Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Quantum Dots for Cancer Research: Current Status, Remaining Issues, and Future Perspectives

Min Fang, Chun-wei Peng, Dai-Wen Pang and Yan Li
Cancer Biology & Medicine September 2012, 9 (3) 151-163; DOI: https://doi.org/10.7497/j.issn.2095-3941.2012.03.001
Min Fang
1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chun-wei Peng
1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dai-Wen Pang
2Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan 430072, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yan Li
1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Jemal A,
    2. Bray F,
    3. Center MM, et al.
    Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Lauffenburger DA,
    2. Horwitz AF.
    Cell migration: a physically integrated molecular process. Cell 1996; 84: 359–369.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.
    1. Ridley AJ,
    2. Schwartz MA,
    3. Burridge K, et al.
    Cell migration: integrating signals from front to back. Science 2003; 302: 1704–1709.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Sanz-Moreno V,
    2. Marshall CJ.
    The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr Opin Cell Biol 2010; 22: 690–696.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Friedl P,
    2. Alexander S.
    Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011; 147: 992–1009.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Chaffer CL,
    2. Weinberg RA.
    A perspective on cancer cell metastasis. Science 2011; 331: 1559–1564.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Joyce JA,
    2. Pollard JW.
    Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–252.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Egeblad M,
    2. Rasch MG,
    3. Weaver VM.
    Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 2010; 22: 697–706.
    OpenUrlCrossRefPubMed
  9. 9.
    1. He K,
    2. Xu T,
    3. Goldkorn A.
    Cancer cells cyclically lose and regain drug-resistant highly tumorigenic features characteristic of a cancer stem-like phenotype. Mol Cancer Ther 2011; 10: 938–948.
    OpenUrlAbstract/FREE Full Text
  10. 10.
    1. Picchio M,
    2. Beck R,
    3. Haubner R, et al.
    Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18F-FAZA and 125I-Gluco-RGD autoradiography. J Nucl Med 2008; 49: 597–605.
    OpenUrlAbstract/FREE Full Text
  11. 11.
    1. Shapiro IM,
    2. Cheng AW,
    3. Flytzanis NC, et al.
    An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 2011; 7: e1002218.
  12. 12.↵
    1. Alexander S,
    2. Friedl P.
    Cancer invasion and resistance: interconnected processes of disease progression and therapy failure. Trends Mol Med 2012; 18: 13–26.
    OpenUrlCrossRefPubMed
  13. 13.
    1. Sansing HA,
    2. Sarkeshik A,
    3. Yates JR, et al.
    Integrin alphabeta1, alphavbeta, alpha6beta effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance. Biochem Biophys Res Commun 2011; 406: 171–176.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Yao H,
    2. Zeng ZZ,
    3. Fay KS, et al.
    Role of alpha(5)beta(1) Integrin Up-regulation in Radiation-Induced Invasion by Human Pancreatic Cancer Cells. Transl Oncol 2011; 4: 282–292.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Nelson CM,
    2. Khauv D,
    3. Bissell MJ, et al.
    Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells. J Cell Biochem 2008; 105: 25–33.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Xu R,
    2. Boudreau A,
    3. Bissell MJ.
    Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 2009; 28: 167–176.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Bentolila LA,
    2. Ebenstein Y,
    3. Weiss S.
    Quantum dots for in vivo small-animal imaging. J Nucl Med 2009; 50: 493–496.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Hilderbrand SA,
    2. Weissleder R.
    Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 2010; 14: 71–79.
    OpenUrlCrossRefPubMed
  19. 19.
    1. Wang Y,
    2. Chen L.
    Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine 2011; 7: 385–402.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Tholouli E,
    2. Sweeney E,
    3. Barrow E, et al.
    Quantum dots light up pathology. J Pathol 2008; 216: 275–285.
    OpenUrlCrossRefPubMed
  21. 21.
    1. Byers RJ,
    2. Hitchman ER.
    Quantum dots brighten biological imaging. Prog Histochem Cytochem 2011; 45: 201–237.
    OpenUrlPubMed
  22. 22.↵
    1. True LD,
    2. Gao X.
    Quantum dots for molecular pathology: their time has arrived. J Mol Diagn 2007; 9: 7–11.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. He X,
    2. Gao J,
    3. Gambhir SS, et al.
    Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med 2010; 16: 574–583.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Medarova Z,
    2. Pham W,
    3. Farrar C, et al.
    In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007; 13: 372–377.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.↵
    1. McCarthy JR,
    2. Kelly KA,
    3. Sun EY, et al.
    Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine (Lond) 2007; 2: 153–167.
    OpenUrl
  26. 26.↵
    1. Harisinghani MG,
    2. Barentsz J,
    3. Hahn PF, et al.
    Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003; 348: 2491–2499.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Rhyner MN,
    2. Smith AM,
    3. Gao X, et al.
    Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine (Lond) 2006; 1: 209–217.
    OpenUrl
  28. 28.
    1. Xing Y,
    2. Chaudry Q,
    3. Shen C, et al.
    Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2007; 2: 1152–1165.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Wu X,
    2. Liu H,
    3. Liu J, et al.
    Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21: 41–46.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Kim S,
    2. Lim YT,
    3. Soltesz EG, et al.
    Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004; 22: 93–97.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.↵
    1. Alivisatos AP,
    2. Gu W,
    3. Larabell C.
    Quantum dots as cellular probes. Annu Rev Biomed Eng 2005; 7: 55–76.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.
    1. Tavares AJ,
    2. Chong L,
    3. Petryayeva E, et al.
    Quantum dots as contrast agents for in vivo tumor imaging: progress and issues. Anal Bioanal Chem 2011; 399: 2331–2342.
    OpenUrlPubMed
  33. 33.
    1. Miyawaki A,
    2. Sawano AKogure T.
    Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol 2003;Suppl:S1-7.
  34. 34.
    1. Johnson I.
    Fluorescent probes for living cells. Histochem J 1998; 30: 123–140.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.
    1. Emptage NJ.
    Fluorescent imaging in living systems. Curr Opin Pharmacol 2001; 1: 521–525.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Michalet X,
    2. Pinaud FF,
    3. Bentolila LA, et al.
    Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005; 307: 538–544.
    OpenUrlAbstract/FREE Full Text
  37. 37.
    1. Wang X,
    2. Ren X,
    3. Kahen K, et al.
    Non-blinking semiconductor nanocrystals. Nature 2009; 459: 686–689.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Larson DR,
    2. Zipfel WR,
    3. Williams RM, et al.
    Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300: 1434–1436.
    OpenUrlAbstract/FREE Full Text
  39. 39.
    1. Dahan M,
    2. Laurence T,
    3. Pinaud F, et al.
    Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 2001; 26: 825–827.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.
    1. Alivisatos P.
    The use of nanocrystals in biological detection. Nat Biotechnol 2004; 22: 47–52.
    OpenUrlCrossRefPubMedWeb of Science
  41. 41.
    1. Murphy CJ.
    Materials science. Nanocubes and nanoboxes. Science 2002; 298: 2139–2141.
    OpenUrl
  42. 42.↵
    1. Medintz IL,
    2. Uyeda HT,
    3. Goldman ER, et al.
    Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4: 435–446.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Chan WC,
    2. Nie S.
    Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281: 2016–2018.
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. Bruchez M, Jr.,
    2. Moronne M,
    3. Gin P, et al.
    Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281: 2013–2016.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Gao X,
    2. Cui Y,
    3. Levenson RM, et al.
    In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22: 969–976.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Tada H,
    2. Higuchi H,
    3. Wanatabe TM, et al.
    In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007; 67: 1138–1144.
    OpenUrlAbstract/FREE Full Text
  47. 47.
    1. Zhang H,
    2. Sachdev D,
    3. Wang C, et al.
    Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells. Breast Cancer Res Treat 2009; 114: 277–285.
    OpenUrlCrossRefPubMed
  48. 48.
    1. Yong KT,
    2. Ding H,
    3. Roy I, et al.
    Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2009; 3: 502–510.
    OpenUrlCrossRefPubMedWeb of Science
  49. 49.↵
    1. Voura EB,
    2. Jaiswal JK,
    3. Mattoussi H, et al.
    Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 2004; 10: 993–998.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Cai W,
    2. Shin DW,
    3. Chen K, et al.
    Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006; 6: 669–676.
    OpenUrlCrossRefPubMedWeb of Science
  51. 51.↵
    1. Stroh M,
    2. Zimmer JP,
    3. Duda DG, et al.
    Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 2005; 11: 678–682.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Li Z,
    2. Wang K,
    3. Tan W, et al.
    Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Anal Biochem 2006; 354: 169–174.
    OpenUrlPubMed
  53. 53.↵
    1. Chen C,
    2. Peng J,
    3. Sun SR, et al.
    Tapping the potential of quantum dots for personalized oncology: current status and future perspectives. Nanomedicine (Lond) 2012; 7: 411–428.
    OpenUrl
  54. 54.↵
    1. Chen C,
    2. Peng J,
    3. Xia H, et al.
    Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology 2010; 21: 095101.
    OpenUrlPubMed
  55. 55.↵
    1. Chen C,
    2. Peng J,
    3. Xia HS, et al.
    Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 2009; 30: 2912–2918.
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. Chen C,
    2. Sun SR,
    3. Gong YP, et al.
    Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2. Biomaterials 2011; 32: 7592–7599.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. Smith AM,
    2. Duan H,
    3. Mohs AM, et al.
    Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 2008; 60: 1226–1240.
    OpenUrlCrossRefPubMedWeb of Science
  58. 58.↵
    1. Zhang H,
    2. Yee D,
    3. Wang C.
    Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine (Lond) 2008; 3: 83–91.
    OpenUrl
  59. 59.↵
    1. Ruan Y,
    2. Yu W,
    3. Cheng F, et al.
    Comparison of quantum-dots-and fluorescein-isothiocyanate-based technology for detecting prostate-specific antigen expression in human prostate cancer. IET Nanobiotechnol 2011; 5: 47.
    OpenUrlPubMed
  60. 60.↵
    1. Shi C,
    2. Zhou G,
    3. Zhu Y, et al.
    Quantum dots-based multiplexed immunohistochemistry of protein expression in human prostate cancer cells. Eur J Histochem 2008; 52: 127–134.
    OpenUrlPubMed
  61. 61.↵
    1. Jin LH,
    2. Li SM,
    3. Cho YH.
    Enhanced detection sensitivity of pegylated CdSe/ZnS quantum dots-based prostate cancer biomarkers by surface plasmon-coupled emission. Biosens Bioelectron 2012; 33: 284–287.
    OpenUrlPubMed
  62. 62.↵
    1. Huang C,
    2. Stakenborg T,
    3. Cheng Y, et al.
    Label-free genosensor based on immobilized DNA hairpins on gold surface. Biosens Bioelectron 2011; 26: 3121–3126.
    OpenUrlPubMed
  63. 63.↵
    1. Yuk JS,
    2. MacCraith BD,
    3. McDonagh C.
    Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip. Biosens Bioelectron 2011; 26: 3213–3218.
    OpenUrlPubMed
  64. 64.↵
    1. Goldhirsch A,
    2. Glick JH,
    3. Gelber RD, et al.
    Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 2005; 16: 1569–1583.
    OpenUrlCrossRefPubMedWeb of Science
  65. 65.↵
    1. Moasser MM.
    The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 2007; 26: 6469–6487.
    OpenUrlCrossRefPubMedWeb of Science
  66. 66.↵
    1. Xiao Y,
    2. Gao X,
    3. Gannot G, et al.
    Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection. Int J Cancer 2008; 122: 2178–2186.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.↵
    1. O'Connor AE,
    2. Gallagher WM,
    3. Byrne AT.
    Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009; 85: 1053–1074.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Chen C,
    2. Xia HS,
    3. Gong YP, et al.
    The quantitative detection of total HER2 load by quantum dots and the identification of a new subtype of breast cancer with different 5-year prognosis. Biomaterials 2010; 31: 8818–8825.
