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Cancer metabolism: major remodeling of 
cellular energy production and metabolic 
pathways in tumors

Cancer metabolic reprogramming has been recognized as one 
of the ten cancer hallmarks by Drs. Hanahan and Weinberg in 
their seminal review paper published in 20111. Some of the most 
striking changes of tumor cellular bioenergetics include elevation 
of glycolysis, increase in glutaminolytic flux, upregulation of 
amino acid and lipid metabolism, enhancement of mitochondrial 
biogenesis, induction of pentose phosphate pathway and 
macromolecule biosynthesis1-17. 

Glycolysis

Compared to normal cells, cancer cells prefer using glycolysis 
even in normoxic condition18-20. This phenomenon is often 

referred as the Warburg effect because Dr. Otto Warburg 
discovered and reported these metabolic alterations in tumors 
in 1930 and 195618-20. Many decades later, numerous studies 
have provided additional insights into the abnormality of cancer 
metabolism. 

In normal cells, glucose is catabolized to pyruvate, which 
can be later converted to acetyl-CoA to fuel the tricarboxylic 
acid cycle (TCA cycle, or Krebs cycle). TCA cycle generates 
NADH and FADH2 to provide mitochondrial respiratory chain 
with electrons for energy production. This is an effective energy 
production mode since each glucose molecule can produce up to 
36 ATP, largely thanks to mitochondrial respiration. In normal 
cells, glycolysis is prioritized only when oxygen supply is limited. 
In contrast, cancer cells preferentially use glycolysis even in 
the abundance of oxygen2,3,5,7,18-21. This is why tumor glycolysis 
is often called “aerobic glycolysis”, or the Warburg effect, to 
distinguish from the normal anaerobic glycolysis of healthy cells. 

However, cancer cells have to compensate for the 18-fold 
lower efficacy of energy generation (glycolysis only makes 2 
ATP per glucose molecule consumed while mitochondrial 
respiration can produce up to 36 ATP for each glucose molecule 
catabolized). Part of the solution is to upregulate glucose 
transporters, especially Glut1, Glut2, Glut3, and Glut4, to 
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uptake more glucose5,22-24. In fact, the increase in glucose uptake 
is a major feature distinguishing tumor cells from normal cells. 
This difference has been widely exploited in Positron Emission 
Tomography (PET) imaging modality using radiolabeled analogs 
of glucose such as 18F-fluorodeoxyglucose as a tracer to visualize 
tumors. 

In addition, tumors remarkably elevate the expression of the 
majority of glycolytic enzymes. Major oncogenes such as Ras, 
Myc, and HIF-1α are reported to be master inducers of cancer 
glycolysis3,5,24. Many glycolytic enzymes are also upregulated in 
tumors because of elevated c-Myc and HIF-1α transcriptional 
activity and insufficient p53-mediated control. Indeed, c-Myc 
and HIF-1α are well recognized as two master inducers of 
glycolysis through direct or indirect transactivation of cancer 
glycolytic genes. These two transcription factors coordinate to 
promote the expression of key glycolytic enzymes such as HK2, 
PFK1, TPI1, LDHA, among others, in tumors2,3,5,7,21,25,26. In fact, 
most of glycolytic gene promoter areas contain consensus Myc 
and HIF-1α binding motifs. While HIF-1α is mainly functional 
in hypoxia, c-Myc is well known to promote its glycolytic target 
genes’ expression in normoxia. This coordination allows tumors 
to continuously drive glycolysis for supporting their rapid 
proliferation and accelerated biosynthesis2,3,7,11,15,16,21.

In contrast, p53 is known to suppress glucose uptake by 
directly inhibiting the transcription of glucose transporter 
Glut1 and Glut427,28 and suppressing the expression of Glut328. 
Glut3 is an NF-κB target gene and p53 is found to block NF-κB 
activation, thereby considerably reducing Glut3 transcription 
and expression28. p53 also induces the expression of TIGAR to 
slow down cancer glycolytic flux29,30. Fructose 2,6-bisphosphate 
is an important allosteric activator of PFK1, a major glycolytic 
enzyme. Fructose 2,6-bisphosphate is produced by PFK2 from 
fructose 1-phosphate. By converting fructose 2,6-bisphosphate 
back to fructose 1-phosphate, TIGAR significantly slows down 
tumor glycolysis29,30.

The interaction among p53, c-Myc and HIF-1α has a decisive 
impact on the status of cancer glycolysis2,5,7,16,21,30. Many studies 
have characterized the communication between these three 
master regulators of cancer glycolysis and how the balance 
among these factors control the status of cancer metabolism.

On the other hand, the way tumor cells process pyruvate, 
the end product of glycolysis, is also different from normal cells. 
In normal cells, most of pyruvate is converted to acetyl-CoA to 
fuel the TCA cycle. Some pyruvate is used to produce alanine 
or lactate. In contrast, pyruvate-to-lactate is a preferred reaction 
in tumor cells due to the upregulation of lactate dehydrogenase 
A (LDHA). This reaction is beneficial for cancer cells as it helps 
regenerate NADH to accelerate glycolysis2,3,5,11,25. Furthermore, 

lactate is secreted into tumor microenvironment via MCT4 
transporter to fuel other cancer cells that do not have frequent 
access to nutrient supplies from blood stream. Lactate could be 
uptaken by MCT1 transporter and used by the TCA cycle for 
metabolism. The symbiosis of lactate-producing cancer cells and 
lactate-consuming tumor cells is an effective way for tumors’ 
adaptation to the diverse and constantly changing conditions in 
tumors, which is caused by the leaky and poorly formed tumor 
blood vessel network7,31-33. Furthermore, converting pyruvate 
to lactate also reduces reactive oxygen species’ levels, thereby 
diminishing the intracellular oxidative stress in cancer cells and 
promoting tumors’ survival2,7. Moreover, lactate also lowers the 
pH of extracellular microenvironment and facilitates the activity 
of metalloproteases for breaking down extracellular matrix. Thus, 
lactate is an inducer of cancer invasion and metastasis34,35.

Importantly, glycolysis provides cancer cells with not only 
energy but also necessary precursors for biosynthesis, which 
is similar to stem cells’ metabolic profiles. Several glycolytic 
metabolites such as glucose-6-phosphate, dihydroxyacetone 
phosphate, among others, could be diverted into other 
metabolic pathways. For instance, glucose-6-phosphate is 
often consumed by pentose phosphate pathway to synthesize 
nucleotides and NADPH (a major reducing agent important 
for redox homeostasis and drug detoxif ying reactions). 
Dihydroxyacetone phosphate could be used for lipid synthesis, 
which is important for assembling new organelles and cells to 
promote tumor growth and proliferation. Metabolites from 
glycolysis are also important materials for amino acid production 
and macromolecules synthesis, which is required for active cell 
division and large-scale biosynthetic programs2,3,5,7,16,36,37. In 
addition to their metabolic function, glycolytic enzymes play 
active roles in promoting cancer survival, metastasis, invasion, 
chromatin remodeling, gene expression regulation, and other 
essential cellular processes2,38. Thus targeting glycolytic enzymes’ 
activities could be useful strategies for cancer therapy.

