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ABSTRACT Objective: Bevacizumab is a recombinant humanized monoclonal antibody that blocks vascular endothelial growth factor (VEGF) 

with clear clinical benefits. However, overall survival of some cancer types remains low owing to resistance to bevacizumab therapy. 

While resistance is commonly ascribed to tumor cell invasion induced by hypoxia-inducible factor (HIF), less attention has been paid 

to the potential involvement of endothelial cells (ECs) in vasculature activated by anti-angiogenic drugs.

Methods: Human umbilical vein ECs (HUVECs), bEnd.3 cells, and mouse retinal microvascular ECs (MRMECs) were treated with 

bevacizumab under conditions of hypoxia and effects on biological behaviors, such as migration and tube formation, examined. 

Regulatory effects on TGFβ1 and CD105 (endoglin) were established via determination of protein and mRNA levels. We further 

investigated whether the effects of bevacizumab could be reversed using the receptor tyrosine kinase inhibitor anlotinib.

Results: Bevacizumab upregulated TGFβ1 as well as CD105, a component of the TGFβ receptor complex and an angiogenesis 

promoter. Elevated CD105 induced activation of Smad1/5, the inflammatory pathway and endothelial–mesenchymal transition. The 

migration ability of HUVECs was enhanced by bevacizumab under hypoxia. Upregulation of CD105 was abrogated by anlotinib, 

which targets multiple receptor tyrosine kinases including VEGFR2/3, FGFR1-4, PDGFRα/β, C-Kit, and RET.

Conclusions: Bevacizumab promotes migration and tube formation of HUVECs via activation of the TGFβ1 pathway and 

upregulation of CD105 expression. Anlotinib reverses the effects of bevacizumab by inhibiting the above signals.
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Introduction

Bevacizumab is a recombinant humanized monoclonal anti-

body targeting VEGF-A that has beneficial clinical effects1,2. 

However, improvements in progression-free survival (PFS) 

but not overall survival (OS) have been reported in a number 

of clinical trials3-5, for instance, in patients with progressive 

glioblastoma6. In another study, bevacizumab failed to reduce 

tumor growth, instead exacerbating brain tumor invasion in 

mice bearing glioma7, indicating a capacity to stimulate malig-

nant behavior of tumor cells. Glioblastoma and colorectal can-

cer recurrence, characterized by highly infiltrative behavior, 

have additionally been documented after bevacizumab treat-

ment8-10. These results highlight the urgent need to identify 

“high-risk individuals” prone to progressive disease induced 

by unregulated anti-angiogenic treatment to avoid unproduc-

tive therapy.

Besides malignant cells, another non-negligible factor 

in resistance to anti-angiogenesis therapy is potentially the 

endothelial cells (ECs) of micrangium around the tumors. 

However, it remains to be established whether endothelial 

cells of vessels undergo a similar phenomenon as neoplas-

tic cells. The potential malignant behavior of ECs has rarely 

been explored as they are considered mature, gene-stable 
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cells that lack features of malignancy. However, in response 

to pro- angiogenic signals, ECs become active and motile 

with protruding filopodia and retain high plasticity, respond-

ing to angiogenic tumor expansion11. Additionally, tumors 

can “hijack” pre-existing blood vessels into the vasculature 

whereby ECs acquire “motivated status” with endothelial–

mesenchymal transition (Endo-MT) associated with TGFβ-

CD105-Smad and Notch signaling to boost neointima forma-

tion and leukocyte transmigration12-15. In the current study, 

treatment of human umbilical vein EC (HUVEC) cells with 

bevacizumab under hypoxia led to increased migration and 

tube formation, similar to activated ECs with EMT phenotype 

in previous reports16,17. Therefore, the issue of whether nor-

mal vessel ECs can be activated by aberrant stimulation and 

the underlying mechanisms need further exploration.

