Abstract
Objective: Mammographic calcifications are a common feature of breast cancer, but their molecular characteristics and treatment implications in hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2−) breast cancer remain unclear.
Methods: We retrospectively collected mammography records of an HR+/HER2− breast cancer cohort (n = 316) with matched clinicopathological, genomic, transcriptomic, and metabolomic data. On the basis of mammographic images, we grouped tumors by calcification status into calcification-negative tumors, tumors with probably benign calcifications, tumors with calcification of low-moderate suspicion for maligancy and tumors with calcification of high suspicion for maligancy. We then explored the molecular characteristics associated with each calcification status across multiple dimensions.
Results: Among the different statuses, tumors with probably benign calcifications exhibited elevated hormone receptor immunohistochemical staining scores, estrogen receptor (ER) pathway activation, lipid metabolism, and sensitivity to endocrine therapy. Tumors with calcifications of high suspicion for malignancy had relatively larger tumor sizes, elevated lymph node metastasis incidence, Ki-67 staining scores, genomic instability, cell cycle pathway activation, and may benefit from cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors.
Conclusions: Our research established links between tumor calcifications and molecular features, thus proposing potential precision treatment strategies for HR+/HER2− breast cancer.
keywords
Introduction
Breast cancer, the most common malignant tumor among women, poses a serious threat to women’s health and lives1. Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2−) breast cancer, the most common subtype, accounts for approximately two-thirds of cases, and is characterized by the presence of the estrogen receptor (ER) and/or progesterone receptor (PR), and the absence of HER2 amplification2. Prior research has elucidated the molecular heterogeneity of HR+/HER2− breast cancer and proposed precision therapeutic strategies including endocrine therapy, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, and immunotherapy3–8. Nonetheless, the practical implementation of precision treatments on the basis of molecular features has several limitations. Further research is necessary to identify easily accessible clinical markers that link clinical presentation to molecular features and can predict various treatment outcomes.
Breast mammography, a routine clinical imaging examination, is crucial for early breast cancer screening and diagnosis9–12. Calcification is a common radiological feature in breast imaging and can be sensitively detected by mammography. Prior studies have reported elevated prevalence of microcalcifications, a distinct type of calcification, in HR+ breast cancer, and have revealed that microcalcifications are associated with adverse clinicopathological characteristics and prognosis13–17. However, the underlying biological factors and their implications for clinical management require further exploration and clarification.
In this study, we established an integrative multi-omics cohort for HR+/HER2− breast cancer, incorporating mammographic images with clinicopathological, genomic, transcriptomic, and metabolomic data. This study was aimed at comprehensively investigating the biological characteristics associated with distinct mammographic calcification status, thereby aiding in the precision management and treatment of HR+/HER2− breast cancer.
Materials and methods
Patient samples and study cohorts
We established an HR+/HER2− breast cancer cohort with preoperative mammography (FUSCC-HR+/HER2− mammography). The samples were collected from patients with breast cancer who underwent surgery at Fudan University Shanghai Cancer Center (FUSCC) between January 2013 and December 2014. Detailed clinical information, pathological data, mammography reports, and follow-up data were recorded. Whole-exome sequencing, OncoScan, transcriptomic, and metabolomic data generation, as well as mammography image assessments, were as described in our prior research (IRB ID: 050432-4-1911D)18,19. Ethical approval for the use of all samples in this study was obtained from the FUSCC Ethics Committee.