    OpenUrlCrossRefPubMed
  69. 69.↵
    1. Liu XL,
    2. Peng CW,
    3. Chen C, et al.
    Quantum dots-based double-color imaging of HER2 positive breast cancer invasion. Biochem Biophys Res Commun 2011; 409: 577–582.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Wang HZ,
    2. Wang HY,
    3. Liang RQ, et al.
    Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim Biophys Sin (Shanghai) 2004; 36: 681–686.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. Liu YS,
    2. Sun Y,
    3. Vernier PT, et al.
    pH-sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells. J Phys Chem C Nanomater Interfaces 2007; 111: 2872–2878.
    OpenUrlPubMed
  72. 72.↵
    1. Kawashima N,
    2. Nakayama K,
    3. Itoh K, et al.
    Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots. Chemistry 2010; 16: 1186–1192.
    OpenUrl
  73. 73.↵
    1. Bostick RM,
    2. Kong KY,
    3. Ahearn TU, et al.
    Detecting and quantifying biomarkers of risk for colorectal cancer using quantum dots and novel image analysis algorithms. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 3313–3316.
    OpenUrlPubMed
  74. 74.↵
    1. Montet X,
    2. Weissleder R,
    3. Josephson L.
    Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 2006; 17: 905–911.
    OpenUrlCrossRefPubMed
  75. 75.↵
    1. Yang L,
    2. Mao H,
    3. Cao Z, et al.
    Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 2009; 136: 1514–1525 e1512.
    OpenUrlCrossRefPubMed
  76. 76.↵
    1. Soltesz EG,
    2. Kim S,
    3. Kim SW, et al.
    Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 2006; 13: 386–396.
    OpenUrlCrossRefPubMedWeb of Science
  77. 77.
    1. Yong KT.
    Anti-claudin-4-conjugated highly luminescent nanoparticles as biological labels for pancreatic cancer sensing. Methods Mol Biol 2011; 762: 427–438.
    OpenUrlPubMed
  78. 78.↵
    1. Yong KT.
    Biophotonics and biotechnology in pancreatic cancer: cyclic RGD-peptide-conjugated type II quantum dots for in vivo imaging. Pancreatology 2010; 10: 553–564.
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Qian J,
    2. Yong KT,
    3. Roy I, et al.
    Imaging pancreatic cancer using surface-functionalized quantum dots. J Phys Chem B 2007; 111: 6969–6972.
    OpenUrlPubMed
  80. 80.↵
    1. Lee KH,
    2. Galloway JF,
    3. Park J, et al.
    Quantitative molecular profiling of biomarkers for pancreatic cancer with functionalized quantum dots. Nanomedicine: Nanotechnology, Biology and Medicine 2012.
  81. 81.↵
    1. Baban DF,
    2. Seymour LW.
    Control of tumour vascular permeability. Adv Drug Deliv Rev 1998; 34: 109–119.
    OpenUrlCrossRefPubMedWeb of Science
  82. 82.↵
    1. Konerding MA,
    2. Fait E,
    3. Gaumann A.
    3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer 2001; 84: 1354–1362.
    OpenUrlCrossRefPubMedWeb of Science
  83. 83.↵
    1. Matsumura Y,
    2. Maeda H.
    A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387–6392.
    OpenUrlAbstract/FREE Full Text
  84. 84.↵
    1. Fang J,
    2. Nakamura H,
    3. Maeda H.
    The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63: 136–151.
    OpenUrlCrossRefPubMed
  85. 85.↵
    1. Jain RK.
    Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1999; 1: 241–263.
    OpenUrlCrossRefPubMedWeb of Science
  86. 86.
    1. Jain RK.
    Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release 2001; 74: 7–25.
    OpenUrlCrossRefPubMedWeb of Science
  87. 87.↵
    1. Maeda H,
    2. Wu J,
    3. Sawa T, et al.
    Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65: 271–284.
    OpenUrlCrossRefPubMedWeb of Science
  88. 88.↵
    1. Dubertret B,
    2. Skourides P,
    3. Norris DJ, et al.
    In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298: 1759–1762.
    OpenUrlAbstract/FREE Full Text
  89. 89.↵
    1. Smith JD,
    2. Fisher GW,
    3. Waggoner AS, et al.
    The use of quantum dots for analysis of chick CAM vasculature. Microvasc Res 2007; 73: 75–83.
    OpenUrlPubMed
  90. 90.↵
    1. Zimmer JP,
    2. Kim SW,
    3. Ohnishi S, et al.
    Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 2006; 128: 2526–2527.
    OpenUrlCrossRefPubMedWeb of Science
  91. 91.↵
    1. Kim SW,
    2. Zimmer JP,
    3. Ohnishi S, et al.
    Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. J Am Chem Soc 2005; 127: 10526–10532.
    OpenUrlCrossRefPubMedWeb of Science
  92. 92.↵
    1. Thorne RG,
    2. Nicholson C.
    In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 2006; 103: 5567–5572.
    OpenUrlAbstract/FREE Full Text
  93. 93.↵
    1. Frangioni JV,
    2. Kim SW,
    3. Ohnishi S, et al.
    Sentinel lymph node mapping with type-II quantum dots. Methods Mol Biol 2007; 374: 147–159.
    OpenUrlCrossRefPubMed
  94. 94.↵
    1. Hikage M,
    2. Gonda K,
    3. Takeda M, et al.
    Nano-imaging of the lymph network structure with quantum dots. Nanotechnology 2010; 21: 185103.
    OpenUrlCrossRefPubMed
  95. 95.↵
    1. So MK,
    2. Xu C,
    3. Loening AM, et al.
    Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 2006; 24: 339–343.
    OpenUrlCrossRefPubMedWeb of Science
  96. 96.↵
    1. Ballou B,
    2. Ernst LA,
    3. Andreko S, et al.
    Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 2007; 18: 389–396.
    OpenUrlCrossRefPubMedWeb of Science
  97. 97.↵
    1. Akerman ME,
    2. Chan WC,
    3. Laakkonen P, et al.
    Nanocrystal targeting in vivo. Proc Natl Acad Sci U SA 2002; 99: 12617–12621.
    OpenUrlAbstract/FREE Full Text
  98. 98.↵
    1. Yu X,
    2. Chen L,
    3. Li K, et al.
    Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 2007; 12: 014008.
    OpenUrlPubMed
  99. 99.↵
    1. Weng KC,
    2. Noble CO,
    3. Papahadjopoulos-Sternberg B, et al.
    Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett 2008; 8: 2851–2857.
    OpenUrlCrossRefPubMedWeb of Science
  100. 100.↵
    1. Cai W,
    2. Chen K,
    3. Li ZB, et al.
    Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 2007; 48: 1862–1870.
    OpenUrlAbstract/FREE Full Text
  101. 101.↵
    1. Chen LD,
    2. Liu J,
    3. Yu XF, et al.
    The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 2008; 29: 4170–4176.
    OpenUrlCrossRefPubMedWeb of Science
  102. 102.↵
    1. Chen LD,
    2. Liu J,
    3. Yu XF, et al.
    In-vivo targeted imaging of hepatocellular carcinoma in nude mice using quantum dot probes. Zhonghua Bing Li Xue Za Zhi 2007; 36: 394–399 (in Chinese).
    OpenUrlPubMed
  103. 103.↵
    1. Yu X,
    2. Chen L,
    3. Deng Y, et al.
    Fluorescence analysis with quantum dot probes for hepatoma under one- and two-photon excitation. J Fluoresc 2007; 17: 243–247.
    OpenUrlPubMed
  104. 104.↵
    1. Pons T,
    2. Pic E,
    3. Lequeux N, et al.
    Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 2010; 4: 2531–2538.
    OpenUrlCrossRefPubMedWeb of Science
  105. 105.↵
    1. Ballou B,
    2. Lagerholm BC,
    3. Ernst LA, et al.
    Noninvasive imaging of quantum dots in mice. Bioconjug Chem 2004; 15: 79–86.
    OpenUrlCrossRefPubMedWeb of Science
  106. 106.↵
    1. Ballou B.
    Quantum dot surfaces for use in vivo and in vitro. Curr Top Dev Biol 2005; 70: 103–120.
    OpenUrlPubMed
  107. 107.↵
    1. Peng CW,
    2. Liu XL,
    3. Liu X, et al.
    Co-evolution of cancer microenvironment reveals distinctive patterns of gastric cancer invasion: laboratory evidence and clinical significance. J Transl Med 2010; 8: 101.
    OpenUrlPubMed
  108. 108.↵
    1. Peng CW,
    2. Liu XL,
    3. Chen C, et al.
    Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials 2011; 32: 2907–2917.
    OpenUrlCrossRefPubMed
  109. 109.↵
    1. Cance WG.
    Society of surgical oncology presidential address: the war on cancer--shifting from disappointment to new hope. Ann Surg Oncol 2010; 17: 1971–1978.
    OpenUrlPubMed
  110. 110.↵
    1. Chakravarthy KV,
    2. Davidson BA,
    3. Helinski JD, et al.
    Doxorubicin-conjugated quantum dots to target alveolar macrophages and inflammation. Nanomedicine 2011; 7: 88–96.
    OpenUrlCrossRefPubMed
  111. 111.↵
    1. Qu G,
    2. Zhang C,
    3. Yuan L, et al.
    Quantum dots impair macrophagic morphology and the ability of phagocytosis by inhibiting the Rho-associated kinase signaling. Nanoscale 2012; 4: 2239–2244.
    OpenUrlPubMed
  112. 112.↵
    1. Massoud TF,
    2. Gambhir SS.
    Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003; 17: 545–580.
    OpenUrlFREE Full Text
  113. 113.↵
    1. Catana C,
    2. Wu Y,
    3. Judenhofer MS, et al.
    Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006; 47: 1968–1976.
    OpenUrlAbstract/FREE Full Text
  114. 114.↵
    1. Mulder WJ,
    2. Koole R,
    3. Brandwijk RJ, et al.
    Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 2006; 6: 1–6.
    OpenUrlCrossRefPubMedWeb of Science
  115. 115.↵
    1. Mulder WJ,
    2. Castermans K,
    3. van Beijnum JR, et al.
    Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 2009; 12: 17–24.
    OpenUrlCrossRefPubMed
  116. 116.↵
    1. Koole R,
    2. van Schooneveld MM,
    3. Hilhorst J, et al.
    Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. Bioconjug Chem 2008; 19: 2471–2479.
    OpenUrlCrossRefPubMed
  117. 117.↵
    1. Kobayashi H,
    2. Koyama Y,
    3. Barrett T, et al.
    Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging. ACS Nano 2007; 1: 258–264.
    OpenUrlPubMed
  118. 118.↵
    1. Duconge F,
    2. Pons T,
    3. Pestourie C, et al.
    Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjug Chem 2008; 19: 1921–1926.
    OpenUrlPubMed
  119. 119.↵
    1. Schipper ML,
    2. Iyer G,
    3. Koh AL, et al.
    Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009; 5: 126–134.
    OpenUrlCrossRefPubMedWeb of Science
  120. 120.↵
    1. Jin T,
    2. Yoshioka Y,
    3. Fujii F, et al.
    Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chem Commun (Camb) 2008; 5764–5766.
  121. 121.↵
    1. Giepmans BN,
    2. Deerinck TJ,
    3. Smarr BL, et al.
    Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nat Methods 2005; 2: 743–749.
    OpenUrlCrossRefPubMedWeb of Science
  122. 122.
    1. Chen K,
    2. Li ZB,
    3. Wang H, et al.
    Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 2008; 35: 2235–2244.
    OpenUrlCrossRefPubMedWeb of Science
  123. 123.
    1. Leung K.
    64Cu-Tetraazacyclododecane-N, N', N'', N'''-tetraacetic acid-quantum dot-c(Arg-Gly-Asp-D-Tyr-Lys), in Molecular Imaging and Contrast Agent Database (MICAD). 2004: Bethesda (MD).
  124. 124.
    1. Schipper ML,
    2. Cheng Z,
    3. Lee SW, et al.
    microPET-based biodistribution of quantum dots in living mice. J Nucl Med 2007; 48: 1511–1518.
    OpenUrlAbstract/FREE Full Text
  125. 125.
    1. Jin T,
    2. Fujii F,
    3. Komai Y, et al.
    Preparation and characterization of highly fluorescent, glutathione-coated near infrared quantum dots for in vivo fluorescence imaging. Int J Mol Sci 2008; 9: 2044–2061.
    OpenUrlCrossRefPubMed
  126. 126.↵
    1. Park JH,
    2. von Maltzahn G,
    3. Ruoslahti E, et al.
    Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl 2008; 47: 7284–7288.
    OpenUrlCrossRefPubMed
  127. 127.
    1. Bakalova R,
    2. Zhelev Z,
    3. Aoki I, et al.
    Multimodal silica-shelled quantum dots: direct intracellular delivery, photosensitization, toxic, and microcirculation effects. Bioconjug Chem 2008; 19: 1135–1142.
    OpenUrlPubMed
  128. 128.
    1. Yong KT,
    2. Hu R,
    3. Roy I, et al.
    Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods. ACS Appl Mater Interfaces 2009; 1: 710–719.
    OpenUrlPubMed
  129. 129.↵
    1. Cai W,
    2. Chen X.
    Nanoplatforms for targeted molecular imaging in living subjects. Small 2007; 3: 1840–1854.
    OpenUrlCrossRefPubMedWeb of Science
  130. 130.↵
    1. Bagalkot V,
    2. Zhang L,
    3. Levy-Nissenbaum E, et al.
    Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007; 7: 3065–3070.
    OpenUrlCrossRefPubMedWeb of Science
  131. 131.↵
    1. Bumcrot D,
    2. Manoharan M,
    3. Koteliansky V, et al.
    RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2006; 2: 711–719.
    OpenUrlCrossRefPubMedWeb of Science
  132. 132.
    1. Dykxhoorn DM,
    2. Lieberman J.
    The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 2005; 56: 401–423.
    OpenUrlCrossRefPubMedWeb of Science
  133. 133.
    1. Kim DHRossi JJ.
    Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007; 8: 173–184.
    OpenUrlCrossRefPubMedWeb of Science
  134. 134.
    1. Meister G,
    2. Tuschl T.
    Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431: 343–349.
    OpenUrlCrossRefPubMedWeb of Science
  135. 135.
    1. Rana TM.
    Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007; 8: 23–36.
    OpenUrlCrossRefPubMedWeb of Science
  136. 136.↵
    1. Petrocca F,
    2. Lieberman J.
    Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol 2011; 29: 747–754.
    OpenUrlAbstract/FREE Full Text
  137. 137.↵
    1. Yezhelyev MV,
    2. Qi L,
    3. O'Regan RM, et al.
    Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 2008; 130: 9006–9012.
    OpenUrlCrossRefPubMedWeb of Science
  138. 138.↵
    1. Triesscheijn M,
    2. Baas P,
    3. Schellens JH, et al.
    Photodynamic therapy in oncology. Oncologist 2006; 11: 1034–1044.
    OpenUrlAbstract/FREE Full Text
  139. 139.↵
    1. Samia AC,
    2. Chen X,
    3. Burda C.
    Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 2003; 125: 15736–15737.
    OpenUrlCrossRefPubMed
  140. 140.↵
    1. Hardman R.
    A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006; 114: 165–172.
    OpenUrlCrossRefPubMedWeb of Science
  141. 141.↵
    1. Rzigalinski BA,
    2. Strobl JS.
    Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 2009; 238: 280–288.
    OpenUrlCrossRefPubMed
  142. 142.↵
    1. Choi HS,
    2. Liu W,
    3. Liu F, et al.
    Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 2010; 5: 42–47.
    OpenUrlCrossRefPubMedWeb of Science
  143. 143.
    1. Howarth M,
    2. Liu W,
    3. Puthenveetil S, et al.
    Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 2008; 5: 397–399.
    OpenUrlCrossRefPubMedWeb of Science
  144. 144.
    1. Shiohara A,
    2. Hanada S,
    3. Prabakar S, et al.
    Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 2010; 132: 248–253.
    OpenUrlCrossRefPubMedWeb of Science
  145. 145.
    1. Smith AM,
    2. Nie S.
    Next-generation quantum dots. Nat Biotechnol 2009; 27: 732–733.
    OpenUrlCrossRefPubMedWeb of Science
  146. 146.
    1. Warner JH,
    2. Hoshino A,
    3. Yamamoto K, et al.
    Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed Engl 2005; 44: 4550–4554.
    OpenUrlCrossRefPubMed
  147. 147.
    1. Erogbogbo F,
    2. Tien CA,
    3. Chang CW, et al.
    Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug Chem 2011; 22: 1081–1088.
    OpenUrlCrossRefPubMed
  148. 148.↵
    1. Bottrill M,
    2. Green M.
    Some aspects of quantum dot toxicity. Chem Commun (Camb) 2011; 47: 7039–7050.
    OpenUrlPubMed
  149. 149.↵
    1. Dobrovolskaia MA,
    2. McNeil SE.
    Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007; 2: 469–478.
    OpenUrlCrossRefPubMedWeb of Science
  150. 150.↵
    1. Choi AO,
    2. Brown SE,
    3. Szyf M, et al.
    Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med (Berl) 2008; 86: 291–302.
    OpenUrlCrossRefPubMed
  151. 151.↵
    1. Landin L,
    2. Miller MS,
    3. Pistol M, et al.
    Optical studies of individual InAs quantum dots in GaAs: few-particle effects. Science 1998; 280: 262–264.
    OpenUrlAbstract/FREE Full Text
  152. 152.↵
    1. Pradhan N,
    2. Battaglia DM,
    3. Liu Y, et al.
    Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 2007; 7: 312–317.
    OpenUrlCrossRefPubMed
  153. 153.↵
    1. Choi HS,
    2. Liu W,
    3. Misra P, et al.
    Renal clearance of quantum dots. Nat Biotechnol 2007; 25: 1165–1170.
    OpenUrlCrossRefPubMedWeb of Science
  154. 154.↵
    1. Xu H,
    2. Chen C,
    3. Peng J, et al.
    Evaluation of the bioconjugation efficiency of different quantum dots as probes for immunostaining tumor-marker proteins. Appl Spectrosc 2010; 64: 847–852.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 9 (3)
Cancer Biology & Medicine
Vol. 9, Issue 3
1 Sep 2012
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantum Dots for Cancer Research: Current Status, Remaining Issues, and Future Perspectives
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Quantum Dots for Cancer Research: Current Status, Remaining Issues, and Future Perspectives
Min Fang, Chun-wei Peng, Dai-Wen Pang, Yan Li
Cancer Biology & Medicine Sep 2012, 9 (3) 151-163; DOI: 10.7497/j.issn.2095-3941.2012.03.001

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Quantum Dots for Cancer Research: Current Status, Remaining Issues, and Future Perspectives
Min Fang, Chun-wei Peng, Dai-Wen Pang, Yan Li
Cancer Biology & Medicine Sep 2012, 9 (3) 151-163; DOI: 10.7497/j.issn.2095-3941.2012.03.001
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Characteristics of QDs for Biomedical Application
    • Application of QD-based Nanotechnology for Cancer Research
    • Application of QD-based Multimodality Biomedical Molecular imaging
    • Challenges and Future Prospects
    • Conclusions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The mechanisms and clinical significance of CD8+ T cell exhaustion in anti-tumor immunity
  • Senescent macrophages in cancer: roles in tumor progression and treatment opportunities
  • Advances in strategies to improve the immunotherapeutic efficacy of chimeric antigen receptor-T cell therapy for lymphoma
Show more Review

Similar Articles

Keywords

  • quantum dots
  • molecular imaging
  • multimodality probes

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire