSCLC85, has recently been shown to promote 

autophagy and increase chemoresistance by miR-124 down-

regulation and miR-23b-3p sequestration86,87. On the other 

hand, lncRNAs have also been observed to reduce chemore-

sistance in cancer cells by suppressing autophagy. For instance, 

lncRNA growth arrest-specific 5 (GAS5) was found to increase 

the sensitivity to cisplatin in glioma cells by activating mTOR 

signaling, thereby inhibiting autophagy88.

Taken together, these studies suggest an emerging role of 

lncRNA in autophagy regulation and chemoresistance in can-

cer cells. The lncRNA profiles of cancer patients should be 

taken into consideration when designing therapeutic strate-

gies, especially via autophagy inhibition.

ER stress signaling

The ER is a perinuclear, cytosolic organelle which is required 

for cell survival and normal cellular function. The func-

tions of ER include intracellular calcium homeostasis, lipid 



Cancer Biol Med Vol 17, No 4 November 2020 849

biosynthesis and protein folding, modification, and secre-

tion. Disturbances, such as nutrient deprivation, hypoxia, 

ER Ca2+ depletion, and oxidative stress can impair glyco-

sylation or protein disulfide bond formation, leading to the 

accumulation of unfolded proteins in the ER, triggering an 

evolutionarily conserved protein quality control mechanism 

termed unfolded protein response (UPR) or ER stress sign-

aling pathways89. Canonical UPR signaling includes three 

pathways, each mediated by a different ER stress sensor: pro-

tein kinase RNA-like ER kinase (PERK),  inositol-requiring 

kinase 1α (IRE1α), and the activating transcription factor 6 

(ATF6). Glucose-regulated protein, 78 kDa (GRP78), a major 

ER chaperone, acts as a master regulator of the UPR through 

direct binding to all three sensors, keeping them in an inactive 

form. Upon ER stress, GRP78 preferentially binds the accu-

mulating misfolded proteins, leading to the activation of the 

three sensors and the transduction of UPR  signals across the 

ER membrane to the cytosol and ultimately the nucleus90. 

Triggering UPR can lead to cell survival or cell death, depend-

ing on the cellular context, the intensity of stress, and the 

length of exposure. The function of UPR is to restore ER 

homeostasis, mainly by suppressing global mRNA translation 

via PERK-mediated phosphorylation of eukaryotic transla-

tion initiation factor 2α (eIF2α), leading to reduced influx of 

new proteins into the ER. As the stress continues, adaptive 

mechanisms become activated. The adaptive response pri-

marily involves the activation of autophagy and transcrip-

tional programs that induce expression of genes for enhanc-

ing ER protein folding and ER-assisted degradation (ERAD). 

ERAD facilitates removal of the unfolded proteins in the ER 

and export to the cytosol for degradation91. However, when 

adaptive mechanisms fail, cell death pathways will eventually 

be induced, eliminating cells beyond repair89,90,92.

Rapidly proliferating cancer cells are often subject to ER 

stress. This is because (1) fast-growing cells place higher 

demand on ER activity for protein production93; (2) inade-

quate vascularization of tumors leads to hypoxia and nutrition 

deprivation, which results in inadequate protein glycosylation 

and ATP production required for proper protein folding94,95; 

and (3) the hypoxic tumor microenvironment leads to dis-

turbances in cellular redox regulation in which oxidizing or 

reducing agents lead to improper protein folding and the acti-

vation of UPR pathways. Indeed, the expression of ER stress 

markers has been shown to increase in many cancers and has 

been associated with aggressive phenotypes and therapeutic 

resistance96-99. Furthermore, ER stress was found to increase 

after treatment with chemotherapeutic drugs in various 

 cancers100,101 (Table 3).