Immunohistochemistry (IHC) analysis
Protein expression of specific genes in breast cancer tissues was detected with immunohistochemical staining on paraffin-embedded sections as follows. Deparaffinized slices were immersed in xylene, absolute ethanol, 95% ethanol, and 75% ethanol. The slices were then immersed in sodium citrate antigen retrieval solution and heated over water. Light-blocking was performed with peroxidase blocking solution for 30 min, and was followed by blocking with a 5% BSA solution for 1 h at room temperature. After TBST washing, the diluted antibodies (100 μL) were added dropwise, and the slices were incubated overnight at 4 °C. After TBST washing, corresponding secondary antibodies were added dropwise. DAB working solution was used for color development. Subsequently, the slides were sequentially immersed in 75% ethanol, 95% ethanol, absolute ethanol, and xylene. Finally, neutral resin was used for slide sealing. Immunohistochemistry scoring was determined by positive staining density, which was quantified with a computerized imaging system comprising a Leica charge-coupled device DFC420 camera connected to a Leica DM IRE2 microscope (Leica Microsystems Imaging Solutions). Densities were calculated by counting positive cells within an ×10 high-power field of view (~2 mm2). Representative images of ER, PR, and Ki-67 are shown in Figure S1.
Prediction analysis of microarray 50-gene test classification
The determination of microarray 50-gene test (PAM50) subtypes was based on previously reported methods20,21. First, mRNA sequencing data were sampled to ensure that the proportion of IHC subtypes in the sample matched that of the training set used for PAM50 subtype determination. Subsequently, the FPKM data were adjusted according to the median expression values of PAM50 genes in the subset described above. Finally, PAM50 classification was determined according to the previously reported criteria.
Estimation of tumor mutational burden
Tumor mutational burden (TMB) was defined as the number of nonsynonymous somatic mutations per megabase (muts/Mb) within the coding region of the captured exome, encompassing missense, nonsense, nonstop, splice site, and translation start site mutations, as well as in-frame and frameshift insertions and deletions.
Estimation of the homologous recombination deficiency score and chromosomal instability score
The homologous recombination deficiency (HRD) score was the sum of the telomeric allelic imbalance (NtAI) score, loss of heterozygosity (LOH) score, and large-scale state transitions (LST) score. The telomeric allelic imbalance score indicated the count of subchromosomal regions exceeding 11 Mb with allelic imbalance extending to the telomere. The LOH score was determined by the number of LOH regions longer than 15 Mb but shorter than the entire chromosome (excluding LOH regions on chromosome 17). The large-scale state transitions score was defined as the count of breakpoints between 2 chromosomal regions longer than 10 Mb after smoothing out regions shorter than 3 Mb. These scores were calculated with copy number data according to previous studies22–26. The chromosomal instability (CIN) score was derived by summing the squared gene-level GISTIC 2 values27.
Gene set enrichment analysis and single-sample gene set enrichment analysis
Gene set enrichment analysis (GSEA) was conducted to investigate enriched pathways and interpret RNA-seq data, by using predefined gene sets from the Molecular Signatures Database (v.7.1) in GSEA software (v4.0). Default settings were applied for all basic and advanced fields.
Single-sample gene set enrichment analysis (ssGSEA) was used to calculate the characteristic pathway score with the “GSVA” function in the R package “GSVA”28 (v1.42.0). Pathways were downloaded from the Bader laboratory.
Calculation of the sensitivity to endocrine therapy index and CDK4/6 inhibitor sensitivity score
The sensitivity to endocrine therapy index, used to indicate patients’ sensitivity to endocrine therapy, was defined as follows: , where G is the sum of the expression of 18 informative genes (SLC39A6, STC2, CA12, ESR1, PDZK1, NPY1R, CD2, MAPT, QDPR, AZGP1, ABAT, ADCY1, CD3D, CD3D, MRPS30, DNAJC12, DNAJC12, SCUBE2, and KCNE4) and R is the sum of the expression of 10 reference genes (LDHA, ATP5J2, VDAC2, DARS, UGP2, UBE2Z, AK2, WIPF2, APPBP2, and TRIM2)29–31. Calculation of the CDK4/6 inhibitor sensitivity score was performed with the Gene Set Variation Analysis (GSVA) method with previously reported relevant genes (SAMD2, TIRAP, SETBP1, NNMT, TMSB10, KRT19, THBS2, MDK, EZH2, CDK4, CYR61, SORD, and GSTM3),32 by using the “GSVA” function in the R package “GSVA”28 (v1.42.0).
