Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview
Open Access

Advances and challenges in gastric cancer testing: the role of biomarkers

Yu Sun, Pavitratha Puspanathan, Tony Lim and Dongmei Lin
Cancer Biology & Medicine March 2025, 22 (3) 212-230; DOI: https://doi.org/10.20892/j.issn.2095-3941.2024.0386
Yu Sun
1State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pavitratha Puspanathan
2Department of Pathology, Hospital Pulau Pinang, Georgetown 10450, Malaysia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tony Lim
3Division of Pathology, Singapore General Hospital, Singapore 169608, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dongmei Lin
4Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dongmei Lin
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Sung H,
    2. Ferlay J,
    3. Siegel RL,
    4. Laversanne M,
    5. Soerjomataram I,
    6. Jemal A, et al.
    Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71: 209–49.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Bray F,
    2. Laversanne M,
    3. Sung H,
    4. Ferlay J,
    5. Siegel RL,
    6. Soerjomataram I, et al.
    Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2024; 74: 229–63.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Yan C,
    2. Shan F,
    3. Ying X,
    4. Li Z.
    Global burden prediction of gastric cancer during demographic transition from 2020 to 2040. Chin Med J (Engl). 2023; 136: 397–406.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Morgan E,
    2. Arnold M,
    3. Camargo MC,
    4. Gini A,
    5. Kunzmann AT,
    6. Matsuda T, et al.
    The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: a population-based modelling study. EClinicalMedicine. 2022; 47: 101404.
  5. 5.↵
    1. Orășeanu A,
    2. Brisc MC,
    3. Maghiar OA,
    4. Popa H,
    5. Brisc CM,
    6. Șolea SF, et al.
    Landscape of innovative methods for early diagnosis of gastric cancer: a systematic review. Diagnostics (Basel). 2023; 13: 3608.
    OpenUrlPubMed
  6. 6.↵
    1. Choi S,
    2. Park S,
    3. Kim H,
    4. Kang SY,
    5. Ahn S,
    6. Kim KM.
    Gastric cancer: mechanisms, biomarkers, and therapeutic approaches. Biomedicines. 2022; 10: 543.
    OpenUrlPubMed
  7. 7.↵
    1. Matsuoka T,
    2. Yashiro M.
    Biomarkers of gastric cancer: current topics and future perspective. World J Gastroenterol. 2018; 24: 2818–32.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Lei ZN,
    2. Teng QX,
    3. Tian Q,
    4. Chen W,
    5. Xie Y,
    6. Wu K, et al.
    Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther. 2022; 7: 358.
    OpenUrlPubMed
  9. 9.
    1. Schulman AR,
    2. Howell JD.
    From Hirschowitz to 2023: modern endoscopy and beyond. Clin Gastroenterol Hepatol. 2024; 22: 684–8.
    OpenUrlPubMed
  10. 10.
    1. Shamsudhin N,
    2. Zverev VI,
    3. Keller H,
    4. Pane S,
    5. Egolf PW,
    6. Nelson BJ, et al.
    Magnetically guided capsule endoscopy. Med Phys. 2017; 44: e91–111.
    OpenUrlPubMed
  11. 11.
    1. Sivak MV.
    Gastrointestinal endoscopy: past and future. Gut. 2006; 55: 1061–4.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Sato Y,
    2. Okamoto K,
    3. Kawano Y,
    4. Kasai A,
    5. Kawaguchi T,
    6. Sagawa T, et al.
    Novel biomarkers of gastric cancer: current research and future perspectives. J Clin Med. 2023; 12: 4646.
    OpenUrlPubMed
  13. 13.↵
    1. Lauren P.
    The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965; 64: 31–49.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Nagtegaal ID,
    2. Odze RD,
    3. Klimstra D,
    4. Paradis V,
    5. Rugge M,
    6. Schirmacher P, et al.; WHO Classification of Tumours Editorial Board
    . The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020; 76: 182–8.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Hong X,
    2. Liu F.
    Editorial: Molecular biomarkers for gastric cancer. Front Oncol. 2022; 12: 850373.
  16. 16.↵
    1. Ajani JA,
    2. D’Amico TA,
    3. Almhanna K,
    4. Bentrem DJ,
    5. Chao J,
    6. Das P, et al.
    NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Gastric Cancer Version 3. J Natl Compr Canc Netw. 2016; 14: 1286–312.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Matsumura N,
    2. Mandai M.
    PMDA regulatory update on approval and revision of the precautions for use of anticancer drugs; approval of elranatamab for multiple myeloma, CPX-351 for myeloid leukemia, inotuzumab ozogamicin for lymphoblastic leukemia, capivasertib for breast cancer, and zolbetuximab for gastric cancer in Japan. Int J Clin Oncol. 2024; 29: 863–4.
    OpenUrlPubMed
  18. 18.↵
    U.S. Food and Drug Administration. FDA approves zolbetuximab-clzb with chemotherapy for gastric or gastroesophageal junction adenocarcinoma. [Accessed at 2024 Nov 25]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-zolbetuximab-clzb-chemotherapy-gastric-or-gastroesophageal-junction-adenocarcinoma.