UPR and chaperones in 
chemoresistance

Several mechanisms have been proposed to account for 

UPR-mediated therapeutic resistance. For example, some 

pro- survival proteins were found to be induced by UPR sig-

naling. Wroblewski et al.102 demonstrated that treatment 

with the BH3 mimetics Obatoclax and ABT-737 induced 

Table 3 List of clinical chemotherapeutic drugs inducing ER stress in cancer cells

Drugs (generic name)  Trade name   Drugs type   Cancer   Reference

Cisplatin   Platinol   Alkylating agent   CRC   100

      HCC   250

Doxorubicin   Ariamycin PFS/
Adriamycin RDF/Rubex

  Anthracycline antibiotic   Breast cancer  251

Epirubicin   Ellence   Anthracycline antibiotic   Breast cancer  251

Gemcitabine   Gemzar   Antimetabolite   PDAC   252

Ixabepilone   Ixempra   Plant alkaloid/eopthilones/antimicrotubule agent   RCC   253

Paclitaxel   Taxol   Plant alkaloid/taxane/antimicrotubule agent   Breast cancer  254-256

      Melanoma   257

Vinblastine   Velban   Plant alkaloid   Breast cancer  254

CRC, colorectal cancer; HCC, hepatocellular carcinoma; PDAC, pancreatic ductal carcinoma; RCC, renal cell carcinoma.
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anti-apoptotic Bcl-2 family proteins Mcl-2 via UPR in mel-

anoma. The drug resistance-related protein prion was also 

reported to be regulated through UPR pathways in breast 

cancer103.

A major resistance mechanism generated by UPR is 

through the upregulation of catalysts that accelerate pro-

tein folding and molecular chaperones that inhibit protein 

aggregation under ER stress. These proteins facilitate protein 

folding, thereby attenuating ER stress and preventing the 

induction of apoptosis104. Downregulation of the ER stress 

chaperones by small interfering RNA (siRNA) has been 

shown to increase apoptosis induced by chemotherapeutic 

drugs105. In addition to their function in restoring ER home-

ostasis, chaperone proteins have also been implicated in sev-

eral mechanisms of chemoresistance104,106,107. For example, 

protein disulfide isomerase (PDI) is an enzyme that catalyzes 

disulfide bond formation and isomerization, and is a chaper-

one facilitating proper folding of many secretory proteins108. 

Inhibition of PDI has been shown to increase apoptosis in 

response to ER stress109. In addition, the overexpression of 

PDIA4 and PDIA6 was found in cisplatin-resistant NSCLC 

cell lines as well as biopsies from lung cancer patients110. The 

inhibition of PDI4 resulted in the reactivation of the classical 

mitochondrial pathway, while downregulation of PDIA6 led 

to a non-canonical cell death pathway with some necroptotic 

features110.

Another major family of chaperones involved in chemore-

sistance is heat shock proteins (HSPs). HSPs are induced by 

cell stress and are known to facilitate tumor progression via 

controlling the stability and function of their target pro-

teins104,111,112. HSP90 has an indispensable role in regulating 

mitogenesis and cell cycle progression helping to stabilize 

fragile structures of receptors, protein kinases, and transcrip-

tion factors necessary for cell growth104,113. For example, 

HSP90 has been shown to protect the androgen receptor 

in castration-resistant prostate cancer (CRPC) cells from 

 degradation, and to stabilize multiple components involved 

in the development and/or maintenance of CRPC including 

Akt, receptor tyrosine-protein kinase erbB-2 (ERBB2), and 

 cyclin-dependent kinases (CDKs). As a result, blocking HSP90 

suppressed the growth and survival signaling of resistant 

cells, leading to apoptosis and cell cycle arrest114. Moreover, 

the combination of HSP90 inhibitors with other chemothera-

peutic drugs has been shown to generate synergistic effects in 

overcoming chemoresistance both in vitro and in vivo115,116. 

In a study on mantle cell lymphoma, the combination of the 

HSP90 inhibitor IPI-504 and bortezomib, an inhibitor of the 

26S proteasome, overcame bortezomib resistance by inhibit-

ing UPR and promoting the Noxa-mediated apoptotic path-

way115. Importantly, in an NSCLC patient with crizotinib 

resistance, the HSP90 inhibitor ganetespib was able to induce 

marked tumor shrinkage after one cycle of monotherapy116.