Glutaminolysis

In addition to glycolysis, many tumors also rely on glutaminolysis 
to  f u el  t h e i r  ce l l u lar  b i o en erget i c s  an d  m etab ol i sm. 
Glutaminolysis is a series of biochemical reactions catabolizing 
glutamine into downstream metabolites such as glutamate, 
α-ketoglutarate. The products of glutaminolysis are very 
important to fuel the TCA cycle of tumors. The intermediates of 
TCA cycles could be used for the synthesis of lipid, cholesterol, 
amino acids and other essential metabolites. Moreover, NADH 
and FADH2 from the TCA cycle provide electrons for the 
electron transport chain of mitochondria to generate ATP. Thus, 
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similar to glycolysis, glutaminolysis supplies cancer cells with not 
only ATP but also crucial precursors for continuous biosynthesis 
and accelerated proliferation3,5,13,15,16,22,25.

Glutaminolysis upregulation in tumors is mediated by 
c-Myc4,9,13,39. Multiple studies demonstrate that c-Myc promotes 
both glutamine uptake and the catabolic process of glutamine. 
In fact, c-Myc transactivates ASCT2 and SN2, two important 
glutamine transporters on cellular membrane9,40. c-Myc also 
suppresses miR-23a/b to upregulate GLS1 expression41,42. GLS1 
is a major enzyme for glutaminolysis. Therefore, c-Myc is an 
important inducer of glutaminolysis in tumors. Interestingly, 
while promoting cancer metabolic reprogramming, c-Myc also 
renders cancer cells addicted to glutaminolysis, which opens a 
new therapeutic window to selectively suppress and eliminate 
cancer cells9,13-15,39,43. Therefore, targeting tumor glutaminolysis 
and c-Myc-induced-glutamine addiction is a promising anti-
cancer metabolism therapy.

Pentose phosphate pathway

Pentose phosphate pathway (PPP) is a classical metabolic 
pathway consisting of two branches. In the oxidative arm, PPP 
converts glucose-6-phosphate, a glycolytic intermediate, into 
ribulose-5-phosphate and generates NADPH. NADPH is then 
used for glutathione production, detoxification reactions, and 
biosynthesis of lipids as well as other macromolecules. The non-
oxidative PPP branch involves reversible carbon-exchanging 
reactions with the final products as fructose-6-phosphate and 
glyceraldehyde-3-phosphate. These metabolites can participate 
in glycolysis and downstream metabolic pathways44. PPP is 
commonly viewed as a line of defense counteracting reactive 
oxidative stress and producing ribose-5-phosphate for nucleotide 
synthesis. However, new studies suggest that PPP has important 
impacts on various aspects of cancer, including proliferation, 
apoptosis, invasion, drug resistance, and metastasis44. These 
exciting findings unveil PPP as a potential target for anti-cancer 
metabolism therapies.

R apidlyproliferating cancer cells constantly demand 
nucleotides and other materials for biosynthesis. Therefore, 
by providing NAPDH and pentose phosphate for nucleotide 
synthesis, PPP is important and frequently upregulated in 
many types of tumors5,44. In fact, the activity of glucose-6-
phosphate dehydrogenase (G6PD), a major PPP enzyme, 
increases in proliferating cancer cells45. G6PD, transketolase 
(TK) and other PPP enzymes are elevated in multiple types of 
cancer and facilitated tumors’ accelerated proliferation44,46,47. In 
addition, G6PD also promotes cancer survival by producing 
NADPH, a key tool for tumor cells to defend against oxidative 

stress, chemotherapy-induced cytotoxic damage, as well as for 
promoting biosynthesis44. Hence, G6PD function is tightly 
controlled by the tumor suppressor p53. Indeed, p53 associates 
with G6PD and prevents this enzyme from forming active 
dimer complexes48. It is noteworthy that G6PD is directly 
transactivated by HIF-1α49. The function of G6PD is strictly 
regulated in normal cells but highly activated in cancer cells, 
making G6PD a strong oncogene candidate44. Interestingly, 
G6PD and TK functions are both suppressed by resveratrol50, 
suggesting the usage of this natural product in cancer treatment 
and prevention.

While normal cells frequently rely on the oxidative branch of 
PPP for ribose-5-phosphate production; cancer cells use both 
arms, e.g., oxidative and non-oxidative, of PPP to generate ribose-
5-phosphate for nucleic acid synthesis51-53. Furthermore, cancer 
cells can use ribose-5-phosphate in both de novo and salvage 
pathways to synthesize nucleotides. These flexible metabolic 
programs help cancer cells effectively adapt to constantly 
changing nutritional conditions of tumor microenvironment.

In addition, PPP also protects tumor cells from apoptosis 
by counteracting oxidative stress and facilitating DNA damage 
repair. In fact, nonsteroidal anti-inflammatory medications 
induce apoptosis and shrinkage of colon carcinoma and polyps 
by regulating PPP54. Moreover, G6PD inhibitors, e.g., DHEA 
and 6-AN, promote apoptosis in mouse fibroblasts and PC-
12 neural cells while overexpression of G6PD protects cells 
from H2O2-induced cell death55. Knocking down of G6PD also 
increases oxidative stress-mediated toxicity in melanoma cells56. 
The vital role of PPP in protecting cells from programmed 
cell death is additionally proven in vivo such as in stem cells 
and peripheral blood mononuclear cells of patients lacking 
G6PD55,57,58. Interestingly, the cytoprotective function of PPP 
is not limited to defending against reactive oxygen species but 
also expands to helping DNA damage repair. Indeed, upon DNA 
damage, ATM quickly activates G6PD functions to accelerate 
PPP for quenching reactive oxygen species, increasing nucleotide 
synthesis and enabling effective DNA repair. Therefore, knocking 
down G6PD significantly impairs DNA damage repair ability59,60. 
Some other studies describe the impact of PPP on regulation of 
autophagy61, but the molecular mechanism is still not completely 
understood.

Surprisingly, PPP also induces tumor angiogenesis. Leopold 
et al.62 and Pan et al.63 reported the crosstalk between G6PD and 
VEGF and tight association between G6PD and angiogenesis. 
These studies show that VEGF stimulate G6PD expression 
via Src signaling and G6PD is important for VEGF-induced-
endothelial cell migration by increasing the phosphorylation 
of VEGR receptor Flk-1/KDR . G6PD also increases the 
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proangiogenic activity of endothelial NO by providing NADPH 
and stimulates Akt-induced activation of endothelial nitric oxide 
synthase (eNOS)62.

