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ABSTRACT Objectives: Improper activation of Wnt/β-catenin signaling has been implicated in human diseases. Beyond the well-studied 

glycogen synthase kinase 3β (GSK3β) and casein kinase 1 (CK1), other kinases affecting Wnt/β-catenin signaling remain to be 

defined.

Methods: To identify the kinases that modulate Wnt/β-catenin signaling, we applied a kinase small interfering RNA (siRNA) library 

screen approach. Luciferase assays, immunoblotting, and real-time polymerase chain reaction (PCR) were performed to confirm 

the regulation of the Wnt/β-catenin signaling pathway by cyclin-dependent kinase 11 (CDK11) and to investigate the underlying 

mechanism. Confocal immunofluorescence, coimmunoprecipitation (co-IP), and scratch wound assays were used to demonstrate 

colocalization, detect protein interactions, and explore the function of CDK11.

Results: CDK11 was found to be a significant candidate kinase participating in the negative control of Wnt/β-catenin signaling. 

Down-regulation of CDK11 led to the accumulation of Wnt/β-catenin signaling receptor complexes, in a manner dependent on 

intact adenomatosis polyposis coli (APC) protein. Further analysis showed that CDK11 modulation of Wnt/β-catenin signaling 

engaged the endolysosomal machinery, and CDK11 knockdown enhanced the colocalization of Wnt/β-catenin signaling receptor 

complexes with early endosomes and decreased colocalization with lysosomes. Mechanistically, CDK11 was found to function in 

Wnt/β-catenin signaling by regulating microtubule stability. Depletion of CDK11 down-regulated acetyl-α-tubulin. Moreover, 

co-IP assays demonstrated that CDK11 interacts with the α-tubulin deacetylase SIRT2, whereas SIRT2 down-regulation in CDK11-

depleted cells reversed the accumulation of Wnt/β-catenin signaling receptor complexes. CDK11 was found to suppress cell migration 

through altered Wnt/β-catenin signaling.

Conclusions: CDK11 is a negative modulator of Wnt/β-catenin signaling that stabilizes microtubules, thus resulting in the 

dysregulation of receptor complex trafficking from early endosomes to lysosomes.
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Introduction

Canonical Wnt/β-catenin signaling (denoted Wnt/β-catenin 

signaling hereafter) is important for embryonic development 

and organ homeostasis in adults1. Abnormal Wnt/β-catenin 

signaling activity has been reported in many human diseases, 

such as cancer1-3. In the absence of Wnt ligands, β-catenin is 

phosphorylated, ubiquitinated, and targeted for degradation 

in a destruction complex consisting of adenomatosis 

polyposis coli (APC), Axin1, and glycogen synthase kinase 3β 

(GSK3β) in the cytoplasm4-6. The binding of Wnt ligands to 

Frizzled (Fzd) and low-density lipoprotein receptor-related 

protein 6 (LRP6) results in recruitment of Dvl2, Axin1, and 

GSK3β, thus leading to the release of β-catenin. β-catenin then 

enters the nucleus and activates Wnt/β-catenin signaling7-9. 

LRP6 is phosphorylated after the binding of Wnt ligands to 

receptors, and Wnt/β-catenin signaling receptor complexes, 

consisting of Fzd, LRP6, pLRP6, Dvl2, Axin1, and GSK3β, are 

formed10-12. The receptor complexes are internalized into cells 

through endocytosis13 and subjected to endocytic trafficking 
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to lysosomes, where they are degraded14,15, thus decreasing 

signaling activity. An extensive study of epidermal growth 

factor receptor (EGFR) has indicated that internalized EGFR 

can signal in early endosomes, whereas signaling terminates in 

lysosomes, where EGFR is degraded16. However, although the 

endosomal compartment has been implicated as a signaling 

center17, the subcellular location of Wnt/β-catenin signaling 

receptor complexes remains controversial12,13.

Phosphorylation of signaling components by kinases 

has been shown to regulate various steps of Wnt/β-catenin 

signaling. Dozens of kinases have been demonstrated to be 

involved in the phosphorylation of molecules in Wnt/β-catenin 

signaling cascades18-25. However, given the complexity of 

Wnt/β-catenin signaling, the precise mechanisms regulated by 

different kinases at different steps remain poorly understood. 