HSP27, HSP47, and HSP70 are also involved in cancer drug 

resistance primarily through preventing apoptosis under cel-

lular stress conditions111,117,118. These HSPs have been shown 

to inhibit proteolytic maturation of caspases, cleavage of their 

substrate, and apoptosome formation104,119-121. Recent studies 

have demonstrated that OGX-427, a second-generation anti-

sense oligonucleotide, was able to inhibit HSP27 expression 

both in vitro and in xenograft mice in vivo122. OGX-427 has 

been shown to suppress tumor progression and enhance the 

efficacy of gemcitabine, a nucleoside analog chemotherapy, in 

pancreatic cancer in vitro and in vivo122. Interestingly, many 

HSPs play overlapping roles in sustaining tumor survival and 

inhibiting cell death pathways. Simultaneous inhibition of 

HSP90 and HSP27 has been shown to synergistically increase 

tumor suppression effects through enhanced apoptosis and ER 

stress123,124. The results of phase II clinical trials using OGX-

427 alone for the treatment of CRPC, metastatic NSCLC, 

 pancreatic cancer, and bladder cancer do not look promising, 

further suggesting that a combinatorial targeting of HSPs may 

be necessary for effective cancer treatment125-128.

GRP78 is a member of the HSP70 superfamily that plays 

a critical role in cell proliferation, survival, and angiogenesis 

of various cancers93. The induction of GRP78 under ER stress 

has been regarded as a substantial contributor to chemore-

sistance in cancer cells129. GRP78 has been shown to promote 

cell survival under therapeutic stress through various mecha-

nisms including through the cytoprotective branches of UPR 

induction. The expression level of the gene encoding GRP78 

is greatly induced under ER stress and like other molecular 

chaperones, GRP78 prevents the aggregation of misfolded 

proteins, which can cause toxicity and trigger apoptosis130. 

In addition, GRP78 upregulation has been shown to lead to 

the stress-dependent activation of p38 and PERK signal-

ing, which promote survival and drug resistance in dormant 

carcinoma cells131. The activation of UPR signaling can also 

lead to ER stress-associated cell death and as a result, GRP78 

induction of UPR is tightly controlled. For example, SPARC 

(secreted protein acidic and rich in cysteine) was identified 

as a GRP78-binding partner and was shown to interfere with 

the association between GRP78 and PERK and the activation 
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of the downstream ER stress signaling in response to chemo-

therapy132. This suggests that a complicated protein network is 

involved and that further mechanistic studies are required to 

understand the ER stress-associated chemoresistance.

A subpopulation of GRP78 was found to bind to and inac-

tivate pro-apoptotic proteins to prevent the induction of 

apoptosis. For example, GRP78 was shown to form a com-

plex with caspase-7 or -12 at the ER surface, preventing their 

activation and release133,134. As capase-12 mediates ER stress- 

induced apoptosis, inactivation by GRP78 led to resistance 

of cancer cells to proteasome inhibitors and DNA-damaging 

agents135-137. Moreover, under stress conditions, elevated levels 

of GRP78 have been shown to suppress cell death signaling by 

sequestering B-cell lymphoma 2 (BCL-2) from binding with 

BCL-2-interacting killer (BIK), which is a pro-apoptotic BH3-

only protein138.

Importantly, the induction of GRP78 by ER stress not 

only led to an increase in GRP78 in the ER compartment, 

but also promoted GRP78 relocalization to other cellular 

locations, including the cell surface, cytosol, mitochondria, 

nucleus, and the exterior of the cell through secretion139. 