PPP additionally promotes tumor resistance to chemotherapy 
and radiation by multiple mechanisms. First, PPP provides 
cancer cells with NAPDH, a potent anti-oxidative agent that 
protects cancer cells from reactive oxygen species-induced 
cell death caused by chemotherapy and radiation44; Second, 
PPP facilitates DNA damage repair by providing material for 
nucleotide synthesis; Third, by shifting cancer metabolism away 
from mitochondrial respiration, PPP lowers the intracellular 
concentrations of reactive oxygen species, thereby increasing 
tumor endurance and survival during chemotherapy and 
radiation treatment; Fourth, NAPDH derived from PPP, is an 
important element for glutathione (GSH) generation. GSH 
is frequently used in detoxification reactions, enabling cancer 
resistance to a variety of chemotherapeutic agents. GSH 
conjugation to these xenobiotics also facilitates the activity of 
MDR1 and MDR2 to discard cytotoxic substances. Therefore, 
increase in G6PD expression and PPP flux increase intracellular 
GSH levels and reduce drug accumulation in cancer cells64. 
However, there are still many exceptions where PPP neither 
significantly contributes to drug resistance nor promotes the 
effect of certain chemotherapeutic agents in several cancer cell 
lines. This complexity requires more study to fully elucidate 
the contribution of PPP in protecting cells from anti-cancer 
treatments44.

In short, PPP is an important metabolic pathway providing 
cancer cells with NADPH, ribose-5-phosphate and other 
essential intermediates. NAPDH is crucial for counteracting 
oxidative stress and biosynthesis reactions. Ribose-5-phosphate 
is a major element for nucleotide synthesis. Interestingly, the 
impact of PPP on cancer cells is well beyond oxidative defense. 
Indeed, PPP upregulation promotes cancer cell survival, 
angiogenesis, proliferation, invasion, metastasis, and resistance 
to radiation and chemotherapies. Therefore, elevated and active 
PPP enzymes, for instance, TKTL or G6PD, are frequently 
observed in malignant, aggressive, proliferative and drug-
resistant cancer cells44. The new exciting discoveries about PPP 
open new therapeutic windows but also require more study to 
refine rational approaches for precise and effective targeting of 
this vital metabolic pathway in cancer cells. 

Mitochondrial biogenesis 

Another major change in cancer metabolism is the enhancement 
of mitochondrial biogenesis. In contrast to conventional 
concepts, mitochondria play very important roles in cancer 

because these vital organelles are the nexus of many essential 
metabolic  pathways 65.  Mitochondr ia  are  not  only the 
energy generators but also the factories synthesizing many 
indispensable molecules for cellular biosynthesis, growth and 
proliferation. Moreover, mitochondria additionally control the 
redox balance and Ca2+ concentration, which is essential for 
cellular homeostasis65. Therefore, impairment of mitochondrial 
function or lack of mitochondrial biogenesis seriously suppresses 
tumorigenesis, tumor formation and growth65-71. Furthermore, in 
comparison with healthy and well differentiated cells, cancer cells 
frequently rewire their mitochondria to switch from a maximal 
energy production by mitochondrial electron transport chain 
to a well-adjusted balance among constant energy requirement, 
large-scale biogenesis programs and rapid cell proliferation65. 
Therefore, mitochondrial biogenesis and mitochondria are truly 
essential for tumor cells65. Hence, increase in mitochondria 
biogenesis is a significant advantage for cancer. 

It is well established that c-Myc is a strong promoter of 
mitochondrial synthesis. In fact, c-Myc induces the expression of 
many nuclear-encoded mitochondrial genes. More importantly, 
c-Myc directly transactivates mitochondrial transcription factor 
A (TFAM). TFAM is a transcription factor that is indispensable 
for mitochondrial genes transcription and mitochondrial DNA 
replication72. In reality, TFAM promotes the right formation 
of mitochondrial transcription and replication complexes 
and facilitates the correct positioning of mitochondrial DNA 
for optimal gene transcription and proper mitochondrial 
DNA duplication65. As the synthesis of new mitochondrial 
components and replication of mitochondrial DNA are vital for 
de novo mitochondrial formation, c-Myc, indeed, plays a crucial 
role in elevating the number of mitochondria. As a consequence, 
lack of Myc expression and transactivational activity remarkably 
reduces mitochondrial mass as well as mitochondrial biogenesis, 
resulting in a severely suppressive impact on many metabolic 
pathways of cancer cells and tumorigenesis ultimately72. 

Lipid synthesis

Increase in lipid metabolism is another remarkable feature of 
cancer metabolism. Lipids are important building blocks of new 
organelles and cells. Lipid synthesis is a multiple step process 
involving several enzymes such as ATP citrate lyase (ACLY), 
acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN), 
and stearoyl-CoA desaturase (SCD). This procedure starts with 
converting acetyl-CoA to malonyl-CoA by ACC. A series of 
condensation reactions by FASN results in saturated fatty acids. 
Fatty acids could be desaturated by SCD. Cancer cells frequently 
upregulate de novo fatty acid synthesis to satisfy their demands 
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for lipids73-75. FASN elevation is observed in breast, prostate and 
other types of cancer73,76-79. FASN is a target gene of HIF-1α and 
frequently overexpressed in an Akt and SREBP1-dependent 
manner80. ACLY, often activated by Akt81, is indispensable for 
tumor transformation and formation both in vitro and in vivo81,82. 
ACC is also very important for tumorigenesis as inhibition of 
ACC stops cancer growth and induces apoptosis of prostate 
cancer cells83. Furthermore, cancer cells often have higher lipid 
accumulation in form of lipid droplets in relative to normal 
cells84.

Cholesterol synthesis, or the mevalonate pathway, is also an 
important aspect of lipid biosynthesis because cholesterol is 
a major component of membranes controlling the membrane 
fluidity and formation of lipid rafts. Cholesterol is vital for 
activation of Ras-Raf signaling pathway85 and deregulation 
of cholesterol synthesis is correlated with tumorigenic 
transformation86. Interestingly, statin-mediated inhibition of 
HMGCR, an important enzyme of the mevalonate pathway, 
considerably ameliorates the effectiveness of chemotherapies in 
acute myeloid leukemia87, hepatocellular carcinoma88, and other 
types of cancer through epigenetic pattern modification89.

The sterol regulatory element-binding proteins (SREBPs) 
are the main transcription factors controlling the expression 
of most of enzymes involved in fatty acid and cholesterol 
synthesis. SREBPs are helix-loop-helix 125 kDa proteins that 
require a protein cleavage at the endoplasmic reticulum for 
activation73. While SREBP1 controls fatty acid, triacylglycerol 
and phospholipid synthesis, SREBP2 regulates cholesterol 
generation90. SREBPs are controlled by tumor suppressors and 
oncogenes. AMPK, for instance, inhibits SREBP activation91 and 
suppresses ACC91, thereby keeping lipid synthesis in check. Loss 
of pRb upregulates SREBP1 and SREBP2, thereby activating Ras 
signaling92. p53 mutants, on the other hand, coordinates with 
SREBP to transactivate cholesterol-synthesizing enzymes93. Of 
note, SREBP1 and SREBP2 are often overexpressed in cancer76 
and play an important role in cancer cell survival94.