Metabolic pathway differential abundance score
Differential abundance (DA) scores reflect the tendency for pathways to have elevated levels of metabolites33. The DA score was calculated as (number of metabolites significantly increased or decreased)/number of measured metabolites within the pathway. DA scores range from −1 to 1. For a given pathway, scores of 1 indicated that all metabolites increased in abundance, whereas scores of −1 indicated that all metabolites decreased in abundance.
Correlation network of metabolites
First, the detected polar metabolites were included for further analysis34. Subsequently, a polar metabolite network was generated by calculation of Spearman’s correlation, and negative correlations were not used. To achieve a concise representation and robust clustering effect, we retained metabolite interactions with correlation > 0.4 and FDR < 0.05, and removed the outlier nodes (KCore < 3) from the metabolite network. The ForceAtlas algorithm was used to lay out the structures for both networks35, and correlation networks were visualized in Gephi (v0.9.3). Specific metabolites are also visualized in Figure 5B. Metabolites in distinct pathways were selected for visualization.
Statistical analysis
The Mann-Whitney Wilcoxon test and Kruskal–Wallis test were applied to analyze continuous variables, whereas Fisher’s exact test was used to compare categorical variables. The P values for comparisons between pairs of groups among the 3 groups were calculated with the Mann-Whitney Wilcoxon test and adjusted for multiple comparisons with the Bonferroni method. Survival curves were constructed with the Kaplan–Meier product limit method and compared with the log-rank test. All analyses were performed in R (v4.1.1) (https://cran.r-project.org/).
Results
FUSCC-HR+/HER2− mammography cohort
To elucidate the molecular features associated with mammographic calcifications in HR+/HER2− breast cancer, we established a cohort of patients with HR+/HER2− breast cancer with preoperative mammography records (Table 1). Primary tumor samples were derived from patients treated at FUSCC between 2013 and 2014. Clinicopathological information and mammography images were collected in detail, in addition to whole exome sequencing (n = 271), OncoScan (n = 199), transcriptomics (n = 312), lipidomics (n = 196), and polar metabolomics (n = 196) data (Figure 1).
We assessed the mammography images according to the Breast Imaging Reporting and Data System (BI-RADS)19,36,37 classification and categorized the calcification status accordingly (Table S1). Calcifications were divided into 3 groups with varying degrees of malignancy suspicion: calcifications assessed as BI-RADS 4C-5 were classified as having high suspicion for malignancy; calcifications assessed as BI-RADS 4A-4B were classified as having low-moderate suspicion for malignancy; and calcifications assessed as BI-RADS 2-3 were classified as probably benign. Tumors without calcifications were categorized as calcification-negative. Due to the limited sample size of patients with calcifications of low-moderate suspicion for malignancy (n = 23), subsequent analyses focused primarily on the remaining patients (Figure 1).
Thus, we established a multi-omics cohort of HR+/HER2-breast cancers with mammography images for further exploration of biological features associated with calcifications, and related implications for precision treatment.
Clinical and pathological characteristics of tumors with different calcification statuses
We first focused on tumors with calcifications of high suspicion for malignancy. These tumors were associated with unfavorable clinicopathological characteristics, and were significantly larger than those in the other groups (in comparison to calcification-negative tumors, P = 0.035; in comparison to tumors with probably benign calcifications, P = 0.061, Mann-Whitney Wilcoxon test) (Figure 2A). These tumors also showed a higher rate of lymph node metastasis and lympho-vascular invasion than tumors without calcifications and tumors with probably benign calcifications (lymph node metastasis rate, 50.5% vs. 44.4% vs. 62.0%, P < 0.001, Fisher’s exact test; lympho-vascular invasion rate, 45.5% vs. 34.9% vs. 58.6%, P = 0.020, Fisher’s exact test) (Figure 2B, C). Moreover, this subset of tumors showed higher Ki-67 IHC staining scores than the other two groups (in comparison to calcification-negative tumors: P = 0.184; in comparison to tumors with probably benign calcifications, P < 0.001, Mann-Whitney Wilcoxon test) (median Ki-67 scores, 20% vs. 20% vs. 30%, P = 0.001, Kruskal-Wallis test) (Figure 2E). Furthermore, these tumors had higher histological grades than the other groups, although the difference did not reach statistical significance (Figure S2).