TGFβ1 in ECs activates Sma- and Mad-related (Smad) 

proteins. Smad and JNK signaling in the TGFβ1 pathway 

promote Endo-MT13,15 and inflammation in rat peritoneal 

mesothelial cells18. The extracellular and cytoplasmic domains 

of the auxiliary TGFβ receptor CD105 (endoglin) interact 

with alk1 in ECs. Alk1 and alk5 (different TGFβ superfamily 

receptor I types) in ECs are proposed to regulate the balance 

between proliferation and quiescence19, whereby binding of 

CD105 with alk1-Smad1/5/8 activates ECs in association with 

Endo-MT13. Additionally, elevated CD105 is associated with 

inflammatory infiltration in vivo20 and endogenous secreted 

CCL20 levels are increased in oral cancer cells due to CD105 

stimulation21. Here, we further focused on elucidating the 

mechanisms underlying the impact of bevacizumab on down-

stream inflammatory factors of the TGFβ-CD105 pathway in 

HUVECs.

Materials and methods

Cell culture and reagents

HUVECs (Peking Union Medical College Cell Bank, Beijing, 

China), bEnd.3 (Nankai University, Tianjin, China) and 

MRMECs (Tianjin Medical University Eye Hospital, Tianjin, 

China) were cultured in DMEM containing 10% FBS. 

Hypoxia (< 1% O2) was induced with a modular incuba-

tor chamber (Billups-Rothenberg, San Diego, CA, USA). 

Bevacizumab was purchased from Roche (H0160) and anlo-

tinib was a gift from Nanjing Chia Tai Tianqing Company 

(Nanjing, China).

In vitro angiogenesis assay

HUVECs were treated with various concentrations of beva-

cizumab for 24 h under hypoxia conditions. Next, cells were 

seeded in a 48-well plate pre-coated with 150 μL matrigel (BD 

Biosciences, Bradford, MA, USA) at a density of 4 × 104 cells/

well. After 5 h, images of enclosed tubes were obtained with 

an inverted phase-contrast microscope (Leica DMI6000B, 50× 

magnification).

In vivo angiogenesis assay

Female BALB/c-nu mice 6–8 weeks old were purchased from 

the Model Animal Center of Nanjing University (Nanjing, 

China). In keeping with a previous protocol22, HUVECs  

(2 × 107 cells/mL) were resuspended on ice in phenol red-

free matrigel solution, mixed with different doses of bevaci-

zumab (0, 10, and 100 μg/mL) together with 1 μg/mL VEGF 

(PeproTech), and implanted subcutaneously into BALB/c-nu 

mice. Mice were divided into three groups intraperitoneally 

injected with 0, 5, and 50 mg/kg bevacizumab twice a week 

for 1 month. Images of the matrigel were obtained and fixed 

with 4% paraformaldehyde for CD105 immunohistochemis-

try (ab137389, anti-human CD105 antibody does not cross- 

react with mouse CD105). Experiments were replicated using 

4 mice per group. To confirm the efficacy of bevacizumab on 

endothelial cells, experiments on bEnd.3 cells were addition-

ally performed.

Migration assay

HUVECs (5 × 104 cells/well) were seeded in transwell inserts 

(8 μm, Corning Inc, NY, USA) with DMEM containing 20% 

FBS for 8 h. Cells were pretreated with 0–160 μg/mL bevaci-

zumab under hypoxia or normal oxygen conditions for 24 h. 

Cells were stained with Crystal violet (Beyotime, Haimen, 

Jiangsu, China) and digital images (100× magnification) of 

the insert undersides obtained under a microscope (ECLIPSE 

TS100, Nikon, Tokyo, Japan).

RT-PCR and ELISA

RT-PCR
Total RNA was extracted with TRIzol (Qiagen, Valencia, CA, 

USA) and cDNA generated by reverse transcription using a 

first-strand cDNA synthesis kit (TransGen Biotech, Beijing, 
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China), RT-PCR was performed using the TransScript® RT/

RI Enzyme Mix, 2×TS ReactionMix. After that, quantita-

tive real-time PCR was performed using the TransStart Top 

Green qPCR SuperMix (TransGen Biotech, Beijing, China). 

The reactions were performed under the following condi-

tions as suggested by the manufacturer: 94 °C for 30 s, fol-

lowed by 40 cycles of 94 °C for 5 s and 60 °C for 30 s, followed 

by a dissociation protocol. Single peaks in the melting curve 

analysis indicated specific amplicons. Results were expressed 

as relative fold change calculated using the delta CT method. 