At the organism level, excessive lipid synthesis contributes 
to  t u m o r igen es i s .  It  ha s  b een  wel l  d o c u m ented  t hat 
obesity increases the risk of cancer73. In fact, excessive lipid 
concentrations in liver and muscle cells induce insulin 
resistance by impairing insulin signaling and reducing glucose 
uptake. Insulin resistance forces pancreatic cells to secrete 
more insulin and insulin-like growth factors, which is very 
beneficial for cancer proliferation and survival95-97. Obesity also 
increases inflammation, which contributes to insulin resistance 
and tumorigenesis98. Dietary restriction may reverse these 
tumorigenic trends but in certain scenarios, especially when 
PI3K/Akt signaling is overactivated, the tumor-suppressing 

impact of dietary limitation decreased99. A possible explanation 
is that nutrient restriction may reduce the levels of circulating 
insulin and insulin-like growth factors. However, the constitutive 
activation of PI3K/Akt may compensate for that insulin signaling 
decrease100.

Fatty acid oxidation

W hile glycolysis, glutaminolysis, fatty acid synthesis have 
been well characterized during the past few decades; fatty acid 
oxidation (FAO) still remains a little known metabolic pathway. 
However, recent studies have demonstrated the important 
contribution of FAO to tumorigenesis101. 

Fatty acids are a rich energy source that can yield to up to two 
times more ATP than carbohydrates when needed. Fatty acids 
could be oxidized in mitochondria or by cytoplasmic lipophagy, 
a new fatty acid catabolic process102. FAO is a repeated multi-
round process leading to the production of acetyl CoA, NADH, 
and FADH2 in each cycle. Acetyl-CoA can be imported into TCA 
cycle to generate more NADH and FADH2, which subsequently 
fuel mitochondrial respiration chain for ATP production. Acetyl-
CoA can also fuel TCA cycle for synthesis of citrate. Citrate-
derived isocitrate and malate can be respectively converted to 
α-ketoglutarate by IDH1 or pyruvate by malic enzyme (ME1)102. 
Both reactions generate NADPH, which plays a very important 
role in maintaining redox homeostasis, inducing cell survival, 
enabling xenobiotics detoxification and promoting biosynthesis 
for cell growth and division103. Of note, NAPDH is crucial for 
the function of many anabolic enzymes to sustain large-scale 
biosynthetic programs in many cancer cells.

NAPDH derived from FAO is very important for cancer 
cells to quench reactive oxidative stress. For instance, blocking 
glioma tumor’s FAO leads to rapid depletion of NADPH, surge 
of reactive oxidative species’ concentrations and increase in 
apoptosis104. NADPH produced by FAO is also relevant to the 
maintenance of hematopoietic stem cells because these cells are 
very sensitive and vulnerable to reactive oxidative stress. In fact, 
increased reactive oxygen species levels inhibit hematopoietic 
stem cells’ self-renewal and leads to cell differentiation105-107. 
Jeon et al.108 reported that LKB1-APMK regulates the balance 
between NADPH consumption by fatty acid synthesis and 
NAPDH production by FAO. In fact, AMPK blocks fatty 
acid synthesis in tumors by phosphorylating and inactivating 
acetyl-CoA carboxylase (ACC)109, antagonizing PPAR signal 
transduction110 and regulating CTP1C expression111. Therefore, 
AMPK is a potent inhibitor of fatty acid synthesis in cancer cells.

Needless for further emphasis, ATP is by large one of the 
most important molecules for cancer cells. Due to its rapid 
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proliferation and accelerated activities, tumors are almost 
constantly in high demand for ATP. ATP is the most frequently 
used energy currency and a major material for phosphorylation 
reactions, an essential mode of cellular signal transduction and 
protein modification. ATP is also an indispensable element for 
DNA and RNA replication and repair. The function of MDR1 
and other ABC pumps on cellular membrane, a major tumors’ 
line of defense against chemotherapy, absolutely requires ATP. 

Recently, ATP production by FAO has been shown to 
prevent anoikis, a type of cell death due to loss of attachment 
to extracellular matrix although the molecular mechanism still 
remains unclear and warrants more study103,112. The Pandolfi 
group113 also reported that the promyelocytic leukemia (PML) 
protein induced FAO by activating peroxisome-proliferator-
activated receptors (PPARs), leading to poor survival and 
clinical outcomes of breast cancer patients. Moreover, Tak Mak’s 
lab111 additionally found that carnitine palmitoyl-transferase 1 
isoform C (CPT1C) is an oncogene that induces cancer growth, 
ATP production, FAO and confers resistance to mTORC1 
inhibitors. CPT1 proteins mediate the import of fatty acids into 
mitochondria for FAO reactions. CPT1 links carnitine to fatty 
acids and transports the conjugated products (acyl-carnitines) 
into mitochondria. Therefore, the oncogenic property of 
CPT1C is a good example illustrating the potential of FAO in 
tumorigenesis. 

FAO is also important in ensuring cancer cell survival in a 
manner that is independent of ATP production101. In fact, CPT1 
proteins suppress the pro-apoptotic function of Bax and Bak 
by modulating the formation of mitochondrial permeability 
transition pores and reducing cytochrome c release114,115. The 
results from Samudio et al.116 and Vickers group117 additionally 
indicate that FAO can promote cancer cell survival by preventing 
a cytotoxic intracellular surge of fatty acid concentrations. 
On the other hand, several groups show that the increase in 
reactive oxygen species due to FAO-induced mitochondrial 
respiration could be harmful for leukemia cells. However, this 
toxicity could be resolved by upregulating uncoupling protein 
2 and 3 (UCP2, UCP3) that effectively dissipate the gradient 
proton in mitochondria and decrease mitochondrial oxidative 
phosphorylation efficiency118. 

Thus, fatty acid oxidation promotes cancer cell survival, and 
provides tumors with necessary energy and precursors. The new 
findings about FAO reveal fascinating understandings about 
cancer metabolic reprogramming and unveil very promising 
opportunities for anti-cancer therapeutic approaches. However, 
additional knowledge is needed to successfully develop effective 
therapies targeting this important catabolic process in cancer.

Interestingly, Hu et al.119 has recently completed a massive 

meta-analysis of over 2,500 microarrays including 22 types of 
cancer to compare the metabolic gene expression landscape 
of tumors relative to that of corresponding normal tissues. 
From this comprehensive transcriptomics analysis, three 
important observations have been reported: (1) despite the 
process of tumor evolution, there is still a significant degree of 
similarity in the gene expression metabolic profiles of tumors 
in comparison with those of the normal tissues where tumors 
originate; (2) the metabolic gene expression landscape across 
different types of tumors is heterogeneous. However, glycolysis, 
nucleotide synthesis, aminoacyl-tRNA synthesis, and pentose 
phosphate pathway are consistently upregulated and increasingly 
important in actively proliferating cancer cells; (3) hundreds 
of metabolic isoenzymes demonstrate remarkable and cancer-
specific expression alterations, representing new significant 
therapeutic opportunities for anti-cancer metabolism therapies. 
These isoenzymes are important for cancer. Some enzymes 
such as isocitrate dehydrogenase and fumarate dehydratase, 
may even imitate or aggravate the impact of tumorigenic genetic 
mutations119.