Thus, an extensive analysis of other kinase functions in Wnt/

β-catenin signaling is warranted.

Cyclin-dependent kinase 11 (CDK11) is a serine/threonine 

kinase encoded by two nearly identical genes, CDC2L1 and 

CDC2L226. CDK11 is versatile among CDK family members, 

besides cell cycle and mitosis regulation27-32, previous 

studies have shown that CDK11 is involved in the regulation 

of transcription and RNA splicing33-38, modulation of 

microtubule stabilization, and autophagy39,40. In the present 

study, we performed a large-scale kinase RNA interference 

(RNAi) screen to identify kinases that might be involved in 

Wnt/β-catenin signaling. Among the significant hits, CDK11 

was found to be a negative regulator of Wnt/β-catenin 

signaling. Biochemical and functional analyses demonstrated 

that CDK11 interacts with SIRT2 in modulating tubulin 

stability, thereby affecting the cellular trafficking of Wnt/β-

catenin signaling receptor complexes from early endosomes to 

lysosomes. Our findings suggest a new mechanism whereby 

Wnt/β-catenin signaling is negatively regulated.

Materials and methods

Cell lines, plasmids, antibodies, and reagents

HeLa, HCT116, and SW480 cells were maintained in RPMI 

1640 (Hyclone, Logan, UT, USA), and HEK293T cells were 

maintained in DMEM (Hyclone) supplemented with 10% 

fetal bovine serum (FBS) (Gibco, Carlsbad, CA, USA). 

The TOPFlash luciferase reporter plasmid was purchased 

from Addgene (Watertown, MA, USA), the pRL-TK Renilla 

luciferase reporter plasmid was purchased from Promega 

(Madison, WI, USA), and the CDK11-Flag plasmid was 

purchased from Genscript (Nanjing, China). Wnt3a was 

purchased from R&D Systems (Minneapolis, MN, USA). 

Antibodies to the following were used: β-catenin, CDK11, 

and MEC-17 (Abcam, Cambridge, MA, USA); LRP6, pLRP6, 

Axin1, phospho-β-catenin (Ser33/Ser37/Thr41), GSK3β, 

acetyl-α-tubulin, histone deacetylase 6 (HDAC6), tubulin, 

and N-cadherin (CST, Danvers, MA, USA); Dvl2, EEA1, and 

LAMP1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA); 

Flag, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

and SIRT2 (Sigma-Aldrich, St. Louis, MO, USA); and TSG101 

(GeneTex, Irvine, CA, USA). In addition, normal rabbit IgG, 

horseradish peroxidase (HRP)-conjugated secondary mouse 

antibody, and HRP-conjugated secondary rabbit antibody 

(CST) were used.

Kinase RNAi library, small interfering RNA 
(siRNA), and plasmid transfection 

The siGENOME SMARTpool Library-Human Protein Kinase 

was purchased from Dharmacon (Cambridge, MA, USA). 

Cotransfection of the kinase siRNA library and luciferase 

reporter plasmids (at a 200:1 ratio of TOPFlash plasmid to 

pRL-TK plasmid in micrograms) followed the protocol of 

DharmaFECT® Duo Transfection Reagent (Thermo Scientific, 

Waltham, MA, USA).

The siRNAs targeting various genes were purchased 

from GenePharma (Suzhou, China), and their 

sequences were as follows (sense strand 5′-3′):  

β-catenin: AGGUGCUAUCUGUCUGCUC; CDK11-1:  

AUGGAGUGGUCUACAGAGCAA; CDK11-2: AGAUCU 

ACAUCGUGAUGAA; HRS: CGUCUUUCCAGAAUUCAAA; 

TSG101: CAGUUUAUCAUUCAAGUGUAA; EAP20:  

CGAUCCAGAUUGUAUUAGA; CHMP6: AGAUCGAAA 

UGAAAGUGAU; LRP6: CCAUGGAUAUACAUGCUUU; and  

SIRT2: CAGCGCGUUUCUUCUCCUGUA. siRNA 

transfection was performed according to the protocol of 

DharmaFECT transfection reagent (Dharmacon).

Plasmid transfection was carried out with ViaFect™ 

transfection reagent (Promega) according to the manufacturer’s 

instructions.

