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ABSTRACT Since  the  failure  of  traditional  therapy,  gene  therapy  using  functional  DNA  sequence  and  small  RNA/DNA  molecules

(oligonucleotide) has become a promising avenue for cancer treatment. The discovery of RNA molecules has impelled researchers

to investigate small regulatory RNA from various natural and artificial sources and determine a cogent target for controlling tumor

progression. Small regulatory RNAs are used for therapeutic silencing of oncogenes and aberrant DNA repair response genes.

Despite their advantages, therapies based on small RNAs exhibit limitations in terms of stability of therapeutic drugs, precision-

based delivery in tissues, precision-based intercellular and intracellular targeting, and tumor heterogeneity-based responses. In this

study, we summarize the potential and drawbacks of small RNAs in nucleic acid therapeutics for cancer.
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Introduction

Cancer  is  a  group  of  diseases  involving  uncontrolled  and

abnormal  cell  proliferation  and  can  potentially  invade  or

spread  to  other  parts  of  the  body.  To  date,  cancer  leads  to

168.1 million deaths,  of  which 3% and 12% of  the cases  are

due to cervical cancer and breast carcinoma, respectively. The

number  of  estimated  cancer  cases  worldwide  until  2012

reached 14.1 million, which involved 7.4 million men and 6.7

million women1.

Traditional  therapies  for  treatment  of  cancer  include

surgery,  radiation,  and  chemotherapy2-4.  Radiation  and

chemotherapy use non-selective  agents,  which may cause

toxicity  to normal  tissues5,6.  In this  regard,  scholars  have

developed a promising technology, namely, gene therapy or

nucleic acid therapy (NAT), which uses functional genes and

small genetic materials, such as RNAs and DNAs7-13. In this

process, DNA or RNA as coding gene or small non-coding

genetic  materials  is  transferred  into  different  cellular

compartments of the host (human or animal) to alleviate

various pathophysiological conditions, including cancer12,13.

In addition to their roles in functional gene therapy, small

RNAs have been widely investigated as a tumor suppressor

agent to suppress the aberrant expression of oncogenes and

DNA  repair  response  genes  and  control  the  growth  and

proliferation of cells14-20.  Therefore, small RNAs obtained

from natural sources and artificial mimetic agents have been

increasingly studied to explore new class of anticancer drugs.

In this paper, we present the role of small RNAs in cancer

therapeutics in terms of pre-clinical and clinical perspectives

and the concomitant challenges.

Small RNAs from natural sources

Gene silencing and small RNAs were first studied in the early

1990s21-23.  The  discovery  of  small  ~20–30  nucleotide  RNA

molecules  is  an  outstanding  discovery  in  biology  because  of

their  distinct  role  in  the  expression  and  function  of

eukaryotic genomes14-20. The predominant small RNA classes

include  short-interfering  RNAs  (siRNAs)  and  microRNAs

(miRNAs), which function in somatic and germline lineages

in  a  broad  range  of  eukaryotic  species17,19,20,24.  Small  RNAs

exhibit  potential  regulatory  roles  at  various  cellular  strata,

including  in  chromatin  structure,  chromosome  segregation,

transcription,  and  RNA,  stability,  and  translation17,24.  The

regulatory  mechanisms  of  small  RNAs  in  the  intra-cellular,

intercellular,  and  extracellular  levels  are  generally  inhibitory

and  interpreted  as  RNA  silencing22,23.  Small  RNAs  can  also

activate  gene  transcription  and  are  classified  as  small-
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activating RNAs. Natural endogenous small RNAs are found

in  various  organisms  including  humans,  plants,  mouse,

fungi,  bacteria,  flies,  and  worms17-20.  In  addition  to  their

versatile  roles  in  intra-cellular  signaling,  intercellular

communication,  and  cell  growth  and  development,  small

RNAs,  particularly  miRNAs,  which  are  found  in  biological

fluids,  such  as  serum  and  plasma,  function  as  potential

biomarkers  for  cancer  prognosis  and  detection25-27.  Various

types  of  small  RNAs  found  in  several  species  of  plants  and

microorganisms  exhibit  potential  as  therapeutic  agents

(Figure 1)17-20.