In short, metabolic reprogramming is an important cancer 
hallmark characterized by the upregulation of glycolysis, 
glutaminolysis, lipid metabolism, mitochondrial biogenesis, 
pentose phosphate pathway as well as other biosynthetic and 
bioenergetic pathways. These cancer metabolic programs provide 
tumor cells with not only necessary energy but also crucial 
materials to support large-scale biosynthesis, rapid proliferation, 
survival, invasion, metastasis and resistance to anti-cancer 
therapies. Therefore, exploiting the unique features of cancer 
metabolism for cancer detection, treatment and monitoring is 
a very promising trend in cancer therapeutics, diagnosis and 
prevention. 

Cancer metabolism and diagnostic imaging

The distinguished features of cancer metabolism have been 
extensively exploited for initial diagnosis, staging disease, 
monitoring tumor responses to therapies, and detecting cancer 
recurrence120. Therefore, nowadays, metabolic molecular imaging 
plays an indispensable role in clinical oncology. These diagnostic 
methods are non-invasive and can accurately detect the changes 
in selective biologic processes of tumors compared to normal 
surrounding tissues both at the initial tumor sites and metastatic 
locations over an extended period of time. The information 
provided by advanced imaging modalities such as PET, magnetic 
resonance spectroscopy imaging (MRSI), magnetic resonance 
imaging (MRI), is very valuable for cancer detection, prevention, 
and treatment120. 
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Positron emission tomography

PET is frequently combined with X-ray computed tomography 
(CT) to provide detailed information about cancer and anatomic 
locations of tumors. PET measures the signals of radiolabeled 
tracers taken up by cancer cells. PET is safe and widely used 
in clinics because the small amount of imaging probes doesn’t 
interfere with normal physiological processes. 18F-fluoro-2-
deoxyglucose (FDG) is the most commonly used PET imaging 
material. Since most of tumors have a high glycolytic flux, 
elevated glucose uptake and increased hexokinase function, they 
will often have higher FDG signals relative to normal tissues. 
After being imported into tumor cells, FDG is phosphorylated 
by hexokinase but phosphorylated FDG cannot be further 
catabolized by glycolytic pathway. Therefore, phosphorylated 
FDG molecules are accumulated in tumors and can be detected 
by PET scanners. In clinics, FDG-PET scan is commonly used 
for determining cancer stages, identifying cancer recurrence and 
assessing tumor response to anti-cancer therapies121,122. 

In addition to upregulated glycolysis, other patterns of cancer 
metabolism are also used for molecular oncology imaging using 
PET scan. Choline, for example, is frequently absorbed by 
tumor cells and used for new cellular membrane biosynthesis, 
an important process for cell division. Therefore 11C and 18F 
radiolabeled choline tracers have been successfully applied 
in hepatocellular carcinoma, lung, brain, and prostate cancer 
diagnosis123-126. Similarly, 3'-deoxy-3'-18F-fluorothymidine is 
often used to monitor cancer cell proliferation in vivo. 3'-deoxy-
3'-18F-fluorothymidine is a thymidine analog and frequently 
phosphorylated by thymidine kinase 1. This enzyme is highly 
active in rapidly dividing cells, e.g., tumor cells, especially in S 
phase. Thus, 3'-deoxy-3'-18F-fluorothymidine PET can identify 
and measure tumor malignancy, tracking the efficacy of anti-
cancer therapies127. Many other tracers are also used in PET 
imaging modality to monitor specific biological processes of 
tumors. For instance, 68Ga-DOTATOC, a high-affinity ligand for 
somatostatin receptor 2, is used to detect neuroendocrine cancer 
masses128. 16-α-18F-fluoro-17β-estradiol is used to quantify ERα 
and ERβ expression129. Tumor angiogenesis and the effectiveness 
of anti-angiogenic therapeutic agents are measured by tracers 
containing arginine-glycine-aspartic acid-peptide ligands. 
These ligands associate with αvβ3 integrin whose expression is 
elevated on newly formed blood vessels130. Nitroimidazole is also 
exploited to image hypoxic areas where tumors are frequently 
located131.

In summary, PET with radiolabeled metabolic tracers is 
certainly a valuable and powerful imaging method with vast 
applications in clinical oncology. This diagnostic modality 

is continuously improved and more advanced tracers are in 
development. However, radiation is still a major concern for 
PET and its tracers. The radiation containment and safety are 
also other significant issues for PET application in clinics120. 
In addition, a complete understanding about cancer metabolic 
patterns and bioenergetics programs is crucial to continuously 
innovate metabolic tracers-based PET scan imaging. 

The combination of MRI and MRSI

MRI and MRSI are often combined in clinical oncology 
diagnostics because 1H MRSI is easily compatible with currently 
available MRI scanners in clinics132-134. 1H MRSI has a high 
sensitivity and could be applied on a number of tracers120. 
During the past few years, MRSI has made significant advances 
and rapidly become a reliable imaging modality. A number of 
1H tracers have been successfully developed. For instance, 1H 
choline-containing metabolites are employed to measure tumor 
malignancy. Choline is an important component of cellular 
membrane. Higher choline concentrations are detected in 
aggressive and malignant tumors in comparison with benign 
and normal tissues135,136. In fact, many breast tumors contain a 
large amount of choline while benign tumor masses often have 
low levels of choline135,136. Since the accumulation of choline 
is associated with increased cell proliferation in brain, breast, 
cervical and prostate cancers133,137-139, choline availability could 
be used as a marker for predicting tumor histologic grade, 
aggressiveness, and even response to anti-cancer therapies 
with low unspecific detection rates120,139. Moreover, as brain 
tumors often have increased choline concentrations and 
diminished levels of N-acetyl aspartate, the ratio of choline/
N-acetyl aspartate has been used to evaluate the aggressiveness 
of several types of brain tumors140-142. Choline/creatinine ratio 
measurement is also a valuable indicator of oligodendroglial 
cancer grade143. 

13C tracers are emerging important diagnostic probes although 
their application is still at early stages. Recently, Nelson et al.144 
reported a successful preclinical study and phase I clinical trial 
results with 31 prostate cancer patients. This is a pioneer project 
examining the applicability and safety of hyperpolarized 13C 
pyruvate tracers to monitor and evaluate the metabolic changes, 
especially 13C pyruvate-to-13C lactate flux, of prostate tumors in 
patients. This technique enabled a 10,000-fold increase in signals 
compared to regular MRI. Results were very promising with 
excellent safety profiles and accurate detection of 13C pyruvate-
to-13C lactate flux in tumor areas that were subsequently proven 
by biopsy-based pathological and histological analyses. The 
success of this pioneer study paves a new way for non-invasive, 
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safe, precise, and sensitive cancer diagnosis as well as tumor 
monitoring. A number of new types of 13C metabolic tracers are 
under development and will certainly play a major role in cancer 
detection and imaging in future.

Poor  spat ia l  resolut ion used to  be  a  chal lenge for 
MRSI133,138,145,146, but new advances and ongoing technological 
improvements are addressing this limiting factor, making MRSI 
a promising adjunct to MRI. Combining conventional MRI with 
MRSI will enable accurate, safe and non-invasive characterization 
of tumors. This new diagnostic strategy is especially important 
when collecting lesion biopsies is risky, painful and difficult. 
Thus, in future, this new combinatory imaging modality will 
reduce patients’ discomfort, concern, risk, pain, and avoid 
unnecessary invasive diagnostic procedures while increasing the 
accuracy, reliability and sensitivity of diagnosis120. 

In summary, diagnostic imaging plays a crucial role in cancer 
detection and treatment. Exploiting the unique features of cancer 
metabolism is a very promising direction for developing novel 
diagnosis methods to accurately detect cancer lesions even at early 
stages and precisely monitor tumors’ responses to therapies.

Therapeutic implications

Given the v ita l  role  of  metabol ic  reprogramming for 
tumorigenesis, targeting cancer bioenergetics is a very promising 
and rapidly rising direction for anti-cancer therapy development 
nowadays. Many compounds have been developed to selectively 
and effectively inhibit metabolic enzymes that are important for 
tumors. These inhibitors are currently at various stages of clinical 
trial process and we expect to see them in clinics within five to 
ten years from now. 

One of the most common trends in anti-cancer metabolism 
therapies is to inhibit enzymes that are exclusively or mostly 
expressed or used in tumor cells. This therapeutic strategy would 
effectively eliminate tumors while minimizing damage to normal 
cells. Several groups have successfully developed inhibitors for 
Glutaminase 1 (GLS1), a glutaminase isoform that is highly 
upregulated in cancer cells, and proved the efficacy of blocking 
GLS1 in cancer treatment147,148. This tactic bases on previous 
studies showing a significant dependence of c-Myc-overexpressing 
cancer cells on glutaminolysis9,11-15,25,149. Similarly, modulating the 
activity of PKM2, a glycolytic enzyme that is frequently elevated 
in tumors, is also a promising therapy150,151. Fatty synthase (FASN) 
is important for palmitate synthesis and this enzyme’s expression 
is elevated in many tumors. Therefore, several groups have 
developed FASN inhibitors to target tumorigenesis75,152. Many 
inhibitors for HIF and HIF targets, for instance monocarboxylate 
transporter MCT4 and carbonic anhydrase IX (CAIX) are also 

potential anti-cancer drugs in future153-156. Similarly, MCT1 and 
carbonic anhydrase XII are targets of great potential153,154. MCT1 
and MCT4 suppressors inhibit cancer growth in vitro and in vivo 
and invasion in vitro157-160. In fact, interfering with lactate transport 
by MCT1 and MCT4 inhibitors has been shown to induce tumor 
cell starvation and subsequent apoptosis158.

Blocking lactate production using dichloroacetate (DCA) 
shows promising results with minor side effects in early 
phase clinical trials, especially in glioblastoma patients161,162. 
DCA is found to promote pyruvate-to-acetyl-CoA flux and 
reduce pyruvate-to-lactate conversion, thereby inducing 
tumor shrinkage and apoptosis in vivo161-163. Clinical trial data 
show that DCA also suppresses tumor angiogenesis, blocks 
HIF1-α signaling and activates p53 in glioblastoma multiforme 
patients161. Initial studies additionally find that DCA inhibits 
pyruvate dehydrogenase kinase 1 (PDK1) activity and thereby 
activating the function of pyruvate dehydrogenase 1 (PDH1), 
an important enzyme catalyzing the pyruvate-to-acetyl-CoA 
biochemical reaction162,163. However, more and larger clinical 
studies are needed to fully elucidate the mechanism of action 
of this interesting compound and further evaluate its efficacy in 
cancer patients.

Glycolysis inhibitors are also of interest for many groups 
and pharmaceutical companies. For instance, FX11, a selective 
suppressor of lactate dehydrogenase A (LDHA) activity, was 
tested by Le et al.164 and is currently studied by National Cancer 
Institute’s Experimental Therapeutics Program (NExT). 
2-deoxyglucose (2-DG) is among the most advanced cancer 
metabolism inhibitors in clinical trials (Phase II). 2-DG 
reversibly inhibits hexokinase to block glycolysis. 2-DG usage in 
combination with radiation demonstrates a good safety profile 
and slightly improves survival of glioblastoma multiforme 
patients165,166. However, the effects of 2-DG may be limited by 
high concentration of glucose because 2-DG-mediated inhibition 
of hexokinase is reversible. 

Inhibiting mutant isocitrate dehydrogenase 1 (IDH1) and 
isocitrate dehydrogenase 2 (IDH2) is a remarkable therapeutic 
approach because these mutant enzymes have distinct activities 
compared to normal IDH1 and IDH2 in the healthy cells. On 
the other hand, metformin, a common anti-diabetics medication, 
has demonstrated very promising impact in cancer treatment. 
It is well known that metformin inhibits mitochondrial 
complex I of liver cells, thereby decreasing ATP production. 
Lack of ATP subsequently stimulates LKB1-AMPK pathway 
and blocks gluconeogenesis, leading to lower blood glucose 
concentrations, improved sensitivity to insulin and diminished 
insulin production167. It is currently unclear whether metformin 
improves cancer patient clinical outcomes by lowering blood 
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glucose levels and insulin/insulin-like growth factors generation 
or by directly targeting cancer cells. Nevertheless, the usage 
of metformin has been well documented to ameliorate cancer 
patient survival168,169 and metformin are harmful for cancer stem 
cells170. Clinical trials testing the impact of metformin on cancer 
in patients are ongoing (Table 1). 

Importantly, there is also an urgent need to develop effective 
inhibitors to target the key inducers of cancer metabolic 
reprogramming such as c-Myc and Ras. Ras mutations and c-Myc 

upregulation are frequent in many common types of cancer and 
these dysregulations are major drivers of tumorigenesis and 
resistance to therapies171,172. However, despite our relentless 
efforts, effectively and directly inhibiting Ras and c-Myc 
still requires a lot more study because these two proteins are 
currently undruggable targets. Interestingly, several preclinical 
research projects show that targeting metabolic enzymes 
significantly inhibits tumors carrying Ras mutation and 
c-Myc overexpression9,173. In fact, suppressing glycolysis and 

Table 1 List of several potential anti-cancer metabolism compounds

Compound Pathway target Mechanism of action Status Source (if available)

2-Deoxyglucose Glycolysis Reversibly inhibiting hexokinase Ongoing clinical trials with 
promising initial data

3-Bromopyruvate Glycolysis Inhibiting hexokinase and other glycolytic enzymes Preclinical

Phloretin Glucose transport Glucose transporter Glut 1 and Glut 4 Preclinical

Lonidamine Glycolysis Hexokinase Clinical trials

3PO Glycolysis Inhibiting activation of PFK1 by targeting PFKFB3 
(phosphofructose kinase 2)

Preclinical Advanced Cancer 
Therapeutics

BPTES Glutaminolysis Inhibiting glutaminase 1, a glutaminolytic enzyme 
frequently upregulated in many tumors

Preclinical

968 Glutaminolysis Inhibiting glutaminase 1, a glutaminolytic enzyme 
frequently upregulated in many tumors

Preclinical Cornell University

IDH1/2 inhibitors Blocking IDH1/2 
altered function

Suppressing the function of mutant IDH1 and IDH2 Agios 
Pharmaceuticals

PKM2 inhibitors Glycolysis Inhibiting PKM2 function and reducing pyruvate 
synthesis

Agios 
Pharmaceuticals

PKM2 activators Biosynthesis Activating PKM2 to reduce glycolytic intermediates 
shunt to biosynthetic pathways

Agios 
Pharmaceuticals

Dichloroacetate Lactate production Blocking PDK1 activity thereby increasing PDH1 

function and facilitating pyruvate-to-acetyl coA 
reaction to fuel TCA cycle and mitochondrial 
respiration

Phase I completed with 

promising results in 
glioblastoma multiforme 
patients

Metformin Energy production 
pathways

Inhibiting mitochondrial complex I and lipid and 
protein synthesis, modulating glycolysis, decreasing 
glucose supply, insulin and insulin-like growth factor 
signaling availability for tumor cells

Ongoing clinical trials for 
cancer

FX11 Lactate production Inhibiting function of Lactate Dehydrogenase A 
thereby blocking lactate production in cancer

Preclinical John Hopkins 
University and 
University of New 
Mexico

AZD-3965 Lactate transport Blocking MCT1 activity, thereby inhibiting lactate 
transport

Clinical trials Phase I  
ongoing in UK

AstraZeneca

L-asparaginase Asparagine and 
glutamine  
availability

Promote asparagine and glutamine degradation, 
thereby cutting the supply of these amino acids for 
cancer cells

Approved for usage in 
leukemia. Effective therapy
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glutaminolysis remarkably antagonizes the growth of tumors 
bearing those genetic alterations9,164,174,175. These observations 
imply a new way to treat tumors carrying genetic mutations that 
can’t be directly targeted.

Another striking example of successful anti-cancer metabolism 
therapies is L-asparaginase. L-asparaginase mediates deamination 
reactions to degrade asparagine into aspartic acid176, thereby 
reducing asparagine availability to cancer cells and suppressing 
their growth177,178. This therapy is very effective for acute 
lymphoblastic leukemia (ALL) and related leukemia subtypes 
because ALL cells are unable to synthesize asparagine179. 
Therefore, these cancer cells have to rely on extracellular 
asparagine sources and become very vulnerable when asparagine 
supplies are limited.

However, lymphocytes, especially T cells, have similar 
metabolic programs as those in tumor cells. For instance, 
lymphocytes also depends on glutamine metabolism180, 
suggesting that systematically targeting glutaminolysis for cancer 
treatment may severely affect adaptive immune responses and also 
innate immunity to a certain degree. These metabolic similarities 
between cancer cells and lymphocytes explain why many agents 
targeting cancer metabolism are also strong immunosuppressants. 
For instance, cyclosporine, a potent anti-cancer drug that inhibits 
mTOR, significantly suppresses immune system. Suppressor of 
nicotinamide phosphoribosyltransferase (NAMPT), an enzyme 
responsible for nicotinamide adenine dinucleotide (NAD+) 
regeneration, is poisonous to lymphocytes181. In fact, early clinical 
trials data show that FK866, a NAD+synthesis inhibitor, leads to 

mild lymphopenia and severe thrombocytopenia182.
These findings suggest that immunosuppression could 

be a challenge for therapies designed to target cancer cells’ 
bioenergetics as the Achilles’ heel of tumors. Nevertheless, there 
is still a significant therapeutic window for anti-cancer metabolic 
therapies. We just need to identify the key differences in the 
bioenergetics patterns of tumors and those of healthy cells in 
order to optimize our therapies for precisely inhibiting the unique 
metabolic targets in cancer cells. A significant example is to use 
BPTES to selectively block GLS1, a glutaminase enzyme isoform 
that is crucial for cancer cells and specifically upregulated in 
tumors147,148.

Conclusion

Metabolic reprogramming is a major hallmark of cancer, which 
is characterized by upregulated glycolysis, glutaminolysis, 
lipid metabolism, pentose phosphate pathway, mitochondrial 
biogenesis, among others. These metabolic programs provide 
cancer cells with not only energy but also vital metabolites to 
support large-scale biosynthesis, continuous proliferation and 
other major processes of tumorigenesis. Potent oncogenes as 
c-Myc, HIF1α, Ras and PI3K/Akt are important promoters of 
cancer metabolic alterations. In contrast, major tumor suppressors 
such as p53 and LKB1/AMPK antagonize those changes and keep 
cellular metabolism in check (Figure 1 and Figure 2). Rfewiring 
metabolism is very beneficial for tumor survival, invasion, 
metastasis, growth, angiogenesis, proliferation and resistance to 

Figure 1 The impacts of tumor suppressors and oncogenes on cancer metabolic reprogramming, an important cancer hallmark. Cancer metabolic 
alterations are the results of oncogene activation and mutant metabolic enzymes. Cancer metabolic reprogramming promotes tumorigenesis 
by facilitating and enabling rapid proliferation, survival, invasion, metastasis, resistance to therapies and other central cellular processes of 
tumorigenesis. On the other hand, as tumorigenesis advances, cancer cells acquire more mutations and changes that further enhance metabolic 
reprogramming and, in turn, accelerate tumor growth, proliferation and progression. Tumor suppressors, for instance, p53, and AMPK, exert their 
suppressive regulation on cancer metabolic alterations by blocking the function, activation and expression of essential cancer metabolic genes. Our 
recent results also show that 14-3-3σ, a downstream target gene of p53, effectively opposes and reverses cancer metabolic reprogramming. Our 
data indicate that 14-3-3σ accelerates the degradation of c-Myc, an important transcription factor promoting cancer metabolic reprogramming183. 
In contrast, oncogenes such as c-Myc, HIF-1α, Ras, and Akt are major inducers of tumor bioenergetics alterations by upregulating the expression 
or activation of key metabolic enzymes such as HK2, GLS1, LDHA, among others. The balance between tumor suppressors and oncogenes has a 
decisive impact on the status of cancer metabolism.
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Figure 2 Summary of key changes in cancer metabolic reprogramming. Cancer metabolic reprogramming is characterized by enhanced glycolysis, PPP, lipid 
metabolism, glutaminolysis, mitochondrial biogenesis, among others. These pathways provide cancer cells with not only essential energy but also important 
precursors to support large-scale biosynthesis, rapid proliferation, continuous growth, tissue invasion, metastasis, survival and resistance to anti-cancer therapies. 
For instance, glycolysis generates 2 ATP per glucose consumed and provides materials for PPP and other biosynthetic programs. Similarly, PPP supplies tumors 
with ribose-5-phosphate and NADPH. Ribose-5-phosphate is a major element for nucleotide synthesis, which is used in DNA replication, RNA synthesis, 
and DNA damage repair, among others. NADPH is a key line of defense counteracting oxidative stress and a crucial metabolite for a number of biosynthesis 
reactions. NADPH is produced by 4 biochemical reactions mediated by G6PD, 6PLGD, ME1 and IDH1. In addition, fatty acid synthesis is indispensable for 
formation of new cellular membranes and proliferation. A number of fatty acid synthesis enzymes such as ACC, ACLY and FASN are upregulated or activated 
by oncogenes such as c-Myc, HIF-1α, Akt, among others. On the other hand, FAO is also important for cancer cells because it generates energy, NADPH and 
other necessary metabolites. Fatty acids are imported into mitochondria by CPT1 and oxidized to generate acetyl-CoA. Acetyl-CoA fuels the TCA cycle to 
generate NADH and FADH2. The latter metabolites donate electrons to mitochondrial ETC for ATP generation. CPT1 also antagonizes Bax and Bad-mediated 
apoptosis by preventing the formation of mitochondrial membrane transition pores and reducing cytochrome c release. Citrate produced by the TCA cycle 
can be transported from mitochondria to cytosol. Cytosolic citrate is used in a number of reactions to produce acetyl-CoA, oxaloacetate and isocitrate. These 
metabolites are important for lipid synthesis, NAPDH production, and many other central cellular processes. Mitochondrial biogenesis is also a striking feature of 
cancer metabolic reprogramming. Mitochondria are not only the energy generators but also the factories for synthesizing many essential metabolites for cancer 
growth, proliferation and metastasis. In addition, the metabolic lactate-based symbiosis is another remarkable characteristic of cancer metabolism. Cancer cells 
frequently upregulate LDHA to facilitate the conversion of pyruvate to lactate. Lactate is then secreted to tumor microenvironment via MCT4 transporters and 
can be taken by neighboring cancer cell thanks to MCT1 importers. Lactate is thereafter used for other metabolic pathways in tumors. This metabolic symbiosis 
facilitates the survival of cancer cells in harsh conditions. Thus, metabolic reprogramming is a major cancer hallmark. It is characterized by the upregulation 
of a number of inter-connected metabolic pathways providing cancer cells with vital energy and metabolites. This metabolic plasticity is essentially important 
because it allows cancer cells to effectively and rapidly adapt to the rapidly changing conditions of tumor microenvironment. In addition, the flexibility of cancer 
bioenergetics also enables rapid proliferation, continuous growth, invasion, metastasis and resistance to anti-cancer therapies. Therefore, further knowledge 
about cancer metabolic reprogramming is very important for successful development of precise and efficacious anti-cancer metabolism therapies. Dashed 
arrows indicate indirect effects or multi-step processes. Abbreviations: HK2, hexokinase 2; LDHA, lactate dehydrogenase A; G6PD, glucose-6-phosphate 
dehydrogenase; 6PGLD, 6-phosphogluconate dehydrogenase; ACC, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; FASN: fatty acid synthase, SCD, stearoyl-
CoA desaturase; CPT, carnitine palmitoyltransferase; CPT1C, carnitine palmitoyltransferase 1C; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase 
kinase; UCP, uncoupling proteins; MCT, monocarboxylic acid transporter; ME1, malic enzyme; IDH1, isocitrate dehydrogenase1; GLS1, glutaminase; GLUD, 
glutamate dehydrogenase; FAO, fatty acid oxidation; ETC, electron transport chain; PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle; α-KG, alpha-
ketoglutarate.
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anti-cancer therapies. Although there is still much to study and 
discover, recent remarkable advances in this field have unveiled 
exciting therapeutic windows to precisely and effectively target 
cancer metabolism and bioenergetics (Figure 3). It is expected 
that anti-cancer metabolism therapies will play an important role 
in clinical oncology within five or ten years. 

However, the efficacy of anti-cancer metabolism therapies 
will need to be carefully evaluated because cancer cells are well 

known for their metabolic plasticity and heterogeneity1,2,11,21,119,184. 
That may enable tumors to bypass certain inhibition mediated 
by therapeutic agents. Furthermore, as we have seen during the 
past decades, inhibiting individual enzymes or blocking single 
pathways seldom leads to effective cancer treatment. Therefore, 
it is highly likely that anti-cancer metabolism approaches need 
to be combined with other therapies to improve therapeutic 
effects and clinical outcomes. Further understanding about 

Figure 3 Summary of the mechanism of several important drug candidates for anti-cancer metabolism therapies. Phloretin inhibits the import 
of glucose, a major source of nutrient for cancer cells. 2DG, 3BrPA, and Lonidamine inhibit HK2, a rate-limiting step of glycolytic pathway. 
3PO blocks PFK1 activation by inhibiting PFKFB3 (PFK2). FX11 selectively inhibits LDHA, a major metabolic enzyme of cancer. BPTES and 968 
suppress the function of GLS1. GLS1 is a glutaminolytic enzyme that is highly and selectively upregulated in cancer. DCA inactivates PDH kinase 
(PDK), thereby increasing PDH activity and enhances the conversion of pyruvate to acetyl-CoA and decreases cancer glycolysis. Metformin 
blocks energy production of cancer cells by inhibiting mitochondrial complex I, suppresses lipid and protein synthesis, modulates glycolysis. 
At the organism level, by lowering blood glucose concentration, metformin decreases glucose supply, as well as insulin and insulin-like growth 
factor signaling availability for tumor cells. MCT inhibitors impair the metabolic lactate-based symbiosis of cancer cells. Many other anti-
cancer metabolism compounds are under development. Targeting cancer metabolism is a very promising direction for anti-cancer therapies. 
It is expected that inhibitors of tumor metabolism will play an important role in clinical oncology within five or ten years. These medications 
could be used alone or in combination with other current anti-cancer therapies to increase efficacy. Abbreviations: 2DG, 2-deoxyglucose; 
3BrPA, 3-bromopyruvate; HK2, hexokinase 2; PFK1, phosphofructose kinase 1; LDHA, lactate dehydrogenase A; GLS1, glutaminase 1; DCA, 
dicholoroacetate; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; MCT, monocarboxylic acid transporter.
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cancer metabolic reprogramming is certainly needed for effective 
therapy development. Nevertheless, exploiting the unique 
features and weakness of tumor metabolism for cancer treatment, 
detection and monitoring is clearly a very promising direction. 
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