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Introduction

Classification and epidemiology of glioblastoma 
(GBM) 

Gliomas are tumors that arise from glial or precursor cells and 
include astrocytoma, GBM, oligodendroglioma, ependymoma, 
mixed glioma, malignant glioma, not otherwise specified 
(NOS), and a few rare histologies. According to the 2007 
WHO classification of central nervous system (CNS) tumors, 
GBM belongs to tumors of neuroepithelial tissue and could 
be further subdivided into giant-cell GBM and gliosarcoma. 
GBM, also called grade IV astrocytoma (where I refers to the 
least severe and IV to the most severe), is the most common 
type of primary malignant brain tumor in adults, accounting 
for 54% of all gliomas. In the United States, the incidence rate is 
3.19 per 100,0001,2. Approximately 0.59 to 3.69 GBM cases per 

100,000 are diagnosed annually worldwide1,3-7. GBM is also one 
of the most lethal brain tumors, with only one-third of patients 
surviving for 1 year and less than 5% living beyond 5 years8,9. 
GBM patients survive for 12 to 15 months on average despite 
aggressive surgical resection and conventional therapy10,11.

Morphological features of GBM

Compared w ith other tumors,  GBM possesses unique 
characteristics associated with its poor prognosis: (I) larger 
dormant glioma cells with a stronger resistance to conventional 
radiotherapy and chemotherapy, resulting in multi-drug 
resistance (MDR); (II) “crab claw-like” invasion, causing 
unclear borders with normal cerebral structures, preventing 
complete surgical resection; (III) recurrence within 2 cm of the 
primary tumor location rather than outside the site, making the 
elimination of residual glioma cells critical for radical cure and 
improved prognosis12; (IV) “Chinese chive-like” regenerative 
proliferation, making it possible that simple surgical excision 
may stimulate and further accelerate its growth rate and degree 
of malignancy; and (V) protection by the blood-brain barrier 
(BBB) (Figure 1) and blood-brain tumor barrier (BBTB), 
preventing nearly all large-molecule and 98% of small-molecule 
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drugs from entering the CNS13-15. The BBTB starts to form at 
the later stage of glioma and resides among the brain tumor cells 
and microvessels16-18, both of which limit the penetration of 
conventional intravenous or oral drugs into the tumor tissue.

According to the NCCN Clinical Practice Guidelines in 
Oncology (NCCN Guidelines), combined chemoradiation is 
as a new standard of care for non-elderly patients with good 
performance status2. At present, the comprehensive model for 
the treatment of GBM consists of chemotherapy, surgery, and 
radiotherapy. The abovementioned morphological characteristics 
decisively imply the vision of advancing chemotherapeutic 
administration-targeted drug therapy.

Targeted strategies for GBM

Targeted therapies rationale

In targeted therapy, drugs accumulate selectively in targeted 
tissues, organs, cells, or intracellular structures via local drug 
delivery or the systemic blood circulation. These drugs could 
be sorted into passive and active targeting based on the delivery 
mechanism as follows. (I) Passive targeting: drug-loaded 
particles of different sizes are intercepted by different tissues 
because of their distinct physiological properties, such as the 
reticuloendothelial system (RES) in the liver and spleen or 
enhanced permeability and retention (EPR) effects in tumors. 
(II) Active targeting: drugs or carriers modified by special 
ligands, monoclonal antibodies, or macromolecule substances 

that are sensitive to certain chemicals in vivo, which act as 
“bullets”, are delivered directly and accumulate in target regions. 
Passive target-oriented microspheres could evade macrophage 
uptake and further reach the specific target sites after the 
modification of ligands, monoclonal antibodies, or other 
substances.

Considering the specific sites and features of GBM, a passive 
targeting strategy alone, such as the use or evasion of RES and 
the utilization of EPR, is insufficient for drug delivery to the 
tumor. Therefore, the following treatments emphasize active 
targeting or a combination of the two strategies.

Receptor-mediated targeting

Certain receptors closely correlated with tumor growth are 
highly expressed in BBB, GBM cells, or associated blood vessels, 
but not in surrounding normal tissues. Given this phenomenon, 
surface-functionalized or conjugated traditional drugs or drug-
loaded carriers with corresponding ligands are expected to guide 
these receptors to cross the BBB to improve therapeutic efficacy 
and reduce side effects.

Transferrin receptor (TfR)
The cellular uptake of iron-loaded transferrin (Tf) occurs through 
receptor-mediated transcytosis (RMT). Tf R, referred to as Tf R1 
or CD71 in literature, is expressed at low levels in most human 
tissues but is highly expressed on the brain capillary endothelium, 
which forms the BBB, and in tumor tissue. Thus, Tf R functions 
both in mediating transport across the BBB and internalization 
into cancer cells. Meanwhile, Tf R2, another member of the Tf R 
family, presents considerably lower affinity for Tf than Tf R1  
(25-fold lower), making it a less efficient target for Tf R-mediated 
drug or gene delivery to brain or cancer cells19,20. 