Luciferase assay 

Luciferase activity was measured with the Dual-Glo® Luciferase 

Assay System (Promega) according to the manufacturer’s 
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protocol. In brief, Duo-Glo® luciferase reagent was added to cells 

(75 µL/well) that had been grown in 96-well plates with complete 

medium. Firefly luminescence was measured after incubation 

at room temperature for 20 min, and equal amounts of Duo-

Glo® Stop & Glo® reagent (75 µL/well) were added to the plates, 

which were further incubated for 20 min at room temperature. 

Subsequently, Renilla luciferase luminescence was measured. 

The ratio of firefly to Renilla luciferase luminescence for each 

well was calculated as the relative luciferase activity.

Real-time polymerase chain reaction (PCR)

Cells were lysed in TRIzol reagent (Invitrogen, Carlsbad, 

CA, USA), and total RNA was extracted according to the 

manufacturer’s protocol. RNA was reverse transcribed into 

cDNA with a kit (TaKaRa, Dalian, China), and SYBR Green-

based real-time PCR was performed to quantify mRNA 

expression according to the manufacturer’s protocol (Bio-Rad, 

Hercules, CA, USA). Relative mRNA expression was normalized 

to GAPDH expression. The primer sequences were as follows 

(5′-3′): c-myc (forward: CCTGGTGCTCCATGAGGAGAC 

and reverse: CAGACTCTGACCTTTTGCCAGG), Axin2  

(forward: CAAACTTTCGCCAACCGTGGTTG and 

reverse: GGTGCAAAGACATAGCCAGAACC), LRP6 

(forward: CAGTTGGAGTGGTGCTGAAAGG and 

reverse: CCATCCAAAGCAGCCCGTTCAA), Dvl2 

(forward: TCCATACGGACATGGCATCGGT and 

reverse: CGTGATGGTAGAGCCAGTCAAC), Axin1 

(forward: GTATGTGCAGGAGGTTATGCGG and 

reverse: CACCTTCCTCTGCGATCTTGTC), GSK3β 

(forward: CCGACTAACACCACTGGAAGCT and 

reverse: AGGATGGTAGCCAGAGGTGGAT), CDK11 

(forward: CCGACTTACAGGACATCAGCGA and 

reverse: CTCCTCTGATTCTTCACTGGTGC), EEA1 

(forward: CTTCTAGCCACCAGGCAAGATC and 

reverse: CCAATGTAGCCTTGGCAGTCTTC), LAMP1 

(forward: CGTGTCACGAAGGCGTTTTCAG and 

reverse: CTGTTCTCGTCCAGCAGACACT), HRS 

(forward: GACAGACTCTCAGCCCATTCCT and 

reverse: TCATGCGGTTCACGAAGGTGGT), TSG101 

(forward: TTCTCAGCCTCCTGTGACCACT and reverse: 

CCATTTCCTCCTTCATCCGCCA), EAP20 (forward: 

AGAGCAAGTCCAGCTTCCTGATC and reverse: 

GGTAAAGACGGAGTTGTTCTGGC), and CHMP6 

(forward: GACAAGCTGAGGCAGTACCAGA and reverse: 

CTGCTCCTGGTATCGCTTCTTC).

Immunoblotting 

Cells were washed 3 times with cold phosphate-buffered 

saline (PBS) and lysed on ice with lysis buffer [50 mM 

Tris hydrochloride (HCl), 150 mM sodium chloride 

(NaCl), 0.5% Triton X-100 (Sigma-Aldrich), 2 mM 

ethylenediaminetetraacetic acid (EDTA) (pH 8.0)] 

supplemented with 1% protease inhibitor (Bimake, Houston, 

TX, USA) and 1% phosphatase inhibitor (Bimake) for 30 min. 

Cell debris was removed by centrifugation at 14,000 g for 

15 min at 4 °C. Protein concentrations were measured with 

a BCA protein assay kit (Thermo Scientific) according to the 

manufacturer’s protocol. Twenty micrograms of protein for 

each sample was separated on 6%–10% polyacrylamide gels 

after denaturation for 5 min and transferred to polyvinylidene 

fluoride membranes (Millipore, Burlington, MA, USA). 