  19. 19.↵
    1. Hirahata T,
    2. Ul Quraish R,
    3. Quraish AU,
    4. Ul Quraish S,
    5. Naz M,
    6. Razzaq MA.
    Liquid biopsy: a distinctive approach to the diagnosis and prognosis of cancer. Cancer Inform. 2022; 21: 11769351221076062.
  20. 20.↵
    1. Ma S,
    2. Zhou M,
    3. Xu Y,
    4. Gu X,
    5. Zou M,
    6. Abudushalamu G, et al.
    Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer. 2023; 22: 7.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Bencze J,
    2. Szarka M,
    3. Kóti B,
    4. Seo W,
    5. Hortobágyi TG,
    6. Bencs V, et al.
    Comparison of semi-quantitative scoring and artificial intelligence aided digital image analysis of chromogenic immunohistochemistry. Biomolecules. 2021; 12: 19.
    OpenUrlPubMed
  22. 22.↵
    1. Oh DY,
    2. Bang YJ.
    HER2-targeted therapies: a role beyond breast cancer. Nat Rev Clin Oncol. 2020; 17: 33–48.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Ma C,
    2. Wang X,
    3. Guo J,
    4. Yang B,
    5. Li Y.
    Challenges and future of HER2-positive gastric cancer therapy. Front Oncol. 2023; 13: 1080990.
  24. 24.↵
    1. Gravalos C,
    2. Jimeno A.
    HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol. 2008; 19: 1523–9.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.↵
    1. Allgayer H,
    2. Babic R,
    3. Gruetzner KU,
    4. Tarabichi A,
    5. Schildberg FW,
    6. Heiss MM.
    c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J Clin Oncol. 2000; 18: 2201–9.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Grabsch H,
    2. Sivakumar S,
    3. Gray S,
    4. Gabbert HE,
    5. Müller W.
    HER2 expression in gastric cancer: rare, heterogeneous and of no prognostic value - conclusions from 924 cases of two independent series. Cell Oncol. 2010; 32: 57–65.
    OpenUrlPubMedWeb of Science
  27. 27.
    1. Janjigian YY,
    2. Werner D,
    3. Pauligk C,
    4. Steinmetz K,
    5. Kelsen DP,
    6. Jäger E, et al.
    Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann Oncol. 2012; 23: 2656–62.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Kunz PL,
    2. Mojtahed A,
    3. Fisher GA,
    4. Ford JM,
    5. Chang DT,
    6. Balise RR, et al.
    HER2 expression in gastric and gastroesophageal junction adenocarcinoma in a US population: clinicopathologic analysis with proposed approach to HER2 assessment. Appl Immunohistochem Mol Morphol. 2012; 20: 13–24.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Shitara K,
    2. Bang YJ,
    3. Iwasa S,
    4. Sugimoto N,
    5. Ryu MH,
    6. Sakai D, et al.
    Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020; 382: 2419–30.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Janjigian YY,
    2. Kawazoe A,
    3. Yañez P,
    4. Li N,
    5. Lonardi S,
    6. Kolesnik O, et al.
    The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature. 2021; 600: 727–30.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Bang YJ,
    2. Van Cutsem E,
    3. Feyereislova A,
    4. Chung HC,
    5. Shen L,
    6. Sawaki A, et al.
    Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010; 376: 687–97.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Van Cutsem E,
    2. di Bartolomeo M,
    3. Smyth E,
    4. Chau I,
    5. Park H,
    6. Siena S, et al.
    Trastuzumab deruxtecan in patients in the USA and Europe with HER2-positive advanced gastric or gastroesophageal junction cancer with disease progression on or after a trastuzumab-containing regimen (DESTINY-Gastric02): primary and updated analyses from a single-arm, phase 2 study. Lancet Oncol. 2023; 24: 744–56.
    OpenUrlPubMed
  33. 33.↵
    1. Janjigian YY,
    2. Shitara K,
    3. Moehler M,
    4. Garrido M,
    5. Salman P,
    6. Shen L, et al.
    First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021; 398: 27–40.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Rha SY,
    2. Oh DY,
    3. Yañez P,
    4. Bai Y,
    5. Ryu MH,
    6. Lee J, et al.
    Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2023; 24: 1181–95.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Shitara K,
    2. Lordick F,
    3. Bang YJ,
    4. Enzinger P,
    5. Ilson D,
    6. Shah MA, et al.
    Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet. 2023; 401: 1655–68.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Shah MA,
    2. Shitara K,
    3. Ajani JA,
    4. Bang Y-J,
    5. Enzinger P,
    6. Ilson D, et al.
    Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: the randomized, phase 3 GLOW trial. Nat Med. 2023; 29: 2133–41.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Lee J,
    2. Kim ST,
    3. Kim K,
    4. Lee H,
    5. Kozarewa I,
    6. Mortimer PGS, et al.
    Tumor genomic profiling guides patients with metastatic gastric cancer to targeted treatment: the VIKTORY umbrella trial. Cancer Discov. 2019; 9: 1388–405.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Wainberg ZA,