Small RNAs from plants as anti-cancer NAT

The  plant  genome  encodes  numerous  small  RNAs  that  are

involved  in  genetic  and  epigenetic  silencing  pathways.  The

abundance  and  diversity  of  small  RNA  classes  differ  among

plant  species20.  The  diversity  of  small  RNAs  from  plants

could  be  related  to  coevolution  between  environmental

adaptations and influences from other organisms. Hence, the

possibility of cross-kingdom transfer of these small RNAs can

be  predicted.  Small  RNAs  are  commonly  found  in  staple

foods,  such  as  rice  (Oryza  sativa)  and  corn  (Zea  mays).  A

previous  study showed that  miRNA plays  an important  role

in  cross-kingdom  gene  regulation,  where  exogenous  plant

miRNAs  are  found  in  human  serum  and  possibly  acquired

through  food  intake.  According  to  the  dietary  xenomiRNA

hypothesis,  miRNAs  present  in  food  stuffs  may  regulate  the

gene  expression  in  cross-kingdom species28-30.  Philip  et  al.29

demonstrated  that  plant  miRNAs  remain  intact  even  after

storage,  processing,  and  cooking.  Common  food  materials,

such  as  rice  and  soybean,  contain  miRNA  that  will  remain

intact  after  ingestion.  Moreover,  miRNAs  that  underwent

genetic  modifications  can  be  incorporated  into  the  food  to

protect  it  from  degradation.  The  regulatory  ability  of  these

molecules must be further explored for cancer therapeutics.

MiRNA-168a from rice (Oryza sativa) has been found in

human serum in its  stable form; this  miRNA can bind to

mRNA  encoding  for  low-density  lipoprotein  receptor

adaptor  protein1  (LDLRAP1)  and  inhibit  the  protein

expression28,30.  Plant  miRNA159,  which  is  abundant  in

mammalian  serum  because  these  organisms  consume  a

variety of food, is inversely correlated to the incidence and

progression of  breast  cancer31.  Chin et  al.31  reported that

miRNA159, encoding for the Wnt signaling transcription

factor,  can bind to and inhibit  the proliferation of  TCF7,

resulting in reduced MYC protein level.

The potential of plant-based dietary small RNAs in cancer

therapeutics have been investigated. Yang et al.32 reported the

presence of plant-specific small RNA MIR2911 in the serum
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Figure 1   Mechanism of actions of cross kingdom natural small RNAs in cancer. This figure illustrates the mechanism of actions of cross

kingdom natural small RNAs to bring cancer cell cycle arrest and death. Further, the mode of growth arrest in cancer cells via translational

repression or mRNA degradation has been shown. Small molecular weight RNAs from various natural sources such as marine diatoms,

insects, bacteria and cereals RNA have been shown to play a role in cancer. Additionally, pathway has been depicted for diatom encoded

RNA directed DNA methylation (RdDM), which methylates the DNA leading to stall in transcription.
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of mice fed with diet rich in vegetables. The findings confirm

the intrinsic stability of plant-based RNAs for future cancer

NAT. The ingested miRNA persists in the gastrointestinal

(GI) tract, are packaged into extracellular vesicles (EVs), and

are released into circulation to regulate gene expression in

animals31.

Small RNAs from bacteria and other lower
organisms

Small, regulatory RNAs are present in bacteria. These sRNAs

may  base  pair  with  target  mRNAs  by  modulating  protein

activity  and  function  as  nucleic  acid  mimetics18.  In

prokaryotes, such as bacteria, clustered regularly interspersed

short palindromic repeats (CRISPR) and CRISPR-associated

proteins (Cas) are analogous to small RNAs33.