After being blocked with 5% nonfat milk in Tris-buffered 

saline containing Tween 20 (TBST; 1:1000) for 1 h at room 

temperature, the membranes were incubated with primary 

antibody overnight at 4 °C. After being washed with TBST 

3 times for 15 min, membranes were incubated with HRP-

conjugated secondary antibody for 1 h at room temperature. 

Primary and secondary antibodies were diluted with 5% nonfat 

milk in TBST. Super Enhanced Chemiluminescence Substrate 

(Millipore) was used to detect proteins after membranes were 

washed with TBST 3 times for 15 min.

Immunofluorescence

Cells grown on coverslips were rinsed 3 times in PBS, fixed in 

fresh 4% (w/v) paraformaldehyde (Sigma-Aldrich) in PBS for 

15 min, rinsed another 3 times in PBS, and then permeabilized 

and blocked with 0.3% Triton X-100 and 5% bovine serum 

albumin (BSA) in PBS for 30 min at room temperature. The 

cells were then incubated overnight with primary antibodies 

diluted in 0.15% Triton X-100 and 2.5% BSA in PBS at 4 °C. 

After being washed with 0.1% Triton X-100 in PBS for 10 min 

and rinsed twice in PBS, the cells were incubated for 1 h at 

37 °C with Alexa Fluor® 488-conjugated secondary antibody 

(Invitrogen) or Alexa Fluor® 594-conjugated secondary 

antibody (Invitrogen) diluted in 0.15% Triton X-100 and 2.5% 

BSA in PBS; the cells were then washed with 0.1% Triton X-100 

in PBS for 10 min and rinsed twice in PBS. DNA was stained 

for 5 min with 1 µg/mL 4′,6-diamidino-2-phenylindole (CST) 

diluted in PBS. Images were taken with a confocal fluorescence 

microscope.
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Coimmunoprecipitation (co-IP) assay 

Protein preparation and quantification were performed as 

described above. Immunoprecipitation experiments were 

performed with protein A/G magnetic beads (Bimake) 

according to the manufacturer’s protocol. In brief, magnetic 

beads were precleared with lysis buffer and incubated with 

equal amounts of anti-CDK11 and normal rabbit IgG 

diluted in 50 µL lysis buffer, for 4 h at 4 °C in a rotator. 

Then, the beads were washed twice with 150 µL lysis buffer, 

and 2 mg protein was added to the magnetic beads and 

incubated for another hour at 4 °C in the rotator. The beads 

were washed four times with 300 µL lysis buffer and then 

resuspended in 50 µL protein loading buffer and denatured 

for 5 min by boiling. Protein analysis was performed by 

immunoblotting.

Scratch wound assays 

Cells were seeded in 12-well plates. A scratch was made with 

a 10 µL pipette tip after cells had reached approximately 90% 

confluence. PBS was used to wash the cells 3 times to remove 

floating cells. Serum-free medium was then applied to the cell 

culture. Images were taken at 0 and 48 h after the scratch assay 

was performed.

Statistical analysis 

All data are presented as mean ± standard deviation (SD). 

The differences between two groups were analyzed with 

Student’s t-test, and the differences among 3 or more 

groups were analyzed with one-way analysis of variance 

(ANOVA). A Chi-squared (χ2) test was used to analyze the 

immunofluorescence overlap ratio. The significance level was 

set at P < 0.05.

Results

RNAi screen for candidate kinases regulating 
Wnt/β-catenin signaling

To identify kinases involved in Wnt/β-catenin signaling, we 

designed an approach to recapitulate Wnt/β-catenin signaling. 

In this assay, recombinant Wnt3a was used to activate Wnt/

β-catenin signaling in HEK293T cells cotransfected with 

TOPFlash plasmid, a classical reporter plasmid for Wnt/β-

catenin signaling, and pRL-TK plasmid, an internal control. 

The ratio of TOPFlash luciferase activity normalized to 

pRL-TK luciferase activity represented the relative activity 

of Wnt/β-catenin signaling. To determine the optimized 

concentration and time of Wnt3a stimulation, we tested 

different doses and time points of Wnt3a stimulation. Wnt3a 

strongly increased Wnt/β-catenin signaling activity in a dose- 

and time-dependent manner (P < 0.05; Figure 1A). The 

optimal conditions for Wnt/β-catenin signaling activity in 

HEK293T cells were 400 ng/mL Wnt3a stimulation for 5 h. To 

further optimize the transfection time for the large-scale RNAi 

screen, we used siRNA against β-catenin as a positive control 

and compared the response of HEK293T cells cotransfected 

with luciferase reporter plasmids plus nontargeting siRNA or 

siRNA against β-catenin with or without Wnt3a treatment. 

The system was shown to be sensitive to β-catenin depletion 

after 48 h of transfection (P < 0.05; Figure 1B). Subsequently, a 

large-scale RNAi screen was performed after the siRNA library 

was cotransfected with luciferase reporter plasmids for 48 h 

with 400 ng/mL Wnt3a stimulation for 5 h.

Under the above optimized conditions, we conducted kinase 

library screen with a library targeting 720 genes encoding 

kinases (4 siRNAs per gene as a pool) (Figure 1C). To identify 

kinases involved in Wnt/β-catenin signaling, we determined 

the ratio of the relative luciferase activity of the targeting 

siRNA group to that of the nontargeting siRNA group, both of 

which received Wnt3a treatment, and converted the results to 

logarithm scale. Only the kinases that increased or decreased 

Wnt/β-catenin signaling activity by 2 SD for all siRNAs of the 

library were considered potentially positive hits (Figure 1D). 

To verify the effectiveness of the primary screen, we chose 8 

candidates for secondary screen to confirm their effects on 

Wnt/β-catenin signaling by the repeating luciferase activity 

measurements. The results were consistent with those after 

the first-round screen (Figure 1E). Among the positive hits, 

CDK11 was one of the most effective and reproducible kinases 

found to regulate Wnt/β-catenin signaling (Figure 1D and 1E).

CDK11 negatively regulates Wnt/β-catenin 
signaling 

To confirm the modulation of CDK11 in Wnt/β-catenin 

signaling and eliminate possible off-target effects, we performed 

a CDK11 loss-of-function assay with 2 newly synthesized 

siRNAs whose target sequences were completely different 
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Figure 1 RNAi screen of kinases regulating Wnt/β-catenin signaling activity. (A) Relative luciferase activity in HEK293T cells cotransfected with 
TOPFlash and pRL-TK plasmids under Wnt3a stimulation at different doses and time points (*P < 0.05; NS, no statistical significance). (B) Relative 
luciferase activity in HEK293T cells cotransfected with luciferase reporter plasmids and nontargeting siRNA or β-catenin siRNA with or without 
Wnt3a stimulation. Top, results of β-catenin depletion (*P < 0.05). (C) Schematic of the RNAi screen strategy. (D) Log ratio of the relative 
luciferase activity of targeting kinase siRNAs to nontargeting siRNAs, under Wnt3a stimulation, in HEK293T cells. Two SD of the log ratios of 720 
candidates were quantified and are indicated in the figure. (E) Secondary screen for Wnt/β-catenin signaling activity of 8 representative kinases 
in HEK293T cells was performed and is shown with the primary screen results. All results are representative of 3 independent experiments.
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from that of CDK11 in the kinase RNAi library. Knockdown 

of CDK11 significantly increased Wnt/β-catenin signaling 

activity in HEK293T cells (P < 0.05; Figure 2A). Because 

Wnt/β-catenin signaling activity in untreated HEK293T cells 

is at a basal level, HeLa cells in which Wnt/β-catenin signaling 

was active were used in the rest of the assays unless otherwise 

indicated. As shown in the luciferase assay results, depletion 

of CDK11 also increased Wnt/β-catenin signaling activity 

in HeLa cells (P < 0.05; Figure 2B). In addition, knockdown 

of CDK11 increased the expression of total β-catenin and 

decreased the expression of phospho-β-catenin (Figure 2C), a 

hallmark of Wnt/β-catenin signaling activation. Furthermore, 

we tested the effect of CDK11 depletion on the expression 

of the downstream target genes of Wnt/β-catenin signaling 

and found that the mRNA levels of Axin2 and c-myc were 

up-regulated under Wnt3a stimulation (P < 0.05; Figure 2D). 

Thus, our data indicate that CDK11 is a negative regulator of 

Wnt/β-catenin signaling.

CDK11 is involved in modulating receptor 
complexes of Wnt/β-catenin signaling

To investigate the mechanism through which CDK11 depletion 

enhanced Wnt/β-catenin signaling, we assayed the expression 

of Wnt/β-catenin signaling cascade components after 

CDK11 depletion. Interestingly, among the signaling cascade 

components, the protein levels of LRP6, pLRP6, Dvl2, Axin1, 

and GSK3β, which are components of receptor complexes, 

were all significantly up-regulated in CDK11-depleted cells 

(Figure 3A), whereas the mRNA levels of LRP6, Dvl2, Axin1, 

and GSK3β did not change (Figure 3B). When CDK11 was 

overexpressed, LRP6, pLRP6, Dvl2, and GSK3β decreased in a 

dose-dependent manner (Figure 3C), thus further confirming 

that CDK11 expression affects the protein levels of Wnt/β-

catenin signaling receptor complexes.

In the Wnt/β-catenin signaling destruction complex, the 

tumor suppressor APC is an essential component. To explore 

whether APC might participate in the regulation of Wnt/β-

catenin signaling after CDK11 depletion, we tested the effect of 

CDK11 depletion on Wnt/β-catenin signaling in two colorectal 

cancer cell lines: SW480 cells, whose APC was truncated, and 

HCT116 cells, whose APC was intact. Intriguingly, CDK11 

depletion had no effect on Wnt/β-catenin signaling activity 

in SW480 cells, but Wnt/β-catenin activity was significantly 

enhanced in HCT116 cells (P < 0.05; Figure 3D). When we 

measured the main components of the receptor complexes in 

those two cells, we found that down-regulation of CDK11 led 

to increased levels of LRP6, pLRP6, Dvl2, Axin1, and GSK3β 

in HCT116 cells, but we observed no changes in SW480 cells 

(Figure 3E). These data suggest that CDK11 is involved in the 

regulation of receptor complexes of Wnt/β-catenin signaling 

in a manner depended on intact APC.

CDK11 regulates Wnt/β-catenin signaling 
in endosome-lysosome vacuoles 

When Wnts bind their receptors, the receptor complexes 

are internalized, trafficked, and degraded through the 

endolysosomal system13-15. Because CDK11 was negatively 

correlated with the protein levels of receptor complexes, and 

depletion of CDK11 enhanced signaling, we speculated that 

CDK11 might play a part in the destabilization of Wnt/β-

catenin signaling receptor complexes via endolysosomal 

degradation. To verify this possibility, we first examined 

the effect of CDK11 depletion on the dynamic changes in 

the endolysosomal system. As shown in Figure 4A and 4B, 

knockdown of CDK11 significantly increased the expression 

of the early endosome marker EEA1 and lysosome marker 

LAMP1 at both the protein and RNA levels (P < 0.05). 

A confocal immunofluorescence assay showed that Dvl2 

accumulated more in early endosomes in CDK11-depleted 

cells stimulated with Wnt3a (Figure 4C) but less in lysosomes 

(Figure 4E). Figure 4D and 4F shows the overlap coefficient 

of Dvl2 with EEA1 and LAMP1, respectively, in CDK11-

depleted cells under Wnt3a stimulation (P < 0.05). Thus, 

our data suggest that CDK11 depletion enhances Wnt/β-

catenin signaling by retaining the receptor complexes in early 

endosomes, where Wnt/β-catenin signaling is maintained.

CDK11 modulation of Wnt/β-catenin 
signaling involves microtubule stability and 
depends on the endosomal sorting complex 
required for transport (ESCRT)

CDK11 has been suggested to be involved in microtubule 

stability39, which in turn is required for transport from early 

endosomes to late endosomes or lysosomes41,42. We therefore 

wondered whether CDK11 may play a role in the intracellular 

trafficking of the receptor complexes between early endosomes 

and lysosomes via modulation of microtubule stability. First, 

we found that the expression of acetyl-α-tubulin, a marker 

of microtubule stability, decreased in CDK11-depleted cells, 
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whereas total tubulin did not change (Figure 5A). Further 

analysis of protein-protein interactions showed that CDK11 

interacted with tubulin deacetylase SIRT2 but not with two 

other well-known enzymes, the tubulin deacetylase HDAC6 

and the tubulin acetylase MEC-17 (Figure 5B). Knockdown of 

SIRT2 reversed the expression of receptor complexes of Wnt/

β-catenin signaling in CDK11-depleted cells (Figure 5C). 

These data suggest that CDK11 may affect SIRT2 activity and 

consequently regulate tubulin stability, thereby playing a role 

in receptor complex trafficking of Wnt/β-catenin signaling.
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Figure 3 Wnt/β-catenin signaling components accumulate after CDK11 depletion in an intact APC-dependent manner. (A) Western blot 
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The ESCRT complex comprises four distinct components 

(ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) and has been 

reported to be involved in endosomal sorting43. To test whether 

CDK11 modulation of Wnt/β-catenin signaling might require 

an ESCRT-mediated mechanism, we knocked down HRS 

(ESCRT-0), TSG101 (ESCRT-I), EAP20 (ESCRT-II), and 

CHMP6 (ESCRT-III) individually in CDK11-depleted cells 

(P < 0.05; Figure 5D). As shown in Figure 5E to 5H, whereas 

CDK11 knockdown markedly increased the relative luciferase 

activity, the suppression of HRS, TSG101, EAP20, or CHMP6 
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Figure 5 Disruption of microtubule stability and ESCRT reverses the modulation of CDK11 on Wnt/β-catenin signaling. (A) Western blot analysis 
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significantly reversed the activity in CDK11-depleted cells 

(P < 0.05). Furthermore, Western blot analysis showed that 

expression of LRP6, pLRP6, Dvl2, and Axin1 decreased after 

TSG101 was perturbed in CDK11-depleted cells (Figure 5I), 

thus suggesting that the negative regulation of CDK11 on Wnt/

β-catenin signaling is dependent on the ESCRT machinery.

CDK11 affects migration through  
Wnt/β-catenin signaling 

To explore the role of CDK11 in cell biology through 

modulation of Wnt/β-catenin signaling, we performed 

scratch wound assays, which indicated that the closure of 

0 h

48 h

Ctrl siCDK11-1 Ctrl+siLRP6 siCDK11-1+siLRP6

0 h

48 h

Ctrl siCDK11-2 Ctrl+siLRP6 siCDK11-2+siLRP6

0 h

48 h

Ctrl CDK11 Ctrl+LRP6 CDK11+LRP6

Ctrl

siC
DK1

1-
1

0.0

0.5

1.0

1.5

2.0

2.5 siLRP6 (–)
siLRP6 (+)

*
*

Re
la

tiv
e 

m
ig

ra
tio

n 
ar

ea
s

Ctrl

siC
DK1

1-
2

0

1

2

3 siLRP6 (–)
siLRP6 (+)

*
*

Re
la

tiv
e 

m
ig

ra
tio

n 
ar

ea
s

Ctrl

CDK11
0.0

0.5

1.0

1.5

2.0 LRP6 (–)
LRP6 (+)

*
*

Re
la

tiv
e 

m
ig

ra
tio

n 
ar

ea
s

A B

D

F

C

E

G

N-cadherin

GAPDH

Ct
rl 

 
siC

DK1
1-

1

140 KDa

37 KDa

N-cadherin

GAPDH

Ctrl
  

siC
DK1

1-
2

140 KDa

37 KDa

Figure 6 CDK11 depletion promotes migration through Wnt/β-catenin signaling. (A-D) Representative images (50×; A and C) and 
quantification (B and D) of the scratch wound assay results in CDK11- and LRP6-depleted HeLa cells (*P < 0.05). (E and F) Representative 
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wound gaps increased in CDK11-depleted cells, but down-

regulation of LRP6 reversed the modulation (P < 0.05; 

Figure 6A-D). The opposite effects were observed in CDK11-

overexpressing cells, and overexpression of LRP6 reversed the 

modulation (P < 0.05; Figure 6E and 6F). We further analyzed 

the expression of N-cadherin, which is associated with cell 

migration; in agreement with the results of our scratch wound 

assays, N-cadherin was up-regulated in CDK11-depleted cells 

(Figure 6G). The above data suggest that CDK11 plays a role 

in cell migration through the regulation of Wnt/β-catenin 

signaling.