    2. Enzinger PC,
    3. Kang Y-K,
    4. Qin S,
    5. Yamaguchi K,
    6. Kim I-H, et al.
    Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2022; 23: 1430–40.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Nakamura Y,
    2. Kawazoe A,
    3. Lordick F,
    4. Janjigian YY,
    5. Shitara K.
    Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat Rev Clin Oncol. 2021; 18: 473–87.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Tabernero J,
    2. Hoff PM,
    3. Shen L,
    4. Ohtsu A,
    5. Shah MA,
    6. Siddiqui A, et al.
    Pertuzumab, trastuzumab, and chemotherapy in HER2-positive gastric/gastroesophageal junction cancer: end-of-study analysis of the JACOB phase III randomized clinical trial. Gastric Cancer. 2023; 26: 123–31.
    OpenUrlPubMed
  41. 41.↵
    1. Catenacci DVT,
    2. Kang YK,
    3. Yoon HH,
    4. Shim BY,
    5. Kim ST,
    6. Oh DY, et al.
    Margetuximab with retifanlimab as first-line therapy in HER2+/PD-L1+ unresectable or metastatic gastroesophageal adenocarcinoma: MAHOGANY cohort A. ESMO Open. 2022; 7: 100563.
  42. 42.↵
    1. Tabernero J,
    2. Elimova E,
    3. Ku G,
    4. Shitara K,
    5. Shen L,
    6. Liu T, et al.
    P-26 HERIZON-GEA-01: a phase 3 study of zanidatamab in combination with chemotherapy with or without tislelizumab in first-line human epidermal growth factor receptor 2 positive (HER2+) advanced/metastatic gastroesophageal adenocarcinoma (GEA). Ann Oncol. 2022; 33: S256.
  43. 43.↵
    1. Röcken C.
    Predictive biomarkers in gastric cancer. J Cancer Res Clin Oncol. 2023; 149: 467–81.
    OpenUrlPubMed
  44. 44.↵
    1. Tang Q,
    2. Chen Y,
    3. Li X,
    4. Long S,
    5. Shi Y,
    6. Yu Y, et al.
    The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 2022; 13: 964442.
  45. 45.↵
    1. Böger C,
    2. Behrens HM,
    3. Mathiak M,
    4. Krüger S,
    5. Kalthoff H,
    6. Röcken C.
    PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget. 2016; 7: 24269–83.
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. Yi M,
    2. Zheng X,
    3. Niu M,
    4. Zhu S,
    5. Ge H,
    6. Wu K.
    Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022; 21: 28.
    OpenUrlCrossRefPubMed
  47. 47.↵
    1. Hou W,
    2. Zhao Y,
    3. Zhu H.
    Predictive biomarkers for immunotherapy in gastric cancer: current status and emerging prospects. Int J Mol Sci. 2023; 24: 15321.
  48. 48.↵
    1. Bang YJ,
    2. Ruiz EY,
    3. Van Cutsem E,
    4. Lee KW,
    5. Wyrwicz L,
    6. Schenker M, et al.
    Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol. 2018; 29: 2052–60.
    OpenUrlPubMed
  49. 49.↵
    1. Zhang M,
    2. Dong Y,
    3. Liu H,
    4. Wang Y,
    5. Zhao S,
    6. Xuan Q, et al.
    The clinicopathological and prognostic significance of PD-L1 expression in gastric cancer: a meta-analysis of 10 studies with 1,901 patients. Sci Rep. 2016; 6: 37933.
  50. 50.↵
    1. Thompson ED,
    2. Zahurak M,
    3. Murphy A,
    4. Cornish T,
    5. Cuka N,
    6. Abdelfatah E, et al.
    Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut. 2017; 66: 794–801.
    OpenUrlAbstract/FREE Full Text
  51. 51.↵
    1. Dhakras P,
    2. Uboha N,
    3. Horner V,
    4. Reinig E,
    5. Matkowskyj KA.
    Gastrointestinal cancers: current biomarkers in esophageal and gastric adenocarcinoma. Transl Gastroenterol Hepatol. 2020; 5: 55.
    OpenUrlPubMed
  52. 52.↵
    1. Lordick F,
    2. Carneiro F,
    3. Cascinu S,
    4. Fleitas T,
    5. Haustermans K,
    6. Piessen G, et al.
    Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022; 33: 1005–20.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Wang FH,
    2. Zhang XT,
    3. Tang L,
    4. Wu Q,
    5. Cai MY,
    6. Li YF, et al.
    The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer, 2023. Cancer Commun (Lond). 2024; 44: 127–72.
    OpenUrlPubMed
  54. 54.↵
    1. Fuchs CS,
    2. Doi T,
    3. Jang RW,
    4. Muro K,
    5. Satoh T,
    6. Machado M, et al.
    Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018; 4: e180013.
  55. 55.
    1. Shitara K,
    2. Özgüroğlu M,
    3. Bang YJ,
    4. Di Bartolomeo M,
    5. Mandalà M,
    6. Ryu MH, et al.
    Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018; 392: 123–33.
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. Shitara K,
    2. Van Cutsem E,
    3. Bang YJ,
    4. Fuchs C,
    5. Wyrwicz L,
    6. Lee KW, et al.
    Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 2020; 6: 1571–80.
    OpenUrlPubMed
  57. 57.↵
    1. Wainberg ZA,
    2. Fuchs CS,
    3. Tabernero J,
    4. Shitara K,
    5. Muro K,
    6. Van Cutsem E, et al.
    Efficacy of pembrolizumab monotherapy for advanced gastric/gastroesophageal junction cancer with programmed death ligand 1 combined positive score ≥10. Clin Cancer Res. 2021; 27: 1923–31.
    OpenUrlAbstract/FREE Full Text
  58. 58.↵
    1. Janjigian YY,
    2. Kawazoe A,
    3. Bai Y,
    4. Xu J,
    5. Lonardi S,
    6. Metges JP, et al.
    Pembrolizumab plus trastuzumab and chemotherapy for HER2-positive gastric or gastro-oesophageal junction adenocarcinoma: interim analyses from the phase 3 KEYNOTE-811 randomised placebo-controlled trial. Lancet. 2023; 402: 2197–208.
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. Chao J,
    2. Fuchs CS,
    3. Shitara K,
    4. Tabernero J,
    5. Muro K,
    6. Van Cutsem E, et al.
    Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol. 2021; 7: 895–902.
    OpenUrlPubMed
  60. 60.↵
    1. Pietrantonio F,
    2. Randon G,
    3. Di Bartolomeo M,
    4. Luciani A,
    5. Chao J,
    6. Smyth EC, et al.
    Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: a meta-analysis of randomized clinical trials. ESMO Open. 2021; 6: 100036.
  61. 61.↵
    1. Tateo V,
    2. Marchese PV,
    3. Mollica V,
    4. Massari F,
    5. Kurzrock R,
    6. Adashek JJ.
    Agnostic approvals in oncology: getting the right drug to the right patient with the right genomics. Pharmaceuticals (Basel). 2023; 16: 614.
    OpenUrlPubMed
  62. 62.↵
    1. Cao W,
    2. Xing H,
    3. Li Y,
    4. Tian W,
    5. Song Y,
    6. Jiang Z, et al.
    Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomarker Res. 2022; 10: 38.
    OpenUrl
  63. 63.↵
    1. Mathias-Machado MC,
    2. de Jesus VHF,
    3. Jácome A,
    4. Donadio MD,
    5. Aruquipa MPS,
    6. Fogacci J, et al.
    Claudin 18.2 as a new biomarker in gastric cancer: what should we know? Cancers (Basel). 2024; 16: 679.
    OpenUrlPubMed
  64. 64.↵
    1. Liu S,
    2. Zhang Z,
    3. Jiang L,
    4. Zhang M,
    5. Zhang C,
    6. Shen L.
    Claudin-18.2 mediated interaction of gastric cancer cells and cancer-associated fibroblasts drives tumor progression. Cell Commun Signal. 2024; 22: 27.
    OpenUrlPubMed
  65. 65.↵
    1. Sanada Y,
    2. Oue N,
    3. Mitani Y,
    4. Yoshida K,
    5. Nakayama H,
    6. Yasui W.
    Down-regulation of the claudin-18 gene, identified through serial analysis of gene expression data analysis, in gastric cancer with an intestinal phenotype. J Pathol. 2006; 208: 633–42.
    OpenUrlCrossRefPubMedWeb of Science
  66. 66.↵
    1. Zhang Y,
    2. Xia M,
    3. Jin K,
    4. Wang S,
    5. Wei H,
    6. Fan C, et al.
    Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018; 17: 45.
    OpenUrlCrossRefPubMed
  67. 67.↵
    1. Zhang Y,
    2. Shen L,
    3. Peng Z.
    Advances in MET tyrosine kinase inhibitors in gastric cancer. Cancer Biol Med. 2024; 21: 484–98.
    OpenUrlAbstract/FREE Full Text
  68. 68.↵
    1. Comoglio PM,
    2. Trusolino L,
    3. Boccaccio C.
    Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer. 2018; 18: 341–58.
    OpenUrlCrossRefPubMed
  69. 69.↵
    1. Peng Z,
    2. Li Z,
    3. Gao J,
    4. Lu M,
    5. Gong J,
    6. Tang ET, et al.
    Tumor MET expression and gene amplification in Chinese patients with locally advanced or metastatic gastric or gastroesophageal junction cancer. Mol Cancer Ther. 2015; 14: 2634–41.
    OpenUrlAbstract/FREE Full Text
  70. 70.
    1. El Darsa H,
    2. El Sayed R,
    3. Abdel-Rahman O.
    MET inhibitors for the treatment of gastric cancer: what’s their potential? J Exp Pharmacol. 2020; 12: 349–61.
    OpenUrlPubMed
  71. 71.
    1. Dong Y,
    2. Xu J,
    3. Sun B,
    4. Wang J,
    5. Wang Z.
    MET-targeted therapies and clinical outcomes: a systematic literature review. Mol Diagn Ther. 2022; 26: 203–27.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Van Herpe F,
    2. Van Cutsem E.
    The role of cMET in gastric cancer: a review of the literature. Cancers (Basel). 2023; 15: 1976.