The patients with probably benign calcifications were significantly older than those with calcifications of high suspicion for malignancy (P = 0.009, Mann-Whitney Wilcoxon test) (Figure 2D), and their tumors exhibited higher ER and PR IHC staining scores than tumors with calcifications of high suspicion for malignancy (P = 0.071 and P < 0.001, respectively, Mann-Whitney Wilcoxon test) (Figure 2E).
Patients with probably benign calcifications tended to have better prognosis with endocrine therapy than the other patients, although this difference did not achieve statistical significance (P = 0.142, two-stage test) (Figure 2F). In addition, there was a higher rate of calcifications with high suspicion for malignancy in patients who relapsed compared to those who did not (46.2% vs. 33.5%, P < 0.001, Fisher’s exact test) (Figure 2G).
Genomic features of tumors among calcification groups
To further understand the molecular features associated with mammographic calcification status, we compared the genomic features among groups. Overall, tumors with calcifications of high suspicion for malignancy had significantly higher tumor mutational burden (TMB), HRD scores, and CIN scores than the other groups (Figure 3A–C). We then analyzed mutational signatures specific to breast cancer and found no statistically significant differences (Figure 3D).
Mutational profiling indicated that the most frequently mutated cancer-associated genes in the cohort included PIK3CA (46%), TP53 (26%), GATA3 (14%), MAP3K1 (15%), and AKT1 (10%) (Figure 3E). We observed a higher mutation frequency of MAP3K1 in the calcification-negative group than the other groups, but this difference did not reach statistical significance (P = 0.080, Fisher’s exact test) (Table S2).
Furthermore, we systemically characterized somatic copy number variation (CNV) in the FUSCC-HR+/HER2− mammography cohort. Compared to tumors without calcification and those with probably benign calcifications, tumors with calcifications of high suspicion for malignancy displayed deletions in segments of chromosomes 17p (including TP53) and 11q (including ATM) (Figure 3F). Previous reports have suggested that the deletion of chromosome 17q is associated with cell cycle dysregulation38. Targeting the cell cycle is a crucial therapeutic approach in HR+/HER2− breast cancer4–6,39,40. Hence, we compared the copy number alteration frequency for each cell cycle-associated gene among the groups. Activation of the cell cycle was observed in tumors with calcifications of high suspicion for malignancy (Figure 3G). Notably, genes involved in positive regulation of the cell cycle exhibited an elevated amplification rate in these tumors. For example, the gain or amplification of CCND2 was more pronounced than tumors with probably benign calcifications and those without calcifications (gain/amplification rate, 17.2% in calcification-negative groups vs. 8.4% in probably benign groups vs. 23.9% in high suspicion groups, P = 0.023, Fisher’s exact test). Moreover, genes involved in the negative regulation of the cell cycle showed higher deletion rates in tumors with calcifications of high suspicion for malignancy; the loss or deletion frequency of TP53 was highest among the 3 groups (loss/deletion rate: 39.8% vs. 45.8% vs. 71.6%, P < 0.001, Fisher’s exact test).
In summary, we compared the genomic features of the different calcification groups and observed genomic instability and cell cycle activation in tumors with calcifications of high suspicion for malignancy.