In addition to various natural sources of small RNAs and

other  ncRNAs,  the  former  has  been  identified  in  marine

diatoms and function in gene-silencing activity. Most sRNAs

possess  length of  25 to 30 nt  and target  DNA-methylated

protein-coding  genes;  hence,  gene-driven methylation in

diatoms may be mediated by sRNAs. Moreover, the majority

of  sRNAs  comprise  non-coding  RNAs,  tRNAs,  and  U2

snRNA, which play important roles in stressful environments

like starvation, oxidative stress, etc. Furthermore, miRNAs

have  been  found  in  two  marine  diatom  species,  namely,

Thalassiosira pseudonana and P. tricornutum. Nevertheless,

none of these species have been experimentally studied34.

Types of small RNAs in anticancer NAT

Earlier  discoveries  in  molecular  biology  have  resulted  in  a

paradigm shift. Lines of evidence showed that in addition to

its  function  as  regulator  between  DNA  and  protein,  RNA

regulates  gene  expression  and  genome  organization18-20.

Studies show that the number of genes encoding for RNA is

higher  than  that  of  genes  encoding  for  proteins19.

Evolutionary  RNA  is  considered  the  ancestor  of

deoxyribonucleic  acid  (DNA).  DNA  and  RNA  exhibit

minimal  structural  differences,  but  the  hydroxyl  group  at  2′
of  the  pentose  ring  significantly  affects  the  interaction  and

folding  properties  of  RNA.  This  2′  hydroxyl  allows  the

interactions  between  RNA  fragments  and  RNAs  and  other

biomolecules35,36.

The completion of the human genome project confirmed

that all plant and animal species require the same number of

genes  to  produce  proteins.  Many  of  these  species  also

produce non-coding regulatory products, such non-protein-

coding RNA (npc RNA), which are genes that encode small

RNA molecules18-20. Small RNAs constitute different classes

of non-protein-coding RNA molecules, such as miRNAs and

small interfering RNAs (siRNAs), which function in many

physiological  and  pathological  processes.  Scholars  have

revolutionized the understanding of gene performance and

the  physiology  of  cells  by  introducing  RNAi37-39.  With

increased  knowledge  on  molecular  mechanisms  through

small-sized RNAs function in normal and malignant cells,

researchers can elucidate tumor biology and discover novel

therapeutic  markers  for  cancer  treatment10,12,40-46.  In  the

human genome, many genes produce non-coding regulatory

products instead of having 97% of non-coding DNA. Genes

that encode for small or short length RNA are members of

the  non-protein-coding  RNA  (npcRNA)  class,  in  which

miRNAs constitute an important group37,47.

MiRNAs are small non-protein-coding (~22 nucleotide)

RNAs that function in several physiological and pathological

processes,  such  as  cell  development,  evolution,  cellular

differentiation, proliferation, embryogenesis, cell death, and

gene expression17,19,20,24. MiRNAs bind to the 3′untranslated

regions (UTRs) of mRNA molecules, causing either mRNA

degradation  or  translation  repression  and  eventually

resulting in silencing of unwanted genes47,48. The suppressed

degradation and translation of mRNA could be attributed to

imperfect  complementary  and  perfect  complementary

between miRNA and mRNA, respectively17,19,20,49. MiRNAs

do  not  encode  any  proteins  but  interfere  with  protein

production by targeting specific mRNA.

Small temporal RNA (stRNA) and siRNAs are categorized

as two classes of miRNA. Only 1% of human genes encode

for miRNAs. The first miRNA discovered in Caenorhabditis

elegans in 1993 is Lin-4, which controls the development of

the organism15,50-52. Thereafter, let-7 was discovered in 2000

and  found  to  have  similar  effects  to  those  of  Lin-451.

Researchers  have  found  the  homologs  of  let-7  in  many

species,  such  as  frog,  mice,  and  humans,  indicating  the

sequence similarity of let-7 among these species15.  Tumor

suppressor miRNAs, such as let-753  and miR-3454,  exhibit

low expression levels in many cancers, leading to enhanced

cell  proliferation.  Overexpressing  or  repressing  miRNA

expression,  depending  on  the  type  of  disease,  and

suppressing  or  replacing  miRNA are  promising  areas  for

study in therapeutics. The overexpression of miRNA can be

observed  in  many  diseases.  For  example,  miR-21  is

overexpressed in many cancers, leading to the progression of

cell cycle and enhanced proliferation49,55. Studies have mainly

focused on the inhibition and replacement of  miRNA for

therapeutic purposes49. SiRNAs, which are a group of small

dsRNA consisting of 21–23 nucleotides, can cleave the RNA
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molecule as mediated by RNA inducing silencing complex

(RISC), ultimately resulting in the disruption of translation48.

Small  nuclear  RNAs  (snRNAs),  which  are  members  of

small RNAs, play an important role in splicing and are also

known as spliceosomal RNA. As another class of small RNAs,

small nucleolar RNAs (snoRNAs), which are found in the

nucleolus, are involved in methylation and pseudouridyla-
tion of snRNAs, tRNAs, and rRNAs37,56. Cajal bodies, also

called small  cajal  body-specific RNA (ScaRNAs) are small

RNAs found in the subnuclear region19. Recently, two other

classes of small RNAs have been identified in animals19; these

classes  include  transcription  initiation  RNAs  (tiRNAs)57,

which initiate the RNA transcription and splice-site RNAs

(spliRNAs)58. These small RNAs are involved in nucleosome

positioning and chromatin organization. Scholars have also

reported  the  presence  of  less  distinct  classes,  namely,

promoter-associated RNAs (PASRs)59,  transcription start

site-associated RNAs (TSSa-RNAs), and promoter upstream

transcripts (PROMPTS)60. A summary of the information on

different types of small RNAs is given in Table 1.

Obstacles and bottlenecks
encountered in RNA delivery

One  of  the  major  challenges  in  small  RNA  therapy  (RNAi

technology) is the delivery of these molecules into the cell7-13.

The  delivery  of  nucleic  acids  (i.e.,  DNA,  RNA,  siRNA,

shRNA,  and  antisense  oligonucleotides)  can  down-regulate

and  silence  unwanted  gene  expression  and  thus  suppress

tumor  growth  and  invasion3,48,77.  However,  the  delivery  of

these  molecules  remains  challenging  because  of  their  large

size  and  negative  charges;  the  main  obstacles  are  related  to

stability of small RNAs as therapeutic drug, controlled intra-

cellular  and  inter-cellular  release,  unwanted  inflammation

due  to  immune  responses,  and  precision  to  the  target

genes7-13. Therefore, the delivery system must be modified to

achieve  stability  against  serum nucleases,  evade the  immune

system,  avoid  non-specific  interactions  with  serum  proteins

and  non-target  cells,  prevent  renal  clearance,  and  minimize

off target effects41,78-80.

Synthetic small RNAs as mimetic
agent

The  two major  types  of  small  dsRNAs,  namely,  siRNAs  and

miRNAs,  participate  in  RNA  interference  (RNAi),  which

involves  several  mechanisms,  including  gene  silencing  by

remodeling  chromatin  to  suppress  transcription;  degrading

complementary  mRNA;  or  blocking  protein  transla-
tion12,44-46.  The  development  and  design  of  synthetic  small

RNAs in cancer therapeutics have gained increasing research

attention.  Considering  the  different  methods  available  for

synthetic  development  of  small  RNAs,  Yoo  et  al.81  reported

that  synthetic  small  RNAs  can  be  constructed  through

conventional  gene  cloning.  The  available  different

therapeutic  options  using  drugs  containing  small  RNAs  are

listed in Figure 218-20.

Chemically synthesized siRNAs have been developed to

target  mammalian  cells  without  any  innate  immune

responses to improve their inherent properties, such as in

vivo instability, off-target effects, and immunogenicity. The

most  widely  used chemically  synthesized siRNA is  (19+2

Table 1   List of small RNAs and their function

Type Role Size (nt) Reference

Scan RNAs (scnRNA) Genome rearrangement, chromosome
segregation, meiotic prophase

~29 61, 62

Small nuclear RNA (snRNA) Splicing (removal of introns from genes) 120–300 63

Small nucleolar RNA (snoRNA) rRNA processing Variable 87–275 64-66

Repeat-associated siRNA (rasiRNA) Silencing of genetic repeat ~24–26 67-69

Transacting short interference RNA (tasiRNA) Post -transcriptional gene regulation ~21 67, 70

Natural antisense transcript-associated siRNA
(natsiRNA)

Derived from antisense transcript region 20–25 67, 70

Piwi -intracting RNAs(piwiRNA) Fertility of male mammals, male fish or fly of
either sex

26–31 24, 71-73

X- inactive specific transcript RNAs (xistRNAs) Inactivation of X chromosome, more severe
in females

16500 14, 74-76

Pregnancy- induced non-coding RNA
(pincRNA)

Effective during pregnancy 22–25 37
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traditional  siRNA),  which is  similar  to  the  nature’s  dicer

product13,82.  Chemically  synthesized  siRNAs  with  two

nucleotides overhanging at 3’ can efficiently cleave siRNA,

and the cleavage site is located near the region covered by the

guiding  siRNA83.  Major  challenges  associated  with  RNAi

mechanism exist due to the naked RNA structure of naturally

available small  RNAs; such challenges include rapid RNA

degradation in biological fluids, poor cellular uptake, and off-

target effects. In this regard, synthetic RNA mimetics have

been developed for RNAi- based medicine11-13.

Synthetic  gRNAs induce a site-specific  mutation in the

target  sequence.  The  site-specific  mutation  mediated  by

gRNA modifies pre-miRNA without synthesizing particular

miRNAs84.  Cancer cells  possess the ability to modify pre-

miRNA  alternative  splicing85 .  The  gRNA  lentiviral

CRISPR/Cas9 vector can interrupt miR-21, which inhibits

epithelial-to-mesenchymal transition (EMT)84.

Synthetically created mRNAs exhibit strong therapeutic

potential after its introduction into mammalian cells. These

mRNAs are stable and can encode desired proteins86. Such

mRNAs  are  known  as  naked  mRNA  because  they  elicit

immune responses around the tumor cells. Naked mRNAs

do not  need  any  carriers  for  transport  and  require  short

period  of  time  to  show  their  effectiveness;  hence,  these

mRNAs are important in the field of modern therapy87.

Nat delivery system

Considering the potential mechanisms of small RNAs in gene

therapy  against  cancer,  scholars  have  performed  gene

silencing  by  decreasing  the  expression  of  the  target  genes,

which  are  mostly  oncogenes,  in  cancer10,12,42,44-46.  These

interfering  RNAs  can  be  synthetic  (i.e.,  oligonucleotide

therapy)  or  encoded  in  novel  genes;  as  such,  the  sequences

are  the  inverse  of  the  normal  sequence  (i.e.,  antisense)  and

can  thus  hybridize  to  the  message  and  prevent  its

translation10,12,42,44-46.  Systemic  gene  delivery  is  one  of  the

major  challenges  in  modern  cancer  gene  therapy  and  is  a

limiting  factor  in  experimental  and  clinical

approaches9,40,88,89.  Synthetic  siRNAs  are  poly-anionic

macromolecules that do not readily enter the cell but require

a  delivery  system  for  effective  gene  silencing90,91.  Previous
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Figure 2   Various RNA based drugs to target cancer cell. This figure depicts the newly synthesized RNA and drugs, which targets the

progression of cancer cell by inhibiting the transition from epithelial to mesenchymal cells and also by preventing angiogenesis. An aptamer

drug AS1411 has been depicted to block the nucleolin receptor based signaling and inhibit the oncogene expression for cancer survival. On

the other hand, this diagram shows the use of small RNAs as a cancer therapeutic approach including ALN-VSP2, miRNA-159, CALAA-

01 etc.
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studies  attempted  the  precise  and  effective  delivery  of  these

potential  NAT  agents  by  using  several  targeted  delivery

systems,  such  as  exosomes,  nanocarriers,  and  aptamers48,92.

First, naked therapeutic DNA or RNA can be transferred into

cells  by  using  high  voltage  (i.e.,  electroporation),  through

uptake by invaginating vesicles (i.e., endocytosis), or by sheer

mechanical force using a gene gun instrument. DNA or RNA

can  be  packaged  into  liposomes  (i.e.,  membrane  bound

vesicles) and naturally released exosomes, which can be more

easily  absorbed  by  the  cells  than  naked  DNA/RNA87,93,94.

Different  types  of  liposomes  have  been  developed  to

preferentially  bind  to  specific  tissues  and  modify  protein  or

RNA at different levels. Third, DNA or RNA can be packaged

into  virus-like  particles  by  using  a  modified  viral  vector.

Finally,  DNA  or  RNA  can  be  combined  with  cell  therapy

protocols95.  Chemically  synthesized  siRNAs  can  be

encapsulated  within  the  nanocarriers  and  may  be

administered with chemotherapeutic drugs96. Figure 3 shows

the schematic of therapeutic delivery options based on small

RNAs for cancer treatment12,44-46.

With the advancements in nanotechnology, cancer therapy

has considerably progressed. In nanomedicine, a wide variety

of  nano-carriers  containing  polysaccharides  have  been

developed.  Nanoparticle  carriers,  which  are  non-toxic,

biocompatible, biodegradable, and immunoefficient, can be

potentially  used  for  cancer  therapy97.  Ideal  polymers  for

preparing nano-systems include anionic polymers, such as

hyaluronic  acid,  heparin,  or  alginate,  which  exhibit

anticancer  property98.  Modified  delivery  systems include

lipid carriers and polymers aptamers. Nanotechnology and

modern cancer research have allowed the development of

highly safe medicine with reduced toxicity and ability to carry

large  payload  and  multivalent  ligand  targeting  and  the

improvements in cancer diagnostics7. Yuan et al.99 showed

that  nanoparticles  carrying three different siRNAs can be

delivered to tumor xenografts. The simultaneous delivery of

KRAS-, PIK3CA-, and PIK3CB-targeting siRNAs improved

the therapeutic efficacy but did not increase the toxicity of

the drug. Therefore, this approach can be used to develop

nontoxic drugs for tumor suppression.

Exosomes as NAT cargo system

Exosomes are naturally occurring nano-sized vesicles released

by  all  mammalian  cells  to  facilitate  cell-to-cell  com-
munication44. The delivery of exogenous siRNAs to the target

cells  poses  many  obstacles  for  effective  gene  therapy.  The

unmodified  siRNA  is  unstable  in  the  bloodstream,  is

immunogenic,  and  cannot  easily  cross  the  membrane  and

enter  the  cell.  Therefore,  a  siRNA-based  therapeutic

approach  requires  a  safe  and  reliable  delivery  method80.

Hence,  natural  exosomes  are  used  to  deliver  therapeutic
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Figure 3     Import pathways of small molecular weight RNAs. This figure shows the diagrammatic representation of import of small

molecular weight RNA through cellular or non-cellular contents. Small molecular weight RNAs have been shown to enter either through

lipid vesicles, protein conjugates or through a polymer. These carriers are either embedded or engulfed by the cell membrane and RNA is

released into the cells. After entry into cell, these small RNAs facilitate the blockage of transcription.
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siRNAs to  target  cells42.  O'Loughlin  et  al.46  reported the  use

of  extracellular  vesicles  to deliver  small  RNAs as  therapeutic

RNA  cargo.  Cholesterol-conjugated  siRNAs  (cc-siRNAs)

should  be  used  to  develop  EV-based  therapeutics  with

increased  loading  of  small  RNAs  to  extracellular  vesicles.

Lunavat et al.44  proposed a new class of extracellular vesicles

to  efficiently  transport  the  RNA  molecule  into  the  cell

cytoplasm. The authors provide evidence on the effective use

of  exosome-mimetic  nanovesicles  (NV)  to  reduce  the

expression of target genes, such as c-Myc, in cancer cells.