    OpenUrlPubMed
  73. 73.↵
    1. Peng Z,
    2. Zhu Y,
    3. Wang Q,
    4. Gao J,
    5. Li Y,
    6. Li Y, et al.
    Prognostic significance of MET amplification and expression in gastric cancer: a systematic review with meta-analysis. PLoS One. 2014; 9: e84502.
  74. 74.↵
    1. Peng Z,
    2. Wang H,
    3. Liu B,
    4. Xu H,
    5. Liu Z,
    6. Liu T, et al.
    Abstract CT152: A multicenter phase II study of savolitinib in patients with MET-amplified gastroesophogeal junction adenocarcinomas or gastric cancer. Cancer Res. 2023; 83: CT152.
  75. 75.↵
    HUTCHMED receives breakthrough therapy designation in China for savolitinib for gastric cancer [press release]. HUTCHMED; 2023.
  76. 76.↵
    1. Kim HS,
    2. Kim JH,
    3. Jang HJ.
    Pathologic and prognostic impacts of FGFR2 amplification in gastric cancer: a meta-analysis and systemic review. J Cancer. 2019; 10: 2560–7.
    OpenUrlCrossRefPubMed
  77. 77.↵
    1. Gordon A,
    2. Johnston E,
    3. Lau DK,
    4. Starling N.
    Targeting FGFR2 positive gastroesophageal cancer: current and clinical developments. Onco Targets Ther. 2022; 15: 1183–96.
    OpenUrlCrossRefPubMed
  78. 78.↵
    1. Van Cutsem E,
    2. Bang YJ,
    3. Mansoor W,
    4. Petty RD,
    5. Chao Y,
    6. Cunningham D, et al.
    A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann Oncol. 2017; 28: 1316–24.
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Smyth EC,
    2. Chao J,
    3. Muro K,
    4. Yen P,
    5. Yanes RE,
    6. Zahlten-Kumeli A, et al.
    Trial in progress: Phase 3 study of bemarituzumab + mFOLFOX6 versus placebo + mFOLFOX6 in previously untreated advanced gastric or gastroesophageal junction (GEJ) cancer with FGFR2b overexpression (FORTITUDE-101). J Clin Oncol. 2022; 40: TPS4164.
  80. 80.↵
    1. Yu M,
    2. Liang Y,
    3. Li L,
    4. Zhao L,
    5. Kong F.
    Research progress of antibody-drug conjugates therapy for HER2-low expressing gastric cancer. Transl Oncol. 2023; 29: 101624.
  81. 81.↵
    1. Nakayama I,
    2. Takahari D,
    3. Chin K,
    4. Wakatsuki T,
    5. Ooki A,
    6. Ogura M, et al.
    Clinicopathological features of HER2-low expressed advanced gastric cancers. J Clin Oncol. 2023; 41: 459.
    OpenUrl
  82. 82.↵
    1. Angerilli V,
    2. Parente P,
    3. Campora M,
    4. Ugolini C,
    5. Battista S,
    6. Cassoni P, et al.
    HER2-low in gastro-oesophageal adenocarcinoma: a real-world pathological perspective. J Clin Pathol. 2023; 76: 815–21.
    OpenUrlAbstract/FREE Full Text
  83. 83.↵
    1. Yamaguchi K,
    2. Bang YJ,
    3. Iwasa S,
    4. Sugimoto N,
    5. Ryu MH,
    6. Sakai D, et al.
    Trastuzumab deruxtecan in anti-human epidermal growth factor receptor 2 treatment-naive patients with human epidermal growth factor receptor 2-low gastric or gastroesophageal junction adenocarcinoma: exploratory cohort results in a phase II trial. J Clin Oncol. 2023; 41: 816–25.
    OpenUrlPubMed
  84. 84.↵
    1. Modi S,
    2. Jacot W,
    3. Yamashita T,
    4. Sohn J,
    5. Vidal M,
    6. Tokunaga E, et al.
    Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med. 2022; 387: 9–20.
    OpenUrlCrossRefPubMed
  85. 85.↵
    1. Wolff AC,
    2. Somerfield MR,
    3. Dowsett M,
    4. Hammond MEH,
    5. Hayes DF,
    6. McShane LM, et al.
    Human epidermal growth factor receptor 2 testing in breast cancer: ASCO-College of American Pathologists Guideline Update. J Clin Oncol. 2023; 41: 3867–72.
    OpenUrlCrossRefPubMed
  86. 86.↵
    1. Nie Y,
    2. Zhao W,
    3. Lu L,
    4. Zhou F.
    Predictive biomarkers and new developments of immunotherapy in gastric cancer: a 2023 update. Am J Cancer Res. 2023; 13: 3169–84.
    OpenUrlPubMed
  87. 87.↵
    1. Bai Y,
    2. Xie T,
    3. Wang Z,
    4. Tong S,
    5. Zhao X,
    6. Zhao F, et al.
    Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer. J Immunother Cancer. 2022; 10: e004080.
  88. 88.↵
    1. Brasil-Costa I,
    2. de Souza CRT,
    3. Costa IB,
    4. Dos Santos LFP,
    5. Paixão LCF,
    6. Polaro AA, et al.
    Detection of Epstein-Barr virus in gastric adenocarcinoma: qPCR and FISH comparison. Med Microbiol Immunol. 2022; 211: 29–36.
    OpenUrlPubMed
  89. 89.↵
    1. Kim ST,
    2. Cristescu R,
    3. Bass AJ,
    4. Kim KM,
    5. Odegaard JI,
    6. Kim K, et al.
    Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018; 24: 1449–58.
    OpenUrlCrossRefPubMed
  90. 90.↵
    1. Xie T,
    2. Liu Y,
    3. Zhang Z,
    4. Zhang X,
    5. Gong J,
    6. Qi C, et al.
    Positive status of Epstein-Barr virus as a biomarker for gastric cancer immunotherapy: a prospective observational study. J Immunother. 2020; 43: 139–44.
    OpenUrl
  91. 91.↵
    1. Chen Y,
    2. Jia K,
    3. Sun Y,
    4. Zhang C,
    5. Li Y,
    6. Zhang L, et al.
    Predicting response to immunotherapy in gastric cancer via multi-dimensional analyses of the tumour immune microenvironment. Nat Commun. 2022; 13: 4851.
    OpenUrlCrossRefPubMed
  92. 92.↵
    1. Liu DHW,
    2. Kim YW,
    3. Sefcovicova N,
    4. Laye JP,
    5. Hewitt LC,
    6. Irvine AF, et al.
    Tumour infiltrating lymphocytes and survival after adjuvant chemotherapy in patients with gastric cancer: post-hoc analysis of the CLASSIC trial. Br J Cancer. 2023; 128: 2318–25.
    OpenUrlPubMed
  93. 93.↵
    1. Li J,
    2. Zhang Y,
    3. Ye F,
    4. Qian P,
    5. Qin Z,
    6. Li D, et al.
    DKK1 promotes epithelial-mesenchymal transition and cisplatin resistance in gastric cancer via activation of the PI3K/AKT pathway. Cancers (Basel). 2023; 15: 4756.
    OpenUrlPubMed
  94. 94.↵
    1. Shi T,
    2. Zhang Y,
    3. Wang Y,
    4. Song X,
    5. Wang H,
    6. Zhou X, et al.
    DKK1 promotes tumor immune evasion and impedes anti-PD-1 treatment by inducing immunosuppressive macrophages in gastric cancer. Cancer Immunol Res. 2022; 10: 1506–24.
    OpenUrlPubMed
  95. 95.↵
    1. Klempner SJ,
    2. Bendell JC,
    3. Villaflor VM,
    4. Tenner LL,
    5. Stein SM,
    6. Rottman JB, et al.
    Safety, efficacy, and biomarker results from a phase Ib study of the anti-DKK1 antibody DKN-01 in combination with pembrolizumab in advanced esophagogastric cancers. Mol Cancer Ther. 2021; 20: 2240–9.
    OpenUrlAbstract/FREE Full Text
  96. 96.↵
    1. Klempner SJ,
    2. Sonbol MB,
    3. Wainberg ZA,
    4. Uronis HE,
    5. Chiu VK,
    6. Scott AJ, et al.
    DKN-01 in combination with tislelizumab and chemotherapy as first-line therapy in advanced gastric or gastroesophageal junction adenocarcinoma: DisTinGuish. J Clin Oncol. 2024; 43: 339–49.
    OpenUrlPubMed
  97. 97.↵
    1. Böger C,
    2. Behrens HM,
    3. Krüger S,
    4. Röcken C.
    The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: a future perspective for a combined gastric cancer therapy? Oncoimmunology. 2017; 6: e1293215.
  98. 98.↵
    1. Cao Y,
    2. Yu K,
    3. Zhang Z,
    4. Gu Y,
    5. Gu Y,
    6. Li W, et al.
    Blockade of V-domain immunoglobulin suppressor of T-cell activation reprograms tumour-associated macrophages and improves efficacy of PD-1 inhibitor in gastric cancer. Clin Transl Med. 2024; 14: e1578.
  99. 99.↵
    ClinicalTrials.gov. A study of SNS-101 (anti VISTA) monotherapy and in combination with cemiplimab in patients with advanced solid tumors. [Accessed at 2024 Nov 28]. Available from: https://clinicaltrials.gov/study/NCT05864144.
  100. 100.
    1. Ulase D,
    2. Behrens HM,
    3. Krüger S,
    4. Zeissig S,
    5. Röcken C.
    Gastric carcinomas with stromal B7-H3 expression have lower intratumoural CD8+ T cell density. Int J Mol Sci. 2021; 22: 2129.
    OpenUrlPubMed
  101. 101.
    1. Xia L,
    2. Chen Y,
    3. Li J,
    4. Wang J,
    5. Shen K,
    6. Zhao A, et al.
    B7-H3 confers stemness characteristics to gastric cancer cells by promoting glutathione metabolism through AKT/pAKT/Nrf2 pathway. Chin Med J (Engl). 2023; 136: 1977–89.