Zhang et al.21 prepared Tf-modified paclitaxel-loaded micelles 
(TRPM), wherein Tf modification significantly enhanced 
cellular uptake by primary brain microvascular endothelial 
cells to 2.4 fold that of unmodified samples, resulting in high 
drug accumulation in the brain after intravenous injection. 
Mice bearing intracranial U-87 MG glioma treated with TRPM 
exhibited the longest mean survival time (42.8 days). Ying et al.22  
developed liposomes conjugated with Tf. Their group found 
that its transport ratio across the BBB model was significantly 
increased up to 24.9% and that the C6 glioma spheroid volume 
ratio was significantly lowered to 54.7%. The inhibitory rate 
to C6 glioma cells after crossing the BBB was significantly 
enhanced up to 64.0%, and the median survival time of tumor-
bearing rats after administration (22 days) was significantly 
longer than those of other controls. Several other studies23,24 also 

Figure 1 Blood-brain barrier.
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showed that liposomes or nanoparticles (NPs) conjugated with 
Tfs can target endothelial and tumor cells, penetrating tumor 
cells to reach the core of tumor spheroids and providing the 
highest brain distribution. As a result, drug-loaded formulations 
present the best anti-proliferative activity against GBM cells and 
tumor spheroids. Chiu et al.25 showed that NPs conjugated to 
oxalate Tf, a variant of Tf, exhibited a higher degree of cellular 
association compared with native Tf-conjugated NPs, because 
oxalate can stabilize the iron atoms in Tf, thereby decreasing 
Tf iron release rate in the endosome26. Accordingly, conjugates 
of these Tf mutants with the diphtheria toxin possessed even 
greater potency in cytotoxicity experiments in vitro with GBM 
cell lines. Moreover, intratumoral injections into xenografted 
glioma tumors in a mouse model resulted in near-complete 
tumor regression within 8 days27. Therefore, using Tf variant-
based therapeutics has a potential in systemic drug delivery 
applications for GBM treatment.

Low-density lipoprotein (LDL) receptor 
Low-density lipoprotein receptor-related proteins (LRPs), which 
are structurally similar to the LDL receptors, belong to the LDL 
receptor family. LRPs are multifunctional RMT systems with 
multiple ligands, such as lactoferrin, melanotransferrin, and 
receptor-associated protein. Moreover, LRPs are overexpressed 
in BBB and glioma cells. Therefore, several BBB or glioma-
targeting vectors which take advantage of the LRP RMT system 
have been reported19,28-31. 

Angiopep-2, which is derived from the Kunitz domain of 
aprotinin, exhibits high LRP1 binding efficiency and brain 
penetration capability in both the in vitro model of BBB and in situ 
brain perfusion in mice; several research groups used Angiopep-2 
for glioma-targeting delivery31-37. Jiang et al.38,39 developed NPs 
and carbon nanotubes functionalized with Angiopep-2, both of 
which displayed higher glioma localization and penetration. The 
most favorable antiglioma effects both in vitro and in vivo were 
observed after loading with drugs. Xin et al.31 prepared paclitaxel-
loaded Angiopep-NPs that exhibit a significantly higher amount of 
endocytosis and enhanced inhibitory effects to U87 MG cells with 
significantly increased transport ratios across the BBB model. The 
group also observed enhanced accumulation of Angiopep-NPs in 
the glioma bed and infiltrating margin of an intracranial U87 MG 
glioma tumor-bearing in vivo model. Several other studies utilized 
Angiopep-2 to modify the delivery system, including NPs40, gold 
NPs41, electro-responsive hydrogel NPs42, p-coumaric acid43, or 
pluronic F127-conjugated superparamagnetic iron oxide NPs44, 
and all exerted similar findings without exception. A study applied 
Angiopep-2 to GBM stem cell (GSC) in which the vector was 
also overexpressed and, as expected, Angiopep-2 improved anti-

GSC properties, such as enhanced stability, anti-proliferation, 
and antitumor sphere formation abilities45. Demeule et al.46 
synthesized ANG4043 by chemically conjugating the anti-HER2 
mAb with Angiopep-2. Expectedly, increased BBB permeability 
was observed compared with unconjugated anti-HER2 mAb. 
Given the susceptibility to proteolysis of Angiopep-2 (here 
termed LAngiopep), Wei et al.47 designed a retro-inverso isomer 
of LAngiopep, termed DAngiopep. The latter demonstrated lower 
uptake efficiency in both bEnd.3 and U87 cells, suggesting lower 
binding affinity to LRP-1 of the Dpeptide. Moreover, DAngiopep 
was resistant to proteolysis in fresh rat blood serum, whereas 
more than 85% of LAngiopep disappeared within 2 h. This result 
indicates that the susceptibility to proteolysis of LAngiopep in BBB 
may further attenuate transcytosis efficiency. In consequence, in 
vivo DAngiopep-modified micelles displayed high distribution in 
intracranial GBM. Therefore, the proteolytically stable DAngiopep 
holds considerable potential in designing two-order brain tumor 
targeted delivery systems.

GBM initiating cell (GIC) targeting

Evidently, this intrinsic resistance of GBM to current treatments 
is caused by a cell subpopulation with high resistance to 
radiation and chemotherapy. GICs or GSCs are responsible for 
tumor reinitiation and sustained growth, and are conceptualized 
as cancer’s locomotive engine48-52, making GSCs an attractive 
therapeutic target for GBM.