Cell surface GRP78 (sGRP78) was found to act as a co- 

receptor mediating tumor cell signal transduction, mainly 

through Akt signaling, to promote cell survival and drug 

resistance140-143. For example, sGRP78 was demonstrated to 

initiate mitogen-activated protein kinase (MAPK) and AKT-

dependent signaling and to downregulate the apoptotic 

pathway through the binding of active α2-macroglobulin  

(α2-M*), a serum proteinase inhibitor144,145. In  prostate 

cancer, a serum protein complex composed of native α2-M 

and prostate-specific antigen was shown to bind GRP78, 

resulting in the activation of mitogen-activated pro-

tein kinase kinase 1/2 (MEK1/2), ERK1/2, S6K, and Akt 

pro-survival pathways and the increase of DNA and  protein 

synthesis146,147. Additionally, sGRP78 was also shown to 

modulate T-cadherin signaling via Akt, promoting pro- 

survival effects in endothelial cells148. In addition, sGRP78 

can form a complex with oncoprotein cripto to activate 

MAPK/PI3K signaling and promote tumor cell prolifer-

ation149. sGRP78 was demonstrated to couple with PI3K, 

facilitating PIP3 formation and the activation of PI3K/AKT 

signaling in breast and prostate cancer cells resistant to hor-

monal therapy150.

GRP78 translocation to other cellular location under 

stress may also promote drug resistance. For instance, mito-

chondrial GRP78 has been shown to stabilize Raf-1 on the 

outer membrane of mitochondria, thereby maintaining 

mitochondrial permeability and preventing the activation of 

apoptosis under stress151. Moreover, a variety of bortezomib- 

resistant solid tumor cell lines, but not the sensitive myeloma 

cell lines, were shown to secrete high amounts of GRP78. 

Secreted GRP78 induced pro-survival signaling by phospho-

rylation of ERK and suppressed p53-mediated expression of 

pro-apoptotic Bok and Noxa proteins, leading to bortezomib 

resistance in endothelial cells152. Notably, GRP78 was also 

induced in non-stressed cells by the treatment with a histone 

deacetylase (HDAC) inhibitor, which removes the transcrip-

tion repression exerted by HDAC1 on the ER stress response 

elements of GRP78, leading to chemoresistance153,154.

UPR and chemoresistance in cancer 
stem cells (CSCs)

The significance of the stress response and molecular chap-

erones in stem cell oncogenesis is gradually emerging155,156. 

Several studies indicate that ER stress signaling is involved 

in the maintenance of stemness properties of CSCs, which is 

thought to be a mechanism of chemoresistance and tumor 

recurrence157-161. CSCs are a subpopulation of neoplastic cells 

within a tumor that have an increased ability to seed new tum-

ors upon experimental implantation in appropriate animal 

hosts162. While most chemotherapeutic agents kill the bulk of 

tumors, CSCs have been shown to survive and proliferate after 

chemotherapy. For example, DNMT3A-mutant hematopoie-

tic stem cells (HSCs) were reported to exist and expand in the 

remission samples of patients with acute myeloid leukemia163. 

Similarly, the pool of glioma stem cells has also been shown to 

expand over time under the exposure to therapeutic doses of 

temozolomide in both patient-derived and established glioma 

cell lines164.

Although CSCs have been connected with drug ineffi-

ciency for years, the exact molecular mechanisms of resist-

ance caused by CSCs are not completely understood. The 

slow cycling characteristic of CSCs and the overexpression 

of drug transporters, anti-apoptotic proteins, and DNA 

damage enzymes only partially explain the entire resistance 

spectrum162,165. There is accumulating evidence showing 

that the stress response is crucial for sustaining stem-like 

properties in both normal and neoplastic stem cells, and that 

the inhibition of ER stress sensors sensitizes sphere-forming 

cells to apoptosis166. van Galen et al.167 proposed a model 
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for how stress signaling is integrated within tissue hier-

archies and how it coordinates with stemness in HSCs, 

revealing an indispensable role of UPR in sustaining HSC’s 

clonal integrity. In addition, the UPR modulator GRP78 

has been shown to be necessary for the survival of embry-

onic stem cell precursors and was also highly expressed in 

HSCs168. Furthermore, the inducible knockout of GRP78 

in the hematopoietic system resulted in a significant reduc-

tion of HSCs, common lymphoid and myeloid progeni-

tors, and lymphoid cell populations in the mutant mice169. 

Consistent with these findings, UPR has been shown to play 

an important role in normal stem cells. For example, GRP78 

anchored at the plasma membrane has been proposed as a 

surface marker for CSCs from colon cancer and head and 

neck squamous cell carcinoma (HNSCC)170,171. Knockdown 

of GRP78 markedly decreased the self-renewal ability and 

expression of stemness genes, but inversely promoted cell 

differentiation and apoptosis in CSCs from HNSCC170. 

Moreover, it has been reported that in breast CSCs, GRP78 

mediates chemoresistance through β-catenin/ATP-binding 

cassette super-family G member 2 (ABCG2) signaling172. 

However, as most of the study focused on the association 

between GRP78 and CSCs, it would be of great importance 

to know how the individual UPR pathways participate in the 

regulation of CSC stemness and how it is coordinated with 

existing stem cell pathways to enable therapeutic targeting 

of CSCs and chemoresistance.

UPR and the epithelial-to-
mesenchymal transition (EMT)  
in chemoresistance

Activation of the EMT program in carcinoma cells has been 

shown to give rise to cells with stem-like properties173,174. 

In human mammary epithelial cells, the induction of EMT 

resulted in the acquisition of mesenchymal traits and the 

expression of stem cell markers. Cells undergoing EMT were 

also shown to form mammospheres, soft agar colonies, and 

tumors more efficiently173. Indeed, EMT activation has been 

linked to increased anti-apoptotic ability and chemore-

sistance in various cancers175-179. Chemotherapeutic drugs 

such as cisplatin and doxorubicin have been shown to acti-

vate ER stress and subsequent EMT signaling pathways180. 

Interestingly, emerging evidence indicates that there is cross-

talk between UPR and EMT activation. UPR induction was 

shown to potentiate EMT and vice versa181-183. Feng et al.184 

demonstrated that cancer cells undergoing EMT had par-

ticularly high sensitivity to ER stress-induced death, sug-

gesting that UPR is constitutively activated in EMT cells. 

Moreover, EMT gene expression strongly correlated with the 

PERK-eIF2α axis of UPR and the blocking of PERK signaling 

pathway interfered with the ability of EMT cells to invade 

and metastasize. These data suggest that UPR and EMT sig-

naling are closely related and that interfering with the inter-

play between these two pathways is a potential strategy to 

suppress CSCs and tumor progression.

Senescence

Cellular senescence is a status where cells stably exit the 

cell cycle at the end of the cellular lifespan or in response 

to different stresses. Senescence is a heterogeneous pheno-

type. Depending on the type of stimulus, organism of ori-

gin, and cellular context, senescent cells may display various 

senescence markers which contribute to the phenotype to 

different extents185. For example, in addition to a lack of pro-

liferation, senescent cells may show large and flat morphol-

ogies, higher senescence-associated β-galactosidase activity 

(SA-β-Gal), and the appearance of senescence-associated 

heterochromatin foci (SAHF), a facultative heterochromatin 

domain that contributes to the silencing of proliferation- 

promoting genes186,187. Although senescent cells remain 

arrested even when treated with growth factors, these cells 

are in fact metabolically active and were shown to exert non-

cell- autonomous activities by secreting soluble signaling 

factors. The profound changes in the secretome of senescent 

cells are termed the senescence-associated secretory pheno-

type (SASP)185,188.

Although it has long been accepted that senescence is a 

tumor-suppressive mechanism that permanently arrests 

cells at risk for malignant transformation, accumulating 

evidence suggests that senescent cells can actually drive 

tumor progression. They do this through modulation of 

the tumor microenvironment by altering the secretion of 

interleukins, inflammatory cytokines, protease, and growth 

factors in SASP188. It has been shown that SASP enhances 

cell proliferation and motility, regulates tumor immunol-

ogy, and promotes the emergence of the cancer-stem-like 

cells189. It has also been shown that after cyclic stimulus of 

 senescence-inducing androgen deprivation, senescence- 

resistant, androgen-refractory cells were generated. These 
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cells were characterized with notable chemoresistance and 

enhanced pro-survival mechanisms190. Several studies also 

demonstrated that the SASP is associated with therapeutic 

resistance in the current cancer treatment (Table 4). For 

example, SASP induced by cisplatin administration in mel-

anoma cells may promote the proliferation of non-senes-

cent cells through the activation of ERK1/2–ribosomal S6 

kinase 1 (RSK1) pathway191. Hepatocellular carcinoma cells 

resistant to sorafenib were found to be associated with the 

SASP-related p16/IL6 axis192. Interestingly, Mastri et al.193 

found a temporary cellular change similar to SASP after the 

withdrawal of anti-angiogenic therapy (SASP-mimicking 

anti-angiogenic therapy-induced secretome, ATIS) in  cancer 

cells. The senescence hallmarks observed in these cells ulti-

mately reversed after long drug withdrawal periods. This 

incomplete induction of the SASP phenomenon may explain 

the highly diverse treatment efficacy observed in patients 

receiving anti-angiogenic therapy193.

Importantly, resistance induced by the SASP was also 

observed in clinics. Malignant pleural mesothelioma (MPM) 

patients with upregulated senescence marker were shown 

to have a worse prognosis after receiving platinum-based 

therapy194. To explore the potential mechanism by which 

senescence induces chemoresistance, Canino et al.195 used 

MPM as a model and found that conditioned media from 

 pemetrexed-treated senescent MPM cells induced the emer-

gence of EMT-like, clonogenic, and chemoresistant cell 

subpopulations with high levels of aldehyde dehydrogenase 

(ALDH) activity. It was shown that these SASP-cytokine-

induced chemoresistant cells could be targeted by STAT3 

knockdown or HSP90 inhibition, resulting in a reduction 

of the population of high ADLH-expressing cells and EMT 

genes expression both in vitro and in vivo195,196. This suggests 

that SASP signaling-mediated pathways may be a potential 

target in anti-cancer therapy.

Conclusion

The adaptive response is essential for cell and organism survival 

of sublethal cellular damage and disruption of homeostasis. The 

transient and reversible adjustments in response to stress can 

be mediated by biochemical or post-translational mechanisms, 

or rely on alterations in gene expression197. The activation of 

autophagy and ER stress signaling have been shown to play 

important roles in the restoration of cellular homeostasis, while 

senescence may contribute to growth arrest, thereby extending 

the life span of an organism under stress. Nevertheless, as dis-

cussed already, these adaptive responses may in turn promote 

resistance to chemotherapy (Figure 2). One of the common 

characteristics of autophagy and ER stress signaling is that their 

activation can either lead to cell survival or death, depending 

on the levels and types of stress. However, the specific factors 

that activate the death program still remain to be elucidated in 

both autophagy and ER stress signaling. Several mechanisms 

have been proposed to be involved, and cell signaling path-

ways may interact in different ways to have specific outcomes 

in different cell types91,198. This may partly explain the varia-

ble efficacy of bortezomib and hydroxychloroquine treatment 

in cancer patients199,200. Therefore, understanding how cancer 

cells integrate information from different signaling pathways, 

and the establishment of a system quantitatively monitoring 

the stress intensity and duration and its subsequent effects on 

cell fate following chemotherapeutic drugs administration, are 

particularly needed to overcome chemoresistance. Tumor heter-

ogeneity and the influence of the tumor microenvironment may 

pose a challenge for establishing a standard treatment protocol. 

However, due to the recent advances in computational biology 

and  single-cell multi-omics approaches, this may be attaina-

ble201-203. Collaboration between oncologists, cancer biologists, 

and bioinformaticians is necessary to overcome the immense 

challenge of chemotherapy resistance.

Table 4 List of clinical chemotherapeutic drugs inducing SASP in cancer cells

Drug (generic name)   Trade name   Drugs type   Cancer   Reference

Cisplatin   Platinol   Alkylating agent   Melanoma   191

Doxorubicin   Ariamycin PFS/Adriamycin RDF/Rubex   Anthracycline antibiotic   CRC   258

Gemcitabine   Gemzar   Antimetabolite   PDAC   259

Temozolomide   Temodar/Temodal/Temcad   Alkylating agent   Melanoma   260

CRC, colorectal cancer; PDAC, pancreatic ductal carcinoma.
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