Discussion

Wnt/β-catenin signaling has been implicated in many 

physiological and pathological processes. Whereas the ligand-

mediated activation of Wnt/β-catenin signaling has been well 

documented, the negative regulation of signaling remains to be 

elucidated. The key negative regulators described to date have 

mainly been secreted proteins that antagonize the ligand, such 

as secreted Frizzled-related proteins and Wnt inhibitory protein 

(WIF-1), both of which can bind Wnts, thereby inhibiting 

interactions between Wnts and Wnt receptors44,45. Other Wnt 

inhibitors include Dickkopf-1, which antagonizes signaling by 

binding LRP5/646. In the present study, we identified CDK11 as 

a novel negative regulator of Wnt/β-catenin signaling. CDK11 

was found to participate in receptor complex trafficking, and 

down-regulation of CDK11 significantly increased the levels of 

the receptor complexes, which showed increased accumulation 

in early endosomes and decreased accumulation in lysosomes, 

thus enhancing Wnt/β-catenin signaling.

A key question regarding Wnt/β-catenin signaling is the 

location where the signaling of receptor complexes occurs 

in cells. A previous study has demonstrated that receptor 

complexes as a whole can signal but do not colocalize with 

early endosomes12, whereas other studies have suggested 

that other receptors in early endosomes can signal17. Here, 

in CDK11-depleted cells, the receptor complexes of Wnt/

β-catenin signaling accumulated in early endosomes and 

signaled persistently. This result is probably due to either 

concentration of active receptor complexes in endosomes or 

sequestration of GSK3β into endosomes, thus allowing more 

X
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Figure 7 Schematic of CDK11 regulation of Wnt/β-catenin signaling, according to our results. The diagram shows that CDK11 regulates 
the trafficking of Wnt/β-catenin signaling receptor complexes between early endosomes and lysosomes by modulating microtubule stability. 
When CDK11 is present at a low level, the receptor complexes are retained in early endosomes, and Wnt/β-catenin signaling is active. When 
CDK11 is present at a high level, microtubule stability is enhanced, and the receptor complexes traffic from early endosomes to lysosomes for 
degradation increases, thus leading to the inactivation of Wnt/β-catenin signaling.
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β-catenin to enter the nucleus and subsequently activate 

Wnt/β-catenin signaling47,48. Although the inadequacy of 

current technology precludes accurate measurement of 

signaling from endosomes, our data suggest a role of CDK11 

in the negative regulation of Wnt/β-catenin signaling in the 

endosomal compartment.

Intracellular trafficking of receptors between endosomes 

has been shown to be dependent on microtubules49, and 

microtubule stability is required for transport from early 

endosomes to late endosomes or lysosomes41,42. Whether 

active microtubule-based transport might play a role in 

Wnt/β-catenin signaling remains a matter of speculation. 

Here, we showed that CDK11 plays a role in the transport 

of Wnt/β-catenin signaling receptor complexes through 

the endolysosomal system, on the basis of the regulation of 

microtubule stability (Figure 7). Accumulation of receptor 

complexes in Wnt/β-catenin signaling after CDK11 depletion 

was not observed in SW480 cells, thus suggesting that intact 

APC may play an important role in the recruitment of Axin1 

and GSK3β as a whole after Wnt3a binds Fzd and LRP6—a 

possibility requiring further research.

CDK11’s functions are particularly versatile among those 

of CDK family members. Previous studies have found that 

CDK11 is up-regulated in breast cancer50, multiple myeloma51, 

osteosarcoma52, and esophageal squamous cell carcinoma53, 

and down-regulation of CDK11 arrests growth and induces 

apoptosis in these cancer cells, thus suggesting that CDK11 

acts as an oncogene. However, CDK11 has also been found 

to be depleted in several cancers, such as neuroblastoma54, 

melanoma55, and non-Hodgkin’s lymphoma56. These results 

imply that CDK11 may be a tumor suppressor gene. In this 

study, our data suggest that CDK11 may function as a tumor 

suppressor by deregulating Wnt/β-catenin signaling, at least in 

cervical cancer cells.

Conclusions

In summary, we conducted a kinase RNAi screen to identify 

kinases regulating Wnt/β-catenin signaling, from which we 

identified CDK11 as a negative regulator. In the underlying 

regulatory mechanism, Wnt/β-catenin signaling receptor 

complexes are destabilized, and cellular trafficking of signal 

molecules to lysosomes for degradation is increased via 

CDK11 regulation. The details of the association of CDK11 

with Wnt/β-catenin signaling in the endosome and lysosome 

trafficking machinery remain to be further elucidated.
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