The primers used in this study are listed in Supplementary 

Table S1.

ELISA
HUVECs were treated with 10 and 100 μg/mL bevacizumab 

(24 h), anlotinib 10 μM (24 h), bevacizumab (100 μg/mL for 

8 h) and anlotinib (10 μM for 16 h) sequentially. The super-

natant was collected to determine the TGFβ1 concentration. 

ELISA was conducted according the manufacturer’s instruc-

tions (Dakewe, Shenzhen, China).

MTT assay

HUVECs were transfected with CD105 siRNA for 24 h, plated 

into 96-well plates (2,000 cells/well), and incubated overnight 

with bevacizumab (100 μg/L). Next, 20 μL/well MTT (Solarbio 

Beijing, 5 mg/mL dissolved in PBS pH 7.4) was added to the 

plates. After 4 h, 150 μL DMSO was added, followed by shak-

ing for 20 min. The plate was read using a Microplate Reader 

(Bio-Rad Laboratories, Hercules, CA, USA) at a wavelength of 

490 nm.

Western blot

HUVECs were homogenized, subjected to 12% SDS/

PAGE, and subsequently transferred to PVDF membrane 

(Millipore, USA). Following blockage with 5% non-fat milk 

for 1 h at room temperature (RT), membranes were incu-

bated with primary antibody overnight at 4 °C. The next 

day, blots were incubated with secondary antibody (1:5000 

dilution, Santa Cruz) for 1 h at RT and developed using an 

ECL chemiluminescence reagent kit (Millipore, MA, USA). 

Antibodies used were as followed: CD105, CCL20 (Abcam, 

USA); Smad5, smad1 (ABclonal, China); IL1B, beta-Actin 

(Cell Signaling Technology, USA); Goat anti-rabbit antibody 

IgG-HRP (SantaCruz, USA).

RNA interference and immunofluorescence

RNA interference
CD105 siRNA was synthesized by Ribobio Company 

(Guangzhou, China). The siRNA primer sequences are listed 

in Supplementary Table S1. HUVECs were transfected 

with siRNA at a final concentration of 50 nmol/L using 

Lipofectamine 2000 (Invitrogen).

Immunofluorescence
HUVECs were treated with different concentrations of bevaci-

zumab under conditions of hypoxia. Cells were fixed with 4% 

paraformaldehyde for 10 min at RT, blocked with 10% goat 

serum for 1 h, and incubated at 4 °C overnight with CD105 

(1:200, Abcam, ab107595), followed by Alexa Fluor 546 (1:200, 

Invitrogen, A-11035) for 1.5 h at RT. Cell nuclei were stained 

with DAPI and images acquired with an Axiovert 200 micro-

scope (Carl Zeiss, Thornwood, NY, USA).

Statistical analysis

Results are expressed as means ± SD on the basis of tripli-

cate experiments. ANOVA and Student’s t-test (two-tailed) 

were employed for statistical analysis of significant differences 

between groups. For immunochemistry score analysis, the 

non-parametric test was used. P values < 0.05 were considered 

statistically significant.

Results

Bevacizumab promotes HUVEC migration and 
tube formation in vivo and in vitro

HUVECs were treated with 0–160 μg/mL bevacizumab under 

hypoxia or normal oxygen conditions for 24 h. Following treat-

ment with 80 or 160 μg/mL bevacizumab in normoxia con-

ditions (Supplementary Figure S1A and S1B), migration of 

HUVECs was decreased relative to the control group. However, 

under hypoxia, both concentrations of bevacizumab promoted 

cell migration to a significant extent (Figure 1A and 1C, P < 

0.05). In view of the finding that migration of HUVECs was acti-

vated by both 80 and 160 μg/mL bevacizumab, we employed a 

fixed concentration of 100 μg/mL for subsequent experiments23.