Aptamers and NAT

The conjugation of siRNA to delivery vehicles is a promising

anticancer  therapy.  This  single-component  system  uses

equimolar  concentration  of  the  delivery  system  and  siRNA.

Several  conjugate  delivery  systems  have  been  developed  by

coupling siRNA to polymers, such as aptamers, peptides, and

proteins80,100,101.  Several  researchers  have  transformed

molecular  recognition  by  fabricating  synthetic  RNA  motifs

that bind to specific targets. These molecules are called RNA

aptamers102-104.  These  aptamers  are  selected  through  in  vivo

selection method called the systematic evolution of ligands by

exponential  enrichment  (SELEX)103-105.  These  synthetically

derived molecules are selective and demonstrate high affinity

toward  the  target8,104.  RNA  aptamers  are  a  special  class  of

nucleic  acids  that  can  fold  into  composite  structures106  and

possess  pockets  and  hands  for  binding  specific  molecules.

AS1411  is  the  first  aptamer  approved  for  clinical  trial  for

treatment  of  different  types  of  cancer.  Wang  et  al.101

demonstrated  the  application  of  aptamer  AS1411-modified

extracellular vesicles as RNAi nanoplatform for breast cancer

therapeutics.  Chen  et  al.107  used  a  novel  aptamer-siRNA

chimera  delivery  system  mediated  by  cationic  Au-Fe3O4

nanoparticles  (NPs)  to  reverse  the  multi-drug  resistance

(MDR)  of  ovarian  cancer  cells.  Considering  their

development  for  systemic  delivery,  RNA  aptamers  have

become  active  therapeutic  agents  particularly  for  blood

stream and NAT104,108.

Liposome- and polymer-assisted delivery of
NAT agents

Lipids are involved in the survival, proliferation, and death of

cells  and  in  cell-cell  interaction45.  Lipids,  particularly

phospholipids,  function  in  cellular  processes,  such  as  signal

transduction,  post-translational  modification,  homeostasis,

adhesion, migration, apoptosis,  neurotransmission, vesicular

trafficking,  and  energy  storage109,110.  A  combination  of

cationic polymers, polyethyleneimines (PEIs), and liposomes

can facilitate the formation of lipopolyplexes, which are used

to  deliver  nucleic  acids  with  improved  efficacy  and

biocompatibility111.  Many liposomes,  such as cationic lipids,

can  be  used  to  successfully  deliver  small  RNAs.  Positively

charged  lipids  can  improve  the  entrapment  of  small  RNAs,

increase  the  cellular  uptake,  and  provide  protection  from

endosomal  escape.  Examples  of  cationic  lipids  are

Lipofectamine  2000  and  RNAiMAX  transfection  reagent,

which  is  a  recently  developed  compound  with  high

efficiency80,101.  The  modified  cationic  lipids  do  not  act  as

carrier  in  the  delivery  of  small  RNA,  but  provide  stability

against serum and access to RNAi machinery101,112-114.

Polymer-assisted  delivery  vehicles  comprise  polymeric

nanoparticles and are characterized as biodegradable; these

vehicles  prevent  aggregation during  storage,  increase  the

circulation time,  and reduce the off-target  effects80,101,115.

Cyclodextrin  and  polyethylenimine  (PEI)  are  the  most

commonly used polymers for siRNA delivery101,116-118. Other

polymers used for NAT delivery are polycaprolactone (PCL),

poly (D, L-lactide) (PLA), poly (D, L-lactide-co-glycolide)

(PLGA), chitosan, poly-L-lysine, dextran, polyglutamic acid,

hyaluronic acid, and gelatin48,101,119. Magnetic molecularly

imprinted polymers (MMIPs) are another form of delivery

system and are synthesized through photo-polymerization of

methacrylic acid and ethylene glycol dimethacrylate around

the  template  molecule  and  in  the  presence  of  magnetite.

These polymers exhibit controlled release and high magnetic

properties120.

Clinical evaluation of therapeutic
small RNAs

Various  small  RNAs  have  been  reported  by  preclinical  and

clinical  interventional  studies7-13,46.  Since  the  discovery  of

RNAi,  more  than  50  clinical  trials  involving  26  different

siRNAs have been documented8-13. A previous study reported

the use of siRNAs with liposome as a delivery vehicle to treat

a  patient  with  chronic  myeloid  leukemia121.  Zou  et  al.122

reported  the  potential  of  vascular  endothelial  growth  factor

siRNA  (VEGF-siRNA)  for  treatment  of  hepatocellular

carcinoma. RNAi is a potent tool in gene regulation, and the

first in-man trial of ALN-VSP02, an RNAi therapy, has been

reported  in  patients  with  advanced  solid  tumors123,124.

Finally,  preclinical  and clinical  trials  and investigations  have

been  conducted  on  the  use  of  Atu027,  a  siRNA-lipoplex

directed against  protein kinase N3 (PKN3),  for treatment of

advanced solid cancers, including pancreatic cancer125,126.

CALAA-01,  a  type  of  siRNA  targeted  to  curb  the
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expression of M2 sub-unit of ribonucleotide reductase (R2),

can be used for siRNA-based therapies for cancer127.  This

drug is  formulated in a stabilized nanoparticle to prevent

nuclease-mediated degradation within tumor cells. The drug

ALN-VSP02 is a lipid nanoparticle formulation containing

two  siRNAs  targeting  kinesin  spindle  protein  (KSP)  and

VEGF with potential antitumor activity123. A phase 1 clinical

study was conducted to investigate the use of TKM 080301, a

type of lipid nanoparticles encapsulating siRNA targeted to

the PLK1 gene for treatment of primary or secondary liver

cancer128. Furthermore, the drug ALN-VSP02 demonstrated

siRNA-mediated mRNA cleavage in the liver and exhibited

antitumor activity123.

Another  phase  1  interventional  study  evaluated  the

immunotherapy of melanoma by using tumor antigen RNA

and small inhibitory RNA loaded into dendritic cells to target

immunoproteasome  beta  subunits  LMP2,  LMP7,  and

MECL1129. Another clinical study evaluated the efficacy and

safety  of  single-dose  siG12D  LODER  administered  with

chemotherapy drugs  to patients  with unresectable  locally

advanced pancreatic  cancer130.  An ongoing clinical  study

reported on the use of siRNA-transfected peripheral blood

mononuclear  cells  APN401  for  treatment  of  pancreatic

cancer, colorectal cancer, and other solid tumors that spread

to other places in the body or have relapsed131.

Conclusions

Non-coding small  RNAs have been increasingly  investigated

as  NAT  to  repress  pivotal  specific  genes  related  to  tumor

progression  and  drug  resistance.  These  new  class  of  drugs

should  be  viewed  from  the  perspective  of  combinatorial

options  as  a  cocktail  of  cancer  drug therapy.  Hence,  the  use

of  these  small  RNAs  as  NAT  in  cancer  treatment  should  be

encouraged in conjunction with other drug options,  such as

epigenetic,  signaling,  growth,  and  metastasis  blockers.  Such

combinations  may  contribute  to  completely  eradicate  issues

with  regard  to  inherent  tumor  heterogeneity  and  drug

resistance in clinical settings. In addition to new findings and

the development of NAT based on small RNAs from natural

and  artificial  sources,  further  studies  should  evaluate  the

stability and precision of NAT for targeting tumor tissues and

analyze  specific  compartments  of  intercellular  and

intracellular  locations.  To  achieve  therapeutic  approaches

with  effective  targeting  at  the  site  of  action,  scientists,

clinicians,  and  industry  researchers  should  collaborate  to

develop  an  efficient  drug  delivery  system and nano-imaging

system  for  improved  monitoring  of  cancer  treatment.

Overall, small-RNAs-based NAT is more effective and precise

and poses less risks to healthy tissues than existing traditional

therapeutic regimens for cancer.
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