Molecular characteristics and potential therapeutic strategies across distinct calcification groups, as inferred from transcriptomic data
To obtain deeper insights into the transcriptomic characteristics associated with calcifications, we first compared the compositions of established molecular subtypes among tumors differing in calcification status (Figure 4A, B). In the PAM50 subtyping system, the tumors with probably benign calcifications were composed primarily of luminal A and luminal B subtypes, in contrast to tumors without calcifications or with calcifications of high suspicion for malignancy (70.9% in calcification-negative groups vs. 91.0% in probably benign groups vs. 81.6% in high suspicion groups, P = 0.047, Fisher’s exact test) (Figure 4A). In regards to SNF subtype, a taxonomy of HR+/HER2-breast cancer we previously proposed based on this cohort18, tumors with calcifications of high suspicion for malignancy were mainly SNF3 subtype, in contrast to tumors without calcifications and those with probably benign calcifications (27.1% vs. 29.4% vs. 49.2%, P = 0.064, Fisher’s exact test) (Figure 4B). SNF3 tumors are characterized by activation of the cell cycle and HRD. The higher proportion of the SNF3 subtype was consistent with the higher Ki-67 staining scores (Figure 2E) and HRD scores (Figure 3B) observed in tumors with calcifications of high suspicion for malignancy.
Additionally, we curated treatment-associated signatures from the I-SPY2 study to assess molecular characteristics and potential treatment strategies in different groups, on the basis of the RNA data from our cohort (Figure 4C)41. Each group had unique features. Tumors without calcifications showed a highly immune-activated phenotype, tumors with probably benign calcifications showed a clear ER-associated signature, and tumors with calcifications of high suspicion for malignancy displayed a high degree of proliferation.
Because the tumors among the three groups had distinct transcriptomic characteristics, we next explored the groups separately. Tumors without calcification exhibited immune activation; therefore, we used our RNA data to estimate the relative abundance of 24 microenvironmental cell types among the patients42. Tumors without calcification tended to have elevated infiltration of both adaptive and innate immune cells, thus suggesting a hot immune microenvironment (Figure 4D).
For tumors with probably benign calcifications, we performed ssGSEA and confirmed that the upregulation of ER-associated pathways in this subset of tumors, which originated from GSEA43,44 (Figure 4E, Table S3). A previous study has indicated that ER pathway activation suggests sensitivity to endocrine therapy (ET)45. Therefore, we calculated the endocrine therapy index29–31 for predicting sensitivity to ET. Tumors with probably benign calcifications were found to be more likely to benefit from ET (in comparison to calcification-negative tumors, P = 0.019; in comparison to high suspicion tumors, P < 0.001, Mann-Whitney Wilcoxon test) (Figure 4F).
Tumors with calcifications of high suspicion for malignancy showed higher ssGSEA scores for cell cycle-associated pathways (Figure 4G), thus indicating potential benefits of CDK4/6 inhibitor treatment. We calculated the sensitivity score for CDK4/6 inhibitors32 and found that these tumors were predicted to have elevated sensitivity to CDK4/6 inhibitors (in comparison to calcification-negative tumors, P = 0.007; in comparison to probably benign tumors, P < 0.001, Mann-Whitney Wilcoxon test) (Figure 4H).
In summary, we further explored the molecular characteristics of tumors with various calcification statuses at the transcriptomic level and proposed treatment strategies that may enable calcification-assisted clinical management.
Metabolomic characteristics among calcification groups
Because metabolic reprogramming is a hallmark of cancer46, we next explored the metabolic features associated with calcification. We performed metabolic pathway-based DA score analysis to describe the metabolic differences among calcification groups (Figure 5A)47. In tumors without calcification, we observed upregulation of vitamin metabolism (particularly thiamine metabolism) and downregulation of lipid metabolism. In tumors with probably benign calcification, thiamine metabolism was among the most down-regulated pathways. We also identified activation of lipid metabolism in these tumors, which has been associated with ER signaling in previous research48. In tumors with calcifications of high suspicion for malignancy, upregulation of amino acid metabolism (for example, tryptophan metabolism) was the most prominent metabolic feature. We subsequently conducted network analysis on specific polar metabolites, which indicated similar results (Figure 5B).
Discussion
To elucidate the molecular features associated with mammographic calcifications, we integrated a comprehensive multi-omics cohort of HR+/HER2− breast cancer with mammographic records. We classified the calcification status on the basis of mammographic images and conducted comprehensive investigations encompassing clinicopathological characteristics, genomics, transcriptomics, and metabolomics. In tumors without calcifications, the immune microenvironment was relatively hot. Tumors with probably benign calcifications displayed activation of the ER pathway, heightened responsiveness to endocrine therapy, and elevated lipid metabolism. Tumors with high suspicion calcifications exhibited larger tumor sizes; elevated prevalence of lymph node metastases, Ki-67 staining scores, genomic instability, cell cycle pathway activation; and potential to respond positively to CDK4/6 inhibitors.
We previously investigated the molecular attributes of mammographic calcifications in triple-negative breast cancer19. However, similar studies had not been conducted in HR+/HER2− breast cancer. In our previous research, we conducted an in-depth exploration of the molecular heterogeneity within HR+/HER2− breast cancer, in a comprehensive multi-omics cohort18. This cohort enabled us to explore the molecular basis of tumors displaying various calcifications within HR+/HER2− breast cancer—a subtype constituting a substantial portion of breast cancer cases overall.
Our study demonstrated that the clinical and pathological characteristics of tumors with high suspicion calcifications were consistent with those previously observed in tumors with microcalcifications. We classified the calcifications on the basis of mammography images, by following established guidelines, and comprehensively considered the morphology and distribution factors of calcifications37. The presence of microcalcifications is correlated with larger tumor size, higher grade, positive axillary lymph node metastasis, and poorer prognosis in breast cancer13,15,49,50. We further identified molecular characteristics aligning with clinical features, including genomic instability and activation of the cell cycle pathway in tumors with high suspicion calcifications, thus potentially providing underlying explanations of malignant biological behaviors. Previous reports have suggested potential associations of the occurrence of these malignant calcifications with inflammation, calcium ions, and oxidative stress14,51. Our metabolomic analysis may offer a new perspective regarding the factors contributing to calcification formation.
Endocrine therapy is the standard treatment for HR+/HER2− breast cancer. However, previous studies have not reported a relationship between calcifications and this therapeutic approach. Therefore, an in-depth analysis of the biological characteristics underlying calcifications and their potential in guiding endocrine therapy was necessary. We observed that patients with probably benign calcifications tended to be older, to exhibit higher hormone receptor immunohistochemical scores, and to show ER-associated pathway activation than patients with other classifications. These findings collectively suggested that this subset of patients might favorably respond to endocrine therapy.
This study has several limitations. First, the sample size was limited, and the study cohort lacked randomization, thus necessitating the validation of key features and conclusions associated with the different calcification groups through external cohort data. Additionally, experimental validation will be essential for several of our observations and hypotheses, such as the sensitivity of tumors with high suspicion calcifications to CDK4/6 inhibitors.
Collectively, this study established a multi-omics cohort of HR+/HER2− breast cancer with mammography imaging, and further investigated the molecular characteristics and potential therapeutic strategies associated with various calcification states of tumors.
Supporting Information
Conflict of interest statement
No potential conflicts of interest are disclosed.
Author contributions
Conceived and designed the analysis: Ding Ma, Zhiming Shao.
Collected the data: Yuwei Li, Yuzheng Xu.
Contributed data or analysis tools: Caijin Lin, Xi Jin.
Performed the analysis: Yuwei Li, Yuzheng Xu.
Wrote the paper: Yuwei Li, Yuzheng Xu.
Data availability statement
The data generated in this study are publicly available in the Genome Sequence Archive (GSA) database under accession code PRJCA017539 (https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA017539).
Footnotes
↵*These authors contributed equally to this work.
- Received December 15, 2023.
- Accepted February 19, 2024.
- Copyright: © 2024, The Authors
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.