Tube length was significantly greater in the 100 μg/mL bev-

acizumab group than in the control group (Figure 1B and 1D, 

P < 0.001). The tube formation experiment in vivo showed that 
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Figure 1 High concentration of bevacizumab (100 μg/mL) enhances migration and tube formation of HUVECs in vitro. (A) Typical images of 
migrating HUVECs treated with bevacizumab under hypoxia conditions (hypoxia: O2 < 1%, 5% CO2, 94% N2; control: bevacizumab 0 μg/mL; 
bev10: bevacizumab 10 μg/mL, bev100: bevacizumab 100 μg/mL; normoxia: normal oxygen vehicle: 21% O2, 5% CO2, 74% N2); magnification, 
×100. (B) Images of canal-like tubules formed by HUVECs treated with bevacizumab under hypoxia; magnification, ×50. (C) Quantitative anal-
ysis of migrating HUVECs treated with different doses of bevacizumab under hypoxia. Data represent mean ± SD of three independent exper-
iments; *P < 0.05; one-way ANOVA. (D) Average total branching lengths of canal-like tubules formed by HUVECs treated with bevacizumab 
under hypoxia. Data represent mean ± SD, *P < 0.05; **P < 0.01; ***P < 0.001; one-way ANOVA.
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Figure 2 High concentration of bevacizumab (100 μg/mL) accelerates angiogenesis of HUVECs and bEnd.3 in vivo. (A) Comparison of blood 
vessel formation in matrigel (400 μL) plugs in female nude mice (n = 4 per group) by bev (bevacizumab: 0 μg/mL, 10 μg/mL and 100 μg/mL 
in matrigel). Mixed matrigel containing HUVECs, bevacizumab, and VEGFA was subcutaneously injected into mice. Mice were intraperitoneally 
injected with 0, 5, and 50 mg/kg bevacizumab twice a week for 1 month. The image shows matrigel separated from mice, with darker red indic-
ative of higher blood content in vasculature in the gel. CD105 expression (brown: CD105+, the antibody was only reactive to human endothelial 
cells) determined via immunochemical assay. The CD105+ stain was stronger in HUVECs treated with high concentrations of bevacizumab 
than those treated with low concentrations of bevacizumab. (B) Comparison of blood vessel formation in matrigel (400 μL) plugs in female 
nude mice (n = 4 per group) from control (bevacizumab: 0 μg/mL in matrigel), bev10 (bevacizumab: 10 μg/mL in matrigel), and bev100 (bev-
acizumab: 100 μg/mL in matrigel) groups. Mixed matrigel containing bEnd.3 cells, bevacizumab, and VEGFA was subcutaneously injected into 
mice, followed by intraperitoneal injection with 0, 5, or 50 mg/kg bevacizumab twice a week for 9 days. The image shows matrigels separated 
from mice, with darker red indicative of higher blood content in vasculature in the gel. (C) Histogram displaying immunochemistry scores of 
CD105 in matrigel containing HUVECs (n = 22 per group, data represent mean ± SD, **P < 0.01, ****P < 0.0001; non-parametric test).
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Figure 3 High concentration of bevacizumab (100 μg/mL) stimulates CD105 expression. (A) Western blot showing changes in CD105 pro-
tein levels following bevacizumab treatment under normoxia and hypoxia conditions (control: bevacizumab 0 μg/mL, bev10: bevacizumab 
10 μg/mL, bev100: bevacizumab 100 μg/mL; normoxia: normal oxygen vehicle). (B) Quantitative analysis of CD105 protein levels following 
bevacizumab treatment under hypoxia. Data represent mean ± SD, *P < 0.05; one-way ANOVA. (C) Immunofluorescence of CD105 in HUVECs 
pre-stimulated with bevacizumab under hypoxia (control: bevacizumab 0 μg/mL, bev10: bevacizumab 10 μg/mL, bev100: bevacizumab  
100 μg/mL), CD105 (red), and DAPI (blue). Magnification, ×200. (D) Quantitative analysis of fluorescence intensity of CD105+, ***P < 0.001; 
one-way ANOVA. (E) Changes in CD105 mRNA levels in response to bevacizumab under hypoxia conditions. Data represent mean ± SD, 
*P < 0.05; one-way ANOVA. (F) Western blot showing CD105 expression upon treatment with 100 μg/mL bevacizumab and isotype control 
IgG1 under hypoxia. (G) Quantitative analysis of CD105 protein expression following bevacizumab (100 μg/mL) and isotype control (IgG1) 
treatment. Data represent mean ± SD, **P < 0.01; one-way ANOVA.
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100 μg/mL bevacizumab promoted angiogenesis of HUVECs 

(Figure 2A) as well as bEnd.3 cells (Figure 2B). To determine 

the effects of bevacizumab on CD105 expression, immunohis-

tochemical staining was conducted, which revealed upregula-

tion of CD105 in the 100 μg/mL treatment group, compared 

to the control and 10 μg/mL treatment groups (Figure 2A and 

2C, P < 0.01).

Bevacizumab enhances expression of CD105

Both protein and mRNA levels of CD105 were significantly 

increased following treatment with 100 μg/mL bevacizumab for 

24 h (Figure 3A, 3B, and 3E, P < 0.05). Results from immuno-

fluorescence staining further validated bevacizumab- mediated 

upregulation of CD105 (Figure 3C). HUVECs stimulated 

with 100 μg/mL bevacizumab exhibited stronger fluorescent 

signals of CD105, compared to those treated with 10 μg/mL 

bevacizumab (Figure 3D, P < 0.001). IgG1 (100 μg/mL), an 

isotype control of bevacizumab, failed to upregulate CD105 in 

HUVECs (Figure 3F and 3G), signifying that CD105 induc-

tion was bevacizumab-specific. Regulation of CD105 by bev-

acizumab was consistently validated in MRMECs and bEnd.3 

cells (Figure 4C and 4D, P < 0.05).

Furthermore, protein levels of Endo-MT-related fac-

tors, including Slug (Supplementary Figure S2A and S2B), 

Twist (Supplementary Figure S2A and S2C), α-SMA 

(Supplementary Figure S2A and S2D), and N-cadherin 

(Supplementary Figure S2A and S2E), and inflammatory 
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Figure 4 Bevacizumab upregulates CD105 and activates the TGFβ pathway in different cell lines under hypoxia, which is reversed by anlotinib 
regardless of the treatment sequence. (A) HUVECs were treated with bevacizumab (100 μg/mL, 24 h) or anlotinib (10 μM, 12 h) following pre-
treatment with bevacizumab (100 μg/mL, 12 h) under hypoxia. Anlotinib reversed bevacizumab-induced elevation of CD105. (B) Densitometric 
analysis of CD105 protein levels shown in (A). Data represent mean ± SD, ***P < 0.001, ANOVA. (C, D) MRMECs and bEnd.3 cells were treated 
with bevacizumab (0, 10, 100 μg/mL, 24 h) or anlotinib (10 μM, 12 h) following pretreatment with bevacizumab (100 μg/mL, 12 h) under 
hypoxia. Anlotinib reversed bevacizumab-induced elevation of CD105. Bevacizumab additionally enhanced Smad1 and Smad5 expression.
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factors, including IL1B (Supplementary Figure S2A and 

S2F) and CCL20 (Supplementary Figure S2A and S2G), 

were significantly increased (P < 0.05) in the presence of 100 

μg/mL bevacizumab.

TGFβ1 is upregulated in HUVECs treated with 
100 μg/mL bevacizumab

To examine the potential involvement of TGFβ1 in CD105 

regulation, HUVECs were serum-starved for 24 h and stimu-

lated with bevacizumab. Under hypoxia conditions, the TGFβ1 

concentration was significantly increased in HUVECs treated 

with 100 μg/mL bevacizumab (Figure 5A, P < 0.001), along 

with pSmad1/5 protein levels (Figure 5B and 5C, P < 0.001). 

Smad1, Smad5, and alk1 mRNA levels following treatment 

with bevacizumab were additionally increased under hypoxia 

(Figure 5D–5F). The observed changes in CD105, Smad1 and 

Smad5 protein levels were further validated in bEnd.3 cells 

and MRMECs (Figure 4C and 4D, P < 0.05). Interestingly, 

TGFβ1 expression was also enhanced by 100 μg/mL bevaci-

zumab under oxygen conditions (Supplementary Figure S1C 

and S1D, P < 0.0001).

Anlotinib reverses bevacizumab-induced 
upregulation of CD105 in HUVECs

HUVECs, bEnd.3, and MRMECs were treated with bevaci-

zumab (100 μg/mL) for 12 h, followed by anlotinib (10 μM), 

which targets multiple receptor tyrosine kinases, includ-

ing VEGFR2/3, FGFR1-4, PDGFRα/β, C-Kit, and RET, for 

a further 12 h24. ECs sequentially treated with bevacizumab 

and anlotinib were compared with those treated with bev-

acizumab alone for 24 h. Our results showed a significant 

decrease in CD105 levels in the former group (Figure 4A 

and 4B, P < 0.001), indicating that bevacizumab-induced 

CD105 augmentation is effectively suppressed by anlotinib. 

Augmentation of CD105 and Smads in MRMECs and bEnd.3 

cells was similarly reversed by anlotinib (Figure 4C and 4D). 

In HUVECs, MRMECs and bEnd.3 cells treated with anlo-

tinib for 6 h, followed by bevacizumab for 18 h, upregulation 

of CD105 was also suppressed (Supplementary Figure S3A–

S3C, P < 0.01), indicating that the sequence of anlotinib treat-

ment does not influence its inhibitory effect.

Following treatment of HUVECs with anlotinib (5 μM) in 

hypoxia conditions, migration (Figure 6A and 6C, P < 0.001)  

and tube formation abilities (Figure 6B and 6D, P < 0.001)  

were significantly decreased. Sequential treatment of 

HUVECs with bevacizumab and anlotinib resulted in 

marked downregulation of tube formation and migration 

abilities, compared to cells treated with bevacizumab alone 

(Figure 6B and 6D, P < 0.001). Consistent with our in vitro 

findings, anlotinib reversed the pro-angiogenic effects of 

bevacizumab in bEnd.3 cells in vivo (Figure 6E). The blood 

content was higher in more dense vessel structures in bEnd.3 

cell matrigel plugs treated with 100 μg/mL bevacizumab and 

significantly decreased in vessel structures in matrigel plugs 

treated with anlotinib.

siRNA targeting CD105 suppresses 
migration and proliferation of HUVECs and 
downregulates downstream factors

CD105 was depleted using siRNA, even with bevaci-

zumab stimulation, as evident from western blot analysis 

(Figure 7A–7C). Downstream factors of CD105 and inflam-

matory factors, such as CCL20 and IL1B, were additionally 

decreased (Supplementary Figure S4A–S4C, P < 0.01), along 

with Endo-MT-related factors, such as Twist, N-cadherin, and 

Snail (Supplementary Figure S4D–S4F, P < 0.01). Migration 

of HUVECs treated with 80 μg/mL bevacizumab and positive 

siRNA under hypoxia conditions was markedly decreased, 

compared with that in the negative siRNA group (Figure 7D 

and 7E, P < 0.01). Proliferation of HUVECs was addition-

ally suppressed in both normal and hypoxia conditions 

(Figure 7F), clearly supporting stimulatory effects of CD105 

on both cell migration and proliferation.

Discussion

Bevacizumab has been developed as a key anti-angiogenic 

agent to reinforce the efficacy of chemotherapy with recog-

nized benefits in the clinic25,26. However, a number of studies 

have reported negative results without significant prolonga-

tion of OS5. These findings highlight a common problem of 

single- target anti-angiogenic drugs, i.e., triggering of hypoxia 

and subsequent activation of tumor cells, initiating intersti-

tial-epithelial transformation and vascular mimicry27,28, lead-

ing to therapeutic failure. Bevacizumab neither decreased 

tumor growth nor improved survival of mice bearing ortho-

topic or endogenous glioma while exacerbating brain tumor 

invasion7,8,10,29. Some tumors develop resistance, even after 

adequate anti-angiogenic therapy9,10,27. In many reports30, 
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resistance is ascribed to augmentation of HIF, which promotes 

tumor cell invasion. However, few investigations to date have 

focused on the potential role of vascular endothelial cells 

(ECs) in resistance. Tumors can “hijack” and remodel normal 

vessels, convert normal ECs to “aberrant” cells31, and mobi-

lize precursor ECs in the circulation to form vasculatures32. 

Accordingly, enhanced circulating CD105+-activated ECs 

are indicative of resistance to anti-vascular drugs and tumor 

development33. These findings strongly suggest that ECs can 

be activated, which contribute to resistance to anti-angiogenic 

therapy. Results from current study demonstrate that bevaci-

zumab promotes tube formation and migration by HUVECs 

in hypoxia, and activates the ECs through VEGF-independent 

pathways.

The optimal concentration of bevacizumab determined 

from the cell experiments was approximately similar to the 

clinical dose. In the clinic, the plasma concentration of bev-

acizumab is reported to reach 136.3 μg/mL after treatment 

with 7.5–15 mg/kg bevacizumab23. The conversion is cal-

culated as follows: at a standard patient weight and blood 

volume of 60 kg and 4 L, respectively, plasma concentration 

was 60*(7.5 to 15)/4 mg/L = 112.5–225.0 mg/L (i.e., 112.5–

225.0 μg/mL). However, increased invasion and metastases 

for some malignancies have been documented upon admin-

istration of the standard dose34, suggesting that the standard 

dose may not benefit every individual and the dose for the 

whole body may not be always proper rather than excessive 

concentration in all tumor lesions. We believe that the “rel-

atively excessive concentration” in local lesions due to heter-

ogeneity of tumors activates ECs. However, reduction of the 

therapeutic dose is not a feasible option. The main purpose 

of this study was to explore whether “improper treatment” 

could activate HUVECs, determine the underlying pathways, 

and identify potential markers on vascular endothelial cells 

that could be effectively utilized to indicate anti-angiogenic 

drug resistance.

VEGF-A signaling is the established canonical pathway 

of angiogenesis. However, other alternative mechanisms 

exist35,36, including PDGF, TGFβ, and FGF pathways. Blockage 

of VEGF-A in glioblastoma has been shown to increase MET 

activity in a hypoxia-independent manner, in turn, enhancing 

tumor invasion37. In a murine glioma model, TGFβ activation 

mediated escape from VEGF inhibition38. Experiments from 

the current study mainly focused on whether HUVECs can 

be stimulated independently of VEGF via the TGFβ-CD105-

Smad pathway.

Migration of HUVECs treated with high concentrations 

of bevacizumab in normoxia conditions was not increased 

(Supplementary Figure S1A and S1B). In HUVECs subjected 

to hypoxia only, migration was not significantly increased 

(Figure 1A and 1C) either, clearly indicating that either 

hypoxia or bevacizumab alone is not sufficient to activate 

HUVECs, while hypoxia and bevacizumab acted synergisti-

cally to promote migration of HUVECs through upregulation 

of TGFβ1-CD105 (Figures 3A and 5A). Canonically, tumor 

cell invasion is often attributed to stimulation of hypoxia39,40. 

However, in our experiments, when HUVECs were treated 

with a high concentration of bevacizumab in normoxia con-

ditions, TGFβ1 was also elevated (Supplementary Figure S1C 

and S1D), consistent with results obtained under hypoxia 

(Figure 5A) and our recent report41. Hypoxia alone failed to 

increase TGFβ1 (Figure 5A), suggesting that signaling path-

ways other than HIF-α activate ECs. However, we hypothe-

size that activation of HUVECs is a consequence of synergistic 

effects based on earlier evidence of elevated TGFβ by hypoxia. 

TGFβ activation was additionally confirmed in MRMECs and 

bEnd.3 cells.

CD105, an angiogenesis marker, was elevated by high con-

centrations of bevacizumab, both in vivo and in vitro, which was 

validated in MRMECs and bEnd.3 cells (Figure 4C and 4D).  

We further confirmed that this effect was specifically caused 

by bevacizumab but not control protein IgG1 (Figure 3F). 

Knockdown of CD105 was closely associated with down-

regulation of downstream inflammatory (CCL20 and IL1B) 

and Endo-MT-related factors (Snail, N-cadherin, Twist) 

(Supplementary Figure S4), which are responsible for cell 

migration, adhesion, and vessel formation42-44. Transfection 

with siCD105 suppressed HUVEC migration (Figure 7D–7E), 

suggesting that CD105 is a key contributory factor in endothe-

lial cell activation. Since CD105 plays significant roles in angi-

ogenesis, inflammation, and cancer development45,46, our 

results may partially explain the mechanism underlying vas-

culature endothelial cell resistance to anti-angiogenesis agents. 

ECs with properties of mesenchymal cells (Supplementary 

Figure S2A), termed Endo-MT12, play important roles in 

neointima formation. Endo-MT-derived cells promote tumor 

development by secreting specific proteins47. Moreover, ECs 

migrate to tumor sites and form vasculatures that favora-

bly promote tumor growth48,49. In the present study, in 

HUVECs treated with high concentrations of bevacizumab, 

the  vessel-like structure became dispersed and discontinuous, 

termed “co-opted vasculature”. This co-opted vasculature has 
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been shown to exacerbate hypoxia to stimulate tumor cells to 

further release VEGF and enhance resistance to anti-angiogen-

esis agents14,50.

In our experiments, VEGF-A was completely blocked 

using bevacizumab (Figure 5G), signifying that activation of 

HUVECs is not VEGF-A-dependent. To our knowledge, this is 

the first study to demonstrate that HUVECs can be activated 

through TGFβ1-CD105-Smad signaling triggered by beva-

cizumab independently of the VEGF pathway. These results 

highlight the common shortcomings of single-target drugs, 

i.e., when one signaling pathway of VEGF was shut down 

the alternative byways may be stimulated. TGFβ1 can acti-

vate downstream CD10551 and the classical Smad cascade52. 

Concordantly, elevation of activated circulating endothelial 

cells (aCEC) positive for CD105 is an indicator of NSCLC 

resistance to anti-angiogenesis and poor prognosis53. Our 

findings are consistent with a previous report that CD105 is 

upregulated in hypoxia conditions via activation of the MAPK 

pathway (including p38 and JNK)54.

Upregulation of CD105 by bevacizumab was reversed by 

anlotinib, in keeping with recent results obtained by our 

group41. These results indicate that multi-target drugs can 

attenuate resistance through suppressing multiple byway 

signaling pathways initiated by a single-target inhibi-

tor24,55-57. Although the mechanisms by which bevaci-

zumab and anlotinib exert their activities on TGFβ remain 

to be established, previous studies suggest that FGF sign-

aling is activated when VEGF signaling is blocked58 and 

that under conditions of bevacizumab-induced decrease 

in VEGF, angiogenin and bFGF levels are significantly 

increased59. Meanwhile, FGF2 cooperates with TGFβ to 

promote motility and proliferation of endothelial cells60, 

which may explain the observed bevacizumab-mediated 

activation. Blockage of FGF signaling by anlotinib56 could 

underlie inactivation of HUVECs. Furthermore, anlotinib 

inhibited tube formation and migration of HUVECs in our 

experiments.

Our study has a number of limitations that should be 

taken into consideration. Firstly, the precise mechanisms by 

which bevacizumab and anlotinib affect TGFβ1 signaling in 

cells remain unclear. Moreover, expression changes in CD105, 

TGFβ1, VEGF, HIF-1a and tumor vasculature in the presence 

of low and high doses of bevacizumab in nude mouse models 

and clinical specimens require further elucidation. Our future 

studies will investigate whether bevacizumab interacts directly 

with TGFβ1.

Conclusions

In conclusion, higher concentrations of bevacizumab (80–

160 μg/mL) can activate the TGFβ1-CD105-Smad pathway, 

promoting migration and tube formation of HUVECs under 

hypoxia (Supplementary Figure S5). CD105 may serve as a 

potential marker of resistance to anti-angiogenesis drugs. 

Anlotinib effectively reverses the effects of bevacizumab.
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