Bone morphogenetic proteins (BMP)
BMP belong to the transforming growth factor-β (TGF-β) 
superfamily of cytokines. This family of proteins was originally 
identified to induce bone and cartilage formation in ectopic 
skeletal sites in vivo. BMP ligands exert their activities by means 
of serine-threonine kinase receptors. The activation of the BMP 
pathway reduces glioma cell proliferation and renders GICs 
more susceptible to conventional therapy, so BMP treatment is 
considered to be a promising therapeutic tool against GBM53,54. 
Several studies have shown that BMPs can arrest cell cycle in GBM 
cells55 and suppress the tumorigenic capacity of GICs by inducing 
their differentiation to phenotypes with lower levels of stem cell 
markers51,56,57. Among all BMP ligands tested, BMP4 elicited the 
strongest effect, which could effectively inhibit not only GIC 
proliferation and self-renewal in vitro, but also tumor growth  
in vivo53. Mice that were intracranially injected with untreated 
glioma cells died after 3 to 4 months, but nearly all mice 
injected with BMP4-treated cells survived until the end of the 
experiment58. Univariate analysis showed that low BMP4 levels 
were correlated with high tumor grade. The Kaplan-Meier analysis 
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indicated that patients with high BMP4 expression showed 
significantly better prognosis, highlighting the relevance of BMP4 
as a predictor of survival59. Liu et al.60 reported that BMP4 can 
even reverse the MDR phenotype of tumor cells. BMP4 treatment 
has also been combined with bevacizumab (BEV) in GBM mouse 
models, and results showed that BMP4 exerted an independently 
favorable effect on GBM that was not synergistic with BEV 
treatment61. Chirasani et al.57 disclosed that endogenous neural 
stem cells secreted BMP-7, which acts as a paracrine suppressor 
of GICs. Animal experiments also showed that these cells would 
migrate to the borders of neoplastic foci to suppress GBM 
formation. Moreover, Tate et al.62 demonstrated that a BMP7 
variant (BMP7v) decreased primary human GIC proliferation, 
angiogenesis, and stem cell marker expression while enhancing 
neuronal and astrocyte differentiation marker expression  
in vitro and in vivo. In addition, BMP7v reduced brain invasion, 
angiogenesis, and the associated mortality in an orthotopic glioma 
model. However, not all BMP levels were positively associated 
with a better clinical outcome of glioma patients. According to 
a report, BMP2 expression became significantly higher as the 
glioma’s grade advanced and the Karnofsky Performance Status 
score decreased63. Persano et al.64 reported that, besides being an 
effective prodifferentiation treatment for GBM-derived stem cells, 
BMP2 also sensitized GICs to temozolomide (TMZ) treatment 
by decreasing hypoxia-inducible factor 1 alpha (HIF1α) stability 
and consequently down-regulating O-6-methylguanine-DNA 
methyltransferase (MGMT), an HIF1α target, thereby promoting 
TMZ’s alkylating action.

CD133 
The Pentaspan transmembrane glycoprotein family member 
CD133, also known as prominin-1 (PROM-1), is the best-
validated marker of the cell subpopulation responsible for 
conferring stem cell properties to GBMs. CD133 as a marker 
of GSCs is also an attractive target for the delivery of targeting 
therapeutics. Shin and colleagues65 prepared CD133 antibody-
conjugated immune liposomes that encapsulated gemcitabine 
for targeting GSCs. The in vitro cytotoxicity of gemcitabine 
was significantly enhanced through the endocytosis of CD133 
overexpressed on GSCs. The anti-tumor effect was 15 times 
higher than that of free gemcitabine, thus presumably reflecting 
the specific targeting of the CD133 surface marker.

Telomere repeat-binding factor 2 (TRF2) 
GSCs express high amounts of repressor element 1 silencing 
transcription (REST) factor, which may contribute to their 
resistance to standard therapies. Meanwhile, TRF2 stabilizes 
telomeres and REST to maintain the self-renewal of neural stem 

cells and tumor cells. Bai and coworkers66 showed that viral 
vector-mediated delivery of shRNAs targeting TRF2 mRNA 
depleted TRF2 and REST from GSCs isolated from patient 
specimens. As a result, GSC proliferation was reduced, and the 
level of proteins normally expressed by post-mitotic neurons 
(L1CAM and β3-tubulin) was increased. Depletion of TRF2 
also sensitized GSCs to TMZ and increased the survival of mice 
bearing GSC xenografts. These findings reveal a role of TRF2 
in the maintenance of REST-associated proliferation and the 
chemotherapy resistance of GSCs, suggesting that TRF2 was a 
potential therapeutic target for GBM.

miR-125b 
Several studies67,68 have shown that miR-125b is necessary for 
GSC’s fission and insensitivity to chemotherapy. Chen et al.69 
explored the functions and mechanisms of miR-125b action on 
TMZ-treated GSCs. The group found that miR-125b was up-
regulated in TMZ-resistant cells, the inhibition of which caused a 
marked increase in TMZ-induced cytotoxicity and apoptosis, as 
well as a subsequent decrease in the resistance to TMZ in GSCs. 
Moreover, their study demonstrated that the pro-apoptotic Bcl-
2 antagonist killer 1 (Bak1) was a direct target of miR-125b. In 
other words, miR-125b conferred TMZ resistance by targeting 
Bak1 expression69.

Angiogenesis targeting

Angiogenesis is known as the rate-determining process for solid 
tumor growth, which is also one of the main features of tumor 
tissues. GBM is among the most angiogenic of malignancies70. 
Thus, angiogenesis has emerged as a primary target of drug 
development for GBM over recent decades. Tumor angiogenesis 
is involved in many stimulating (VEGF, EGF, PDGF, etc.) and 
inhibiting factors. Thus, numerous promising strategies exist for 
targeting GBM therapy, such as down-regulating the expression 
of stimulating factors.

Integrins 
Integrins are a family of cell-cell and cell-extracellular matrix 
adhesion molecules that are implicated in various cellular 
processes (e.g., survival, proliferation, migration, invasion, and 
angiogenesis) and could thus support tumor development. 
In particular, αvβ3 and αvβ5 integrins are speculated to be key 
mediators of crosstalk between tumor cells and the brain 
microenvironment in GBM and are overexpressed on glioma 
cells and the vasculature. Therefore, targeting integrins and 
tumor microenvironment are considered to be a promising 
therapeutic strategy in GBM71-74.
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Arg-Gly-Asp (RGD) 
Arg-Gly-Asp (RGD) is a peptide that was is widely used for 
neovasculature targeting delivery because of its high binding 
efficiency with αvβ3

74-77. Notably, the binding affinity of the cyclic 
RGD peptide [c(RGDf K)] for integrin αvβ3 is reported to be 
1,000 times greater than that of the linear RGD peptide75,76. 
Therefore, Liu et al.76 conjugated [c(RGDf K)] to a cell-
penetrating peptide R8 to develop the multifunctional peptide 
R8-RGD, which increased the cellular uptake of liposomes 
by two folds in comparison with separate R8. Liu et al.76 also 
displayed the effective penetration of 3D glioma spheroids 
and the BBB model in vitro and the glioma foci after systemic 
administration in C6 glioma-bearing mice. Similarly, Kibria  
et al.75 also selected R8/RGD to embellish PEGylated liposomes, 
and their results showed an enhanced cellular uptake and 
higher transfection efficiency in integrin αvβ3-expressing cells 
in comparison with versions of the single ligand. Zhang et al.21 
utilized [c(RGDf K)] to modify paclitaxel-loaded micelles to 
target integrins overexpressed in glioma cells, which showed 
significantly prolonged retention in glioma tumors and 
peritumoral tissue. 

Cilengitide 
Cilengitide, an RGD peptide mimetic and a selective inhibitor of 
αvβ3 and αvβ5, has been tested in phase I/II trials in GBM patients74. 
In several other phase I/II studies in patients with recurrent or 
newly diagnosed GBM, cilengitide alone or in combination with 
TMZ chemoradiotherapy was well tolerated and showed potential 
antitumor activity (particularly in tumors with a methylated 
MGMT promoter)78-80. Eisele et al.81 analyzed the patterns of 
progression on MRI in 21 newly diagnosed GBM patients in a 
phase II trial of cilengitide added to TMZ chemoradiotherapy. 
Their group found that adding cilengitide did not alter patterns of 
progression; that is, cilengitide may not induce a more aggressive 
phenotype at progression, nor provide anti-invasive activity 
in patients with newly diagnosed GBM. Therefore, in a recent 
randomized phase III trial, Stupp et al.71 assessed cilengitide 
combined with standard treatment in a subgroup of patients 
with GBM with a methylated MGMT promoter. The group 
found that the median overall survival (OS) was 26.3 months 
in the cilengitide group and 26.3 months in the control group 
(P=0.86). Given this result, the addition of cilengitide to TMZ 
chemoradiotherapy did not improve outcomes, and cilengitide 
should not be further developed as an anticancer drug. 

Epidermal growth factor receptor (EGFR)
EGFR, also known as HER1 or ErbB1, belongs to the ErbB 
family of receptor tyrosine kinases (RTKs). Ligand binding by 

EGF leads to in the activation of the RTK/RAS/PI3K pathway, 
resulting in cellular proliferation, angiogenesis, and increased 
local tissue invasion, as well as resistance to apoptosis82-84. 
EGFR is amplified in 40% to 50% of GBMs. Gain-of-function 
EGFRvIII mutations (EGFR variant III) in nearly half of GBMs 
bear amplified EGFR. EGFRvIII arises from a genomic deletion 
of exons 2 to 7, which encode the ligand-binding domain of 
the receptor, generating constitutively active oncogenic RTKs. 
Moreover, the signaling mechanism of EGFRvIII cells can confer 
resistance to EGFR inhibitors (such as erlotinib and gefitinib) 
and promote poor long-term survival. Recent interest has 
focused on an anti-EGFRVIII vaccine (known as rindopepimut), 
which has already entered or is undergoing clinical trials82,85-87.

Inhibitors 
Preclinical results have demonstrated the ability of tyrosine 
kinase inhibitors (TKIs) to inhibit tumor cel l  grow th, 
angiogenesis, survival, and proliferation in several different 
EGFR-transfected GBM cell lines. However, these results do 
not appear to be clinically translatable, as response rates in 
GBM patients for numerous inhibitors, including gefitinib and 
erlotinib, are poor82. Qaddoumi et al.88 conducted a new phase 
II trial of erlotinib and local radiotherapy in children with 
newly diagnosed GBM (20 patients). The 2-year progression-
free survival (PFS) for patients was 19%±8%, and only five 
patients remained alive without tumor progression. This result 
indicates that erlotinib did not change the poor outcome of 
children with GBM. Another phase II trial reported that the 
combination of radiation, TMZ, erlotinib, and BEV for the 
initial treatment of GBM appeared to improve PFS but did not 
reach the primary endpoint of improved OS89. Another phase II 
study of erlotinib and sorafenib for patients with progressive or 
recurrent GBM also did not meet its objective of a 30% increase 
in OS time compared with historical controls90. In the case of 
gefitinib, in one phase II evaluation in nearly 100 patients with 
newly diagnosed GBM91, the OS and PFS at 1 year post-RT 
with gefitinib were not significantly different compared with 
those of the historical control population. Thus, treatment with 
adjuvant gefitinib post-RT was not associated with significant 
improvement in OS or PFS. 

Monoclonal antibodies 
Despite the success of antibody-based therapy in the treatment 
of many other cancers, these results have not been replicated in 
GBM82. A phase II study in 2009 stratified patients depending 
on their EGFR gene amplification status, and both groups were 
administered with cetuximab intravenously. Cetuximab exerted 
little effect in both groups, and the median OS was 5 months, 
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eliciting no significant correlation between EGFR status and 
response or OS92. Another similar phase II clinical study in 
2012 found that patients with an EGFR amplification lacking 
EGFRvIII expression presented a significantly superior PFS and 
a numerical OS following treatment with cetuximab [median 
PFS, 3.03 vs. 1.63 months (P=0.006); median OS, 5.57 vs.  
3.97 months (P=0.12)]. Within the subgroup of patients with 
EGFR amplification, patients with EGFRvIII-positive GBM 
showed worse survival [median PFS, 1.63 vs. 3.03 months 
(P=0.01); median OS, 3.27 vs .  5.57 months (P=0.08)], 
indicating that the type of EGFR mutation may determine the 
outcome of GBM patients treated with cetuximab93. In Chinese 
patients, a study of nimotuzumab in combination with TMZ and 
radiotherapy for newly diagnosed GBM showed that the survival 
times was similar to that observed in historical data of standard 
therapy; that is, no correlation between efficacy and EGFR 
expression was found94. The newest95 phase III trial involving 
nimotuzumab in the treatment of newly diagnosed adult GBM 
also showed that EGFR amplification is not correlated with 
clinical efficacy of nimotuzumab. This study, albeit negative, 
contained hypothesis-generating signals which support the 
evaluation of correlative, efficacy-predicting tumor parameters 
for nimotuzumab in GBM treatment. 

Peptide vaccines 
Rindopepimut (CDX-110) is a peptide vaccine composed of a 
14-mer peptide spanning the EGFRvIII-specific exon junction 
site conjugated to the carrier protein KLH.

Results from previous trials, namely, ACTIVATE, ACT II, 
and ACTIII, confirmed the safety of rindopepimut with robust 
EGFRvIII-specific immune responses and demonstrated a 
statistical increase in median PFS and OS in vaccinated patients 
in comparison with a cohort treated with the care standard85,96-98. 
Schuster et al.87 performed a phase II clinical trial (ACT III) 
to confirm the results mentioned above. In their study, PFS at  
5.5 months (~8.5 months from diagnosis) was 66%. Relative to 
study entry, median OS was 21.8 months, and 36-month OS was 
26%. Anti-EGFRvIII antibody titers increased ≥4 folds in 85% of 
patients and increased with the duration of treatment. EGFRvIII 
was eliminated in 4 out of 6 (67%) tumor samples obtained after 
>3 months of therapy. A pivotal, double-blind, randomized, 
phase III trial (“ACT IV”) is underway.

Platelet-derived growth factor receptor (PDGFR) 
The PDGFR family constitutes the subfamily III of RTK and 
is formed by PDGFR-α and PDGFR-β. PDGFRs are related 
to cell migration, proliferation, and survival processes83. 
Interestingly, both PDGFRs and their ligands are co-expressed 

in GBM, suggesting that stimulation of autocrine PDGFRs may 
contribute to their growth99. Amplifications of PDGFR-α have 
been extensively studied in GBM. These receptors are reported 
to be associated with a loss of p53 function and the secondary 
GBMs that typically develop from low-grade astrocytoma100,101. 
A gene expression-based GBM molecular classification has 
further linked PDGFR-α aberrations in patients to the proneural 
subclass. This GBM subclass was identified to be nonresponsive 
to standard TMZ and radiotherapy. Other studies have recently 
found PDGFR-α mutations in a fraction of diffuse intrinsic 
pontine glioma, which is a pediatric brain tumor with an 
extremely poor prognosis101.

At present, no PDGFR-targeting agent has been approved 
for GBM treatment. Studies in vitro showed that imatinib could 
inhibit GBM cell proliferation and induce growth arrest in the 
G0/G1 phase of the cell cycle99, or that imatinib could reach 
intratumoral concentrations similar to or higher than those in 
plasma in GBM regions where the BBB is disrupted as indicated 
in contrast-enhanced MRI102. Long-term exposure to imatinib 
could reduce the ability of cancer stem cell through the induction 
of cell differentiation in GBM cells103, and all of these strategies 
may indicate potential in clinical applications. However, 
previous clinical studies using imatinib mesylate (Gleevec®) 
for GBM patients showed no major inhibition of tumor growth 
or extension of survival104. Several multicenter trials also failed 
to show the efficacy of imatinib alone or in combination with 
hydroxyurea in the treatment of recurrent GBM105,106. The 
molecular mechanisms of action of imatinib in GBM cells 
remain poorly understood. Dong et al.104 investigated the effects 
of imatinib on PDGFR downstream signaling pathways, as well 
as on other cellular functions in human GBM cells. The research 
group found that imatinib significantly inhibited cell migration 
but not cell growth. The combination of imatinib and a MEK or 
PI3K inhibitor resulted in significant growth inhibition but did 
not inhibit cell migration beyond the inhibition achieved with 
imatinib treatment alone. This finding indicates that the imatinib 
treatment of malignant glioma does not result in significant 
inhibitory effects and should be used with caution. 

VEGF/VEGFR 
Hypoxia in GBM led to HIF-1α accumulation and further 
activation of several hypoxia-associated genes, including VEGF. The 
VEGF gene family includes six secreted glycoproteins [VEGF-A, 
VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placenta growth factor 
(PlGF)]. Among these glycoproteins, VEGF-A typically localizes 
adjacent to perinecrotic regions within glioma pseudopalisades, 
increases with higher glioma grade, and is associated with poor 
outcome among patients with GBM. The VEGF receptor (VEGFR) 
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family includes VEGFR-1 (Flt-1), VEGFR-2 (KDR), VEGFR-3, 
neuropilin-1 (NRP-1), and NRP-2, which exhibit different binding 
affinities of VEGF homologs. Among these receptors, VEGFR-1 
and VEGFR-2 regulate angiogenesis and NRP function as VEGFR 
tyrosine kinase co-receptors. VEGF binding to VEGFRs on tumor 
blood vessels markedly enhances permeability and activates 
endothelial cell proliferation, survival, and migration. Moreover, 
GBM also expresses VEGFRs, which may function in an autocrine 
manner to promote tumor growth107. 

Inhibitors sunitinib 
A phase II trial108 examined the activity of sunitinib in 12 
patients with newly diagnosed, non-resectable GBM. Results 
showed that sunitinib had no activity as a monotherapy, and 
further investigation of its efficacy in this setting is unwarranted. 
Another trial by Hutterer et al.109 also found that continuous 
daily sunitinib showed minimal anti-GBM activ ity and 
substantial toxicity when given at higher doses. These are the 
two latest reports about trials of sunitinib in recurrent GBM to 
date, and both were consistent with previous trials110-112 showing 
that sunitinib has no significant anti-tumor efficacy alone or in 
combination with others in newly diagnosed GBM.

Cediranib
A phase II study113 of cediranib in patients with recurrent 
GBM showed that cediranib monotherapy was associated 
with encouraging proportions of radiographic response and 
6-month PFS. Gerstner et al.114 evaluated the effects of cediranib 
in combination with chemoradiation on tumor blood flow 
and survival in newly diagnosed GBM. Improved PFS and 
OS compared with historical controls, particularly in those 
with improved perfusion were observed. This finding was 
confirmed by further results of improved tumor oxygenation 
and survival in GBM patients who showed increased blood 
perfusion after cediranib and chemoradiation115. Batchelor  
et al.116 performed a phase III trial. However, the results of the 
group did not meet the primary end point of PFS prolongation 
with cediranib either as a monotherapy or in combination with 
lomustine versus lomustine in patients with recurrent GBM, 
even though cediranib showed evidence of clinical activity on 
several secondary end points, including time to deterioration in 
neurologic status and corticosteroid-sparing effects. Similarly, 
a phase I study of cediranib in combination with cilengitide in 
patients with recurrent GBM showed that the median PFS/
OS and APF6 were not very promising, notwithstanding the 
concluding suggestion of a low incidence of pseudoprogression 
in newly diagnosed GBM patients treated with cediranib in 
combination with chemoradiation117.

Axitinib
Axitinib is a novel orally available VEGFR-TKI. Kratzsch  
et al.118 conducted a study with immunodeficient mice. The 
group established cell line- and patient-derived GBM xenografts, 
which were treated with axitinib. They verified that axitinib 
exhibited significant effects on GBM xenografts even with 
primary resistance to BEV in a so far untreated tumor. Another 
preclinical study119 showed for the first time the antiangiogenic 
effect and survival prolongation provided by systemic single-agent 
treatment with axitinib in preclinical orthotopic GBM models, 
including clinically relevant GSC models. In the newest phase 
II study of axitinib vs. standard care performed by Duerinck and 
coworkers120, axitinib had single-agent activity in recurrent GBM 
patients. The survival of the axitinib group was comparable with 
that of the contemporary control arm. Tumor response on MRI is 
accompanied by decreased uptake of tracers on 18F-FET PET scan. 
Further evaluation of axitinib for recurrent GBM is warranted.

Monoclonal antibody 
BEV is a recombinant humanized monoclonal antibody that 
could selectively bind to and neutralize the activity of VEGF-A, 
thereby inhibiting binding to VEGFR. BEV received accelerated 
FDA approval for the treatment of progressive GBM based 
on radiographic response rates121. Goldlust et al.121 reported 
that their radiographic and survival outcomes with BEV 
following progression after VEGFR-TKIs are similar to the data 
from studies of BEV as initial salvage therapy. Prior exposure 
to VEGFR-TKIs may not preclude response to BEV, but 
sensitivity to BEV may be lower following more robust VEGFR 
inhibition121. In a prestigious report on a randomized trial of BEV 
for newly diagnosed GBM, first-line use of BEV did not improve 
OS in patients (median, 15.7 vs. 16.1 months, BEV vs. placebo). 
PFS was prolonged (10.7 vs. 7.3 months) but did not reach the 
prespecified improvement target122. Taal et al.123 reported the 
results of the first phase II trial (BELOB trial) in which single-
agent BEV did not support a significant role in recurrent GBM, 
whereas the combination of lomustine and BEV may have more 
activity than either drug administered alone124. This combination 
warrants further investigation and is currently being investigated 
in randomized controlled phase III EORTC trial 26101125. 
Nevertheless, the addition of BEV to TMZ and hypo-IMRT, or 
the combination of BEV/Irinotecan (IRI) did not improve OS 
for patients with GBM126-128. Similarly, a phase II study showed 
that the addition of carboplatin and IRI to BEV does not improve 
anti-tumor activity compared to that achieved historically with 
single-agent BEV among BEV-naive, recurrent GBM patients129. 
In another single-institution phase II trial130, the combination of 
BEV, erlotinib, TMZ, and radiotherapy appeared to improve PFS 
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but did not reach the primary endpoint of improved OS. These 
data suggest that chemosynergy with BEV may be insufficient to 
enhance the benefit of BEV in recurrent GBM.

Biomarker targeting

The National Institutes of Health defines biomarkers as 
“characteristics that are objectively measured and evaluated as 
indicators of normal biologic processes, pathogenic processes, 
or pharmacologic responses to a therapeutic intervention”. 
Biomarkers have the potential to play significant roles in the 
diagnosis of tumor subtypes, as well as in the identification of 
therapeutic targets of GBM131. A marker can consist of alterations 
of the genome, epigenome, or transcriptome, proteome, and 
aberrant microRNAs (miRNAs). Genes that are most closely 
associated with GBM, such as EGFR, VEGFR, and PDGFR, are 
previously introduced.

Herein, we emphasize the miRNAs involved in the initiation 
and progression of GBM. MiRNAs are a class of short non-
coding RNA sequences (18 to 24 nucleotides) that repress gene 
expression by interacting with the 3' untranslated regions of 
mRNAs132. MiRNAs are predicted to target more than 50% of 
human protein-coding genes, enabling them to perform numerous 
regulated roles in physiological and developmental processes133. 
MiRNA-targeted therapy is still in the initial stage, and clinical 
trials are under recruitment or currently running. However, several 
miRNAs have been selected as promising tumor biomarkers, with 
increased potential to reduce disease progression in combination 
with conventional first-line therapy for GBMs.

MiR-21
Altered miRNA expression in GBMs was first reported in 2005. 
Chan et al.134 showed that miR-21 was highly up-regulated 
and exhibited anti-apoptotic capabilities in GBM cell lines. 
Subsequently, several reports confirmed miR-21 up-regulation 
in GBMs. MiR-21 functions as an oncogene in the pathogenesis 
of GBM, and its expression is correlated with glioma grade135-137. 
In addition, miR-21 and its target genes mediate radiation 
resistance of GBM cells138-140. Therefore, miR-21-targeted therapy 
is a promising alternative for GBM. Ren et al.141 showed that  
miR-21 inhibitors in combination with 5-FU increased glioma 
cell apoptosis and decreased cancer cell migration. Qian et al.142 
co-delivered doxorubicin and miR-21 inhibitor (miR-21i) into 
glioma cells, which surprisingly exhibited an anti-proliferative 
efficiency. A new study demonstrated that decreased tumor 
cell proliferation and tumor size, as well as enhanced apoptosis 
activation and, to a lesser extent, improvement of animal survival, 
were also observed in GBM-bearing mice upon systemic delivery 

of targeted NP-formulated anti-miR-21 oligonucleotides and 
exposure to sunitinib143. 

MiR-181
MiR-181 family contains a, b, c, and d isoforms. The down-
regulated hsa-miR-181a and hsa-miR-181b of hsa-miR-181 
family were also involved in glioma oncogenesis144. MiR-181d 
was also down-regulated in human glioma samples and may act 
as a glioma suppressor by targeting K-ras and Bcl-2145. MiR-181b 
and miR-181d were predictive biomarkers for TMZ response, 
with the former possibly enhancing TMZ sensitivity via MEK1 
down-regulation and the latter partly by post-transcriptional 
regulation of MGMT. Therefore, a combination of miR-181b or 
miR-181d with TMZ may be an effective therapeutic strategy 
for gliomas146,147. Further studies on miR-181 are still necessary 
to demonstrate a therapeutic benefit in a clinical context toward 
GBM targeting treatment.

 

Conclusion and future perspectives

As chemotherapy for GBM has provided only a modest benefit 
in clinical outcome, the need for strategies with improved 
efficacy has prompted the development of current targeted 
therapies. However, drug delivery to the brain is hindered by 
the presence of the BBB. RMT is one of the transport systems 
used for nutrient transport to the brain for its healthy function. 
Thus, if appropriately targeted, RMT systems could help 
clinicians shuttle therapeutics into the brain in a noninvasive 
manner. At present, the most well-developed receptors known 
to undergo RMT are probably Lf R and LRP. NPs or liposomes 
are always used as carriers to deliver corresponding ligands, 
antibodies, or peptide vaccines. In either case, the conjugated 
cargo gains access to the brain interstitium by “piggybacking” 
on the natural RMT system19. Notably, both Lf R and LRP are 
overexpressed in the BBB, as well as in GBM cells, enabling 
the two to traverse the BBB and reach the secondary target. 
Therefore, achieving sequential targeting is feasible by endowing 
those RMTs, only expressed on either BBB or GBM cells, 
with an additional targeting moiety, such as RGD. The first 
targeting agent would allow RMT across the BBB, and the 
second agent would discriminate the site of action within the 
CNS19. Though the first agent was either Lf R or LRP, we could 
also add another targeting moiety to improve penetration into 
the BBB or tumors, such as ACP, RGD, p-aminophenyl-α-D-
mannopyranoside, and TLyP-1148. We could also change the 
structures of ligands to obtain their variant or isomer with 
better performance via physicochemical methods, and further 
accomplish a higher degree of cellular association or increased 
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distribution in intracranial GBM, such as [c(RGDf K)], oxalate 
Tf, and DAngiopep. To overcome the uptake in the RES of liver 
or spleen, we can coat NPs or liposomes with PEG. 

Another important concern associated with GBM’s poor 
prognosis may be recurrence, which is possibly due to the 
failure to eradicate GICs. Targeting GICs initiates new potential 
clinical therapies and interventions. TGF-β signaling could be a 
potential target because it has been shown to act as an oncogenic 
factor in GBM and could enhance the self-renewal capacity of 
tumor-derived spheroids in vitro149. Like BMPs, members of the 
TGF-β superfamily that could block proliferation and increase 
GIC responsiveness to chemotherapy and low BMP levels are 
prognostic for poor survival in human glioma, and have been 
proposed as promising therapeutics. The quinoline derivative 
LY2109761 is a TGF-β receptor I kinase inhibitor that has 
been found to be active against GBM alone and to enhance 
the antitumor efficacy of radiation both in vitro and in vivo, 
particularly in GICs150. Moreover, GSCs are driven by overactive 
signaling pathways, such as PI3K/AKT/mTOR and RAS/RAF/
MAPK. Evidence has been provided that sorafenib, a member 
of TKIs, exhibited a selective cytotoxic effect on GSCs that is 
partly dependent on the inhibition of the PI3K/Akt and MAPK 
pathways involved in gliomagenesis151,152. The most advantageous 
result is the emergence of stem cell-mediated delivery, which 
yielded promising preclinical results. A human clinical trial 
utilizing this approach is currently underway, considering 
incomplete distribution within the entirety of GBM of small 
molecule inhibitors or carriers like NPs. Therapeutic agents that 
have been delivered to GBMs by GIC carriers include therapeutic 
genes, oncolytic viruses, NPs, and antibodies (for readers 
interested in further discussions or opinions in this area, a review 
has recently been published153).

GBM is also characterized by high expression levels of 
proangiogenic cytokines and microvascular proliferation, 
highlighting the potential value of treatments targeting 
angiogenesis. Antiangiogenic treatment likely achieves a beneficial 
impact through multiple mechanisms of action. However, 
alternative proangiogenic signal transduction pathways are 
activated, leading to resistance development, even in tumors that 
initially respond. Identifying biomarkers or imaging parameters 
to predict the response and herald resistance is of high priority. 
Despite promising phase I/II clinical trial results, adding cilengitide 
to TMZ chemoradiotherapy did not improve outcomes. Similarly, 
many other inhibitors or monoclonal antibodies tended to exert 
unsuccessful results, as further clinical trials are underway in newly 
diagnosed or recurrent GBM. Simultaneously, interesting findings 
were also noted, such as patients who experienced gefitinib-
associated adverse effects (rash/diarrhea) exhibit improved OS. 

Another interesting finding is the high endothelial c-Kit expression, 
which may define a subgroup of patients who will benefit from 
sunitinib treatment by achieving prolonged PFS. Even though 
gefitinib reached high concentrations in tumor tissue and efficiently 
dephosphorylated its target, the regulation of downstream signal 
transducers in the EGFR pathway seemed to be dominated by 
regulatory circuits that are independent of EGFR phosphorylation. 
Therefore, future studies are still warranted. Except for biomarkers 
associated with angiogenesis, recent reports support the potential 
of miRNAs as predictive biomarkers and therapeutic targets for 
GBMs, despite awaiting further studies, which may allow for 
appropriate patient enrichment. Interdisciplinary efforts seem to 
be required in studying the combination among RMT approaches, 
GSC inhibitors, antiangiogenic treatments, biomarker targeting 
therapies, and cytotoxic agents, which may ultimately prove 
successful in improving OS and convert the “undergoing clinical 
trials” to “FDA-approved” therapeutics for noninvasive drug 
delivery to GBM.
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