    OpenUrlPubMed
  102. 102.
    1. Sun F,
    2. Yu X,
    3. Ju R,
    4. Wang Z,
    5. Wang Y.
    Antitumor responses in gastric cancer by targeting B7H3 via chimeric antigen receptor T cells. Cancer Cell Int. 2022; 22: 50.
    OpenUrlPubMed
  103. 103.↵
    1. Zhao R,
    2. He B,
    3. Bie Q,
    4. Cao J,
    5. Lu H,
    6. Zhang Z, et al.
    AQP5 complements LGR5 to determine the fates of gastric cancer stem cells through regulating ULK1 ubiquitination. J Exp Clin Cancer Res. 2022; 41: 322.
    OpenUrlPubMed
  104. 104.
    1. Gao P,
    2. Chen A,
    3. Tian H,
    4. Wang F,
    5. Wang N,
    6. Ge K, et al.
    Investigating the mechanism and the effect of aquaporin 5 (AQP5) on the self-renewal capacity of gastric cancer stem cells. J Cancer. 2024; 15: 4313–27.
    OpenUrlPubMed
  105. 105.↵
    1. Glinka A,
    2. Wu W,
    3. Delius H,
    4. Monaghan AP,
    5. Blumenstock C,
    6. Niehrs C.
    Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998; 391: 357–62.
    OpenUrlCrossRefPubMedWeb of Science
  106. 106.↵
    1. Jiang T,
    2. Mei L,
    3. Yang X,
    4. Sun T,
    5. Wang Z,
    6. Ji Y.
    Biomarkers of gastric cancer: current advancement. Heliyon. 2022; 8: e10899.
  107. 107.↵
    1. Zhang Z,
    2. Wu H,
    3. Chong W,
    4. Shang L,
    5. Jing C,
    6. Li L.
    Liquid biopsy in gastric cancer: predictive and prognostic biomarkers. Cell Death Dis. 2022; 13: 903.
    OpenUrlCrossRefPubMed
  108. 108.↵
    1. Lone SN,
    2. Nisar S,
    3. Masoodi T,
    4. Singh M,
    5. Rizwan A,
    6. Hashem S, et al.
    Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer. 2022; 21: 79.
    OpenUrlCrossRefPubMed
  109. 109.↵
    1. Willis J,
    2. Lefterova MI,
    3. Artyomenko A,
    4. Kasi PM,
    5. Nakamura Y,
    6. Mody K, et al.
    Validation of microsatellite instability detection using a comprehensive plasma-based genotyping panel. Clin Cancer Res. 2019; 25: 7035–45.
    OpenUrlAbstract/FREE Full Text
  110. 110.↵
    1. Nakamura Y,
    2. Taniguchi H,
    3. Ikeda M,
    4. Bando H,
    5. Kato K,
    6. Morizane C, et al.
    Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. Nat Med. 2020; 26: 1859–64.
    OpenUrlCrossRefPubMed
  111. 111.↵
    1. Keeling P,
    2. Clark J,
    3. Finucane S.
    Challenges in the clinical implementation of precision medicine companion diagnostics. Expert Rev Mol Diagn. 2020; 20: 593–9.
    OpenUrlPubMed
  112. 112.↵
    1. Ulas EB,
    2. Hashemi SMS,
    3. Houda I,
    4. Kaynak A,
    5. Veltman JD,
    6. Fransen MF, et al.
    Predictive value of combined positive score and tumor proportion score for immunotherapy response in advanced NSCLC. JTO Clin Res Rep. 2023; 4: 100532.
  113. 113.↵
    1. Yeong J,
    2. Lum HYJ,
    3. Teo CB,
    4. Tan BKJ,
    5. Chan YH,
    6. Tay RYK, et al.
    Choice of PD-L1 immunohistochemistry assay influences clinical eligibility for gastric cancer immunotherapy. Gastric Cancer. 2022; 25: 741–50.
    OpenUrlPubMed
  114. 114.↵
    1. Kapil A,
    2. Spitzmüller A,
    3. Brieu N,
    4. Haneder S,
    5. Shumilov A,
    6. Meier A, et al.
    HER2 quantitative continuous scoring for accurate patient selection in HER2 negative trastuzumab deruxtecan treated breast cancer. Scic Rep. 2024; 14: 12129.
  115. 115.↵
    1. Su F,
    2. Li J,
    3. Zhao X,
    4. Wang B,
    5. Hu Y,
    6. Sun Y, et al.
    Interpretable tumor differentiation grade and microsatellite instability recognition in gastric cancer using deep learning. Lab Invest. 2022; 102: 641–9.
    OpenUrlPubMed
  116. 116.↵
    1. Jiang Z,
    2. Xie W,
    3. Zhou X,
    4. Pan W,
    5. Jiang S,
    6. Zhang X, et al.
    A virtual biopsy study of microsatellite instability in gastric cancer based on deep learning radiomics. Insights Imaging. 2023; 14: 104.
    OpenUrlPubMed
  117. 117.
    1. Hinata M,
    2. Ushiku T.
    Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning. Sci Rep. 2021; 11: 22636.
  118. 118.
    1. Kather JN,
    2. Pearson AT,
    3. Halama N,
    4. Jäger D,
    5. Krause J,
    6. Loosen SH, et al.
    Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019; 25: 1054–6.
    OpenUrlCrossRefPubMed
  119. 119.
    1. Saldanha OL,
    2. Muti HS,
    3. Grabsch HI,
    4. Langer R,
    5. Dislich B,
    6. Kohlruss M, et al.
    Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning. Gastric Cancer. 2023; 26: 264–74.
    OpenUrlCrossRefPubMed
  120. 120.↵
    1. Vuong TTL,
    2. Song B,
    3. Kwak JT,
    4. Kim K.
    Prediction of Epstein-Barr virus status in gastric cancer biopsy specimens using a deep learning algorithm. JAMA Netw Open. 2022; 5: e2236408.
  121. 121.↵
    1. Jia K,
    2. Chen Y,
    3. Sun Y,
    4. Hu Y,
    5. Jiao L,
    6. Ma J, et al.
    Multiplex immunohistochemistry defines the tumor immune microenvironment and immunotherapeutic outcome in CLDN18.2-positive gastric cancer. BMC Med. 2022; 20: 223.
    OpenUrlPubMed
  122. 122.
    1. Tang Z,
    2. Gu Y,
    3. Shi Z,
    4. Min L,
    5. Zhang Z,
    6. Zhou P, et al.
    Multiplex immune profiling reveals the role of serum immune proteomics in predicting response to preoperative chemotherapy of gastric cancer. Cell Rep Med. 2023; 4: 100931.
  123. 123.↵
    1. Huang Y-K,
    2. Wang M,
    3. Sun Y,
    4. Di Costanzo N,
    5. Mitchell C,
    6. Achuthan A, et al.
    Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat Commun. 2019; 10: 3928.
    OpenUrlCrossRefPubMed
  124. 124.↵
    1. Gao JP,
    2. Xu W,
    3. Liu WT,
    4. Yan M,
    5. Zhu ZG.
    Tumor heterogeneity of gastric cancer: from the perspective of tumor-initiating cell. World J Gastroenterol. 2018; 24: 2567–81.
    OpenUrlPubMed
  125. 125.↵
    1. Pihlak R,
    2. Fong C,
    3. Starling N.
    Targeted therapies and developing precision medicine in gastric cancer. Cancers. 2023; 15: 3248.
    OpenUrlPubMed
  126. 126.↵
    1. Catenacci DVT,
    2. Moya S,
    3. Lomnicki S,
    4. Chase LM,
    5. Peterson BF,
    6. Reizine N, et al.
    Personalized antibodies for gastroesophageal adenocarcinoma (PANGEA): a phase II study evaluating an individualized treatment strategy for metastatic disease. Cancer Discov. 2021; 11: 308–25.
    OpenUrlAbstract/FREE Full Text
  127. 127.↵
    1. Kwon M,
    2. Kim G,
    3. Kim R,
    4. Kim KT,
    5. Kim ST,
    6. Smith S, et al.
    Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J Immunother Cancer. 2022; 10: e005041.
  128. 128.↵
    ClinicalTrials.gov. Ph2 Study of Savolitinib and Durvalumab (MEDI4736) Combination in Advanced MET Amplified Gastric Cancer (VIKTORY-2). [Accessed at 2023 Sep 12]. Available from: https://www.clinicaltrials.gov/study/NCT05620628.
PreviousNext
Back to top

In this issue

Cancer Biology & Medicine: 22 (3)
Cancer Biology & Medicine
Vol. 22, Issue 3
15 Mar 2025
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Advances and challenges in gastric cancer testing: the role of biomarkers
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Advances and challenges in gastric cancer testing: the role of biomarkers
Yu Sun, Pavitratha Puspanathan, Tony Lim, Dongmei Lin
Cancer Biology & Medicine Mar 2025, 22 (3) 212-230; DOI: 10.20892/j.issn.2095-3941.2024.0386

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Advances and challenges in gastric cancer testing: the role of biomarkers
Yu Sun, Pavitratha Puspanathan, Tony Lim, Dongmei Lin
Cancer Biology & Medicine Mar 2025, 22 (3) 212-230; DOI: 10.20892/j.issn.2095-3941.2024.0386
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Established biomarkers in gastric cancer
    • Exploratory biomarkers in gastric cancer
    • Existing challenges and future directions of biomarker testing and biomarker-guided treatment
    • Conclusions
    • Conflicts of interest statement
    • Author contributions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The mechanisms and clinical significance of CD8+ T cell exhaustion in anti-tumor immunity
  • Senescent macrophages in cancer: roles in tumor progression and treatment opportunities
  • Application and future prospects of bispecific antibodies in the treatment of non-small cell lung cancer
Show more Review

Similar Articles

Keywords

  • Gastric cancer
  • testing
  • diagnosis
  • biomarkers
  • precision therapy

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire