Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Research ArticleOriginal Article

Comparative profiling of immune genes improves the prognoses of lower grade gliomas

Zhiliang Wang, Wen Cheng, Zheng Zhao, Zheng Wang, Chuanbao Zhang, Guanzhang Li, Anhua Wu and Tao Jiang
Cancer Biology & Medicine April 2022, 19 (4) 533-550; DOI: https://doi.org/10.20892/j.issn.2095-3941.2021.0173
Zhiliang Wang
1Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wen Cheng
2Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zheng Zhao
1Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zheng Wang
3Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chuanbao Zhang
3Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guanzhang Li
1Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anhua Wu
2Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anhua Wu
  • For correspondence: [email protected] [email protected]
Tao Jiang
1Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
3Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tao Jiang
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Ostrom QT,
    2. Gittleman H,
    3. Farah P,
    4. Ondracek A,
    5. Chen Y,
    6. Wolinsky Y, et al.
    CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2006-2010. Neuro Oncol. 2013; 15: ii1–56.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Louis DN,
    2. Ohgaki H,
    3. Wiestler OD,
    4. Cavenee WK,
    5. Burger PC,
    6. Jouvet A, et al.
    The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007; 114: 97–109.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Suzuki H,
    2. Aoki K,
    3. Chiba K,
    4. Sato Y,
    5. Shiozawa Y,
    6. Shiraishi Y, et al.
    Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet. 2015; 47: 458–68.
    OpenUrlCrossRefPubMed
  4. 4.
    1. Eckel-Passow JE,
    2. Lachance DH,
    3. Molinaro AM,
    4. Walsh KM,
    5. Decker PA,
    6. Sicotte H, et al.
    Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015; 372: 2499–508.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Cancer Genome Atlas Research Network
    2. Brat DJ,
    3. Verhaak RG,
    4. Aldape KD,
    5. Yung WK,
    6. Salama SR,
    7. Cooper LA, et al.
    Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015; 372: 2481–98.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Zhang C,
    2. Cheng W,
    3. Ren X,
    4. Wang Z,
    5. Liu X,
    6. Li G, et al.
    Tumor purity as an underlying key factor in glioma. Clin Cancer Res. 2017; 23: 6279–91.
    OpenUrlAbstract/FREE Full Text
  7. 7.
    1. Chen Q,
    2. Han B,
    3. Meng X,
    4. Duan C,
    5. Yang C,
    6. Wu Z, et al.
    Immunogenomic analysis reveals LGALS1 contributes to the immune heterogeneity and immunosuppression in glioma. Int J Cancer. 2019; 145: 517–30.
    OpenUrl
  8. 8.
    1. Cai J,
    2. Chen Q,
    3. Cui Y,
    4. Dong J,
    5. Chen M,
    6. Wu P, et al.
    Immune heterogeneity and clinicopathologic characterization of IGFBP2 in 2447 glioma samples. Oncoimmunology. 2018; 7: e1426516.
  9. 9.↵
    1. Wu P,
    2. Geng B,
    3. Chen Q,
    4. Zhao E,
    5. Liu J,
    6. Sun C, et al.
    Tumor cell-derived TGFbeta1 attenuates antitumor immune activity of T cells via regulation of PD-1 mRNA. Cancer Immunol Res. 2020; 8: 1470–84.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Zha C,
    2. Meng X,
    3. Li L,
    4. Mi S,
    5. Qian D,
    6. Li Z, et al.
    Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol Med. 2020; 17: 154–68.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Qiu H,
    2. Li Y,
    3. Cheng S,
    4. Li J,
    5. He C,
    6. Li J.
    A prognostic microenvironment-related immune signature via estimate (promise model) predicts overall survival of patients with glioma. Front Oncol. 2020; 10: 580263.
  12. 12.↵
    1. Yan W,
    2. Zhang W,
    3. You G,
    4. Zhang J,
    5. Han L,
    6. Bao Z, et al.
    Molecular classification of gliomas based on whole genome gene expression: a systematic report of 225 samples from the chinese glioma cooperative group. Neuro Oncol. 2012; 14: 1432–40.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Wang ZL,
    2. Zhao Z,
    3. Wang Z,
    4. Zhang CB,
    5. Jiang T.
    Predicting chromosome 1p/19q codeletion by RNA expression profile: a comparison of current prediction models. Aging (Albany NY). 2019; 11: 974–85.
    OpenUrl
  14. 14.↵
    1. Becht E,
    2. Giraldo NA,
    3. Lacroix L,
    4. Buttard B,
    5. Elarouci N,
    6. Petitprez F, et al.
    Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016; 17: 218.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Garcia D,
    2. MacDonald S,
    3. Archer T.
    Two different approaches to the affective profiles model: median splits (variable-oriented) and cluster analysis (person-oriented). PeerJ. 2015; 3: e1380.
  16. 16.↵
    1. DeCoster J,
    2. Gallucci M,
    3. Iselin AMR.
    Best practices for using median splits, artificial categorization, and their continuous alternatives. J Exp Psychopathol. 2011; 2: 197–09.
    OpenUrl
  17. 17.↵
    1. Zeng D,
    2. Li M,
    3. Zhou R,
    4. Zhang J,
    5. Sun H,
    6. Shi M, et al.
    Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res. 2019; 7: 737–50.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Rody A,
    2. Holtrich U,
    3. Pusztai L,
    4. Liedtke C,
    5. Gaetje R,
    6. Ruckhaeberle E, et al.
    T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 2009; 11: R15.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Wang Z,
    2. Hao Y,
    3. Zhang C,
    4. Wang Z,
    5. Liu X,
    6. Li G, et al.
    The landscape of viral expression reveals clinically relevant viruses with potential capability of promoting malignancy in lower-grade glioma. Clin Cancer Res. 2017; 23: 2177–85.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Ousman SS,
    2. Kubes P.
    Immune surveillance in the central nervous system. Nat Neurosci. 2012; 15: 1096–101.
    OpenUrlCrossRefPubMed
  21. 21.
    1. Fridman WH,
    2. Zitvogel L,
    3. Sautes-Fridman C,
    4. Kroemer G.
    The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017; 14: 717–34.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Muldoon LL,
    2. Alvarez JI,
    3. Begley DJ,
    4. Boado RJ,
    5. Del Zoppo GJ,
    6. Doolittle ND, et al.
    Immunologic privilege in the central nervous system and the blood-brain barrier. J Cereb Blood Flow Metab. 2013; 33: 13–21.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Brown CE,
    2. Alizadeh D,
    3. Starr R,
    4. Weng L,
    5. Wagner JR,
    6. Naranjo A, et al.
    Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016; 375: 2561–9.
    OpenUrlCrossRefPubMed
  24. 24.
    1. He Y,
    2. Rivard CJ,
    3. Rozeboom L,
    4. Yu H,
    5. Ellison K,
    6. Kowalewski A, et al.
    Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci. 2016; 107: 1193–7.
    OpenUrl
  25. 25.↵
    1. Parry RV,
    2. Chemnitz JM,
    3. Frauwirth KA,
    4. Lanfranco AR,
    5. Braunstein I,
    6. Kobayashi SV, et al.
    CTLA-4 and PD-1 receptors inhibit t-cell activation by distinct mechanisms. Mol Cell Biol. 2005; 25: 9543–53.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Han S,
    2. Zhang C,
    3. Li Q,
    4. Dong J,
    5. Liu Y,
    6. Huang Y, et al.
    Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer. 2014; 110: 2560–8.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Cheng W,
    2. Ren X,
    3. Zhang C,
    4. Cai J,
    5. Liu Y,
    6. Han S, et al.
    Bioinformatic profiling identifies an immune-related risk signature for glioblastoma. Neurology. 2016; 86: 2226–34.
    OpenUrlPubMed
  28. 28.↵
    1. Collins CT,
    2. Hess JL.
    Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene. 2016; 35: 1090–8.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Ko SY,
    2. Ladanyi A,
    3. Lengyel E,
    4. Naora H.
    Expression of the homeobox gene HOXA9 in ovarian cancer induces peritoneal macrophages to acquire an M2 tumor-promoting phenotype. Am J Pathol. 2014; 184: 271–81.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Gilbert PM,
    2. Mouw JK,
    3. Unger MA,
    4. Lakins JN,
    5. Gbegnon MK,
    6. Clemmer VB, et al.
    HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype. J Clin Invest. 2010; 120: 1535–50.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.↵
    1. Quintanar JL,
    2. Guzman-Soto I.
    Hypothalamic neurohormones and immune responses. Front Integr Neurosci. 2013; 7: 56.
    OpenUrl
  32. 32.↵
    1. Bethin KE,
    2. Vogt SK,
    3. Muglia LJ.
    Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc Natl Acad Sci U S A. 2000; 97: 9317–22.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Batchu RB,
    2. Gruzdyn OV,
    3. Kolli BK,
    4. Dachepalli R,
    5. Umar PS,
    6. Rai SK, et al.
    IL-10 signaling in the tumor microenvironment of ovarian cancer. Adv Exp Med Biol. 2021; 1290: 51–65.
    OpenUrl
  34. 34.↵
    1. Said EA,
    2. Dupuy FP,
    3. Trautmann L,
    4. Zhang Y,
    5. Shi Y,
    6. El-Far M, et al.
    Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ t cell activation during hiv infection. Nat Med. 2010; 16: 452–9.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.↵
    1. Cai J,
    2. Zhang W,
    3. Yang P,
    4. Wang Y,
    5. Li M,
    6. Zhang C, et al.
    Identification of a 6-cytokine prognostic signature in patients with primary glioblastoma harboring M2 microglia/macrophage phenotype relevance. PLoS One. 2015; 10: e0126022.
  36. 36.
    1. Henze AT,
    2. Mazzone M.
    The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 2016; 126: 3672–9.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Meng X,
    2. Duan C,
    3. Pang H,
    4. Chen Q,
    5. Han B,
    6. Zha C, et al.
    DNA damage repair alterations modulate M2 polarization of microglia to remodel the tumor microenvironment via the p53-mediated MDK expression in glioma. EBioMedicine. 2019; 41: 185–99.
    OpenUrl
  38. 38.↵
    1. Lopes RL,
    2. Borges TJ,
    3. Zanin RF,
    4. Bonorino C.
    IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial Dnak (heat shock protein 70). Cytokine. 2016; 85: 123–9.
    OpenUrl
  39. 39.↵
    1. Laffer B,
    2. Bauer D,
    3. Wasmuth S,
    4. Busch M,
    5. Jalilvand TV,
    6. Thanos S, et al.
    Loss of IL-10 promotes differentiation of microglia to a M1 phenotype. Front Cell Neurosci. 2019; 13: 430.
    OpenUrl
  40. 40.↵
    1. Yang L,
    2. Dong Y,
    3. Li Y,
    4. Wang D,
    5. Liu S,
    6. Wang D, et al.
    IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-kappaB/Notch1 pathway in non-small cell lung cancer. Int J Cancer. 2019; 145: 1099–110.
    OpenUrlCrossRefPubMed
  41. 41.
    1. Liu CY,
    2. Xu JY,
    3. Shi XY,
    4. Huang W,
    5. Ruan TY,
    6. Xie P, et al.
    M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest. 2013; 93: 844–54.
    OpenUrlCrossRefPubMedWeb of Science
  42. 42.↵
    1. Qi L,
    2. Yu H,
    3. Zhang Y,
    4. Zhao D,
    5. Lv P,
    6. Zhong Y, et al.
    IL-10 secreted by M2 macrophage promoted tumorigenesis through interaction with JAK2 in glioma. Oncotarget. 2016; 7: 71673–85.
    OpenUrl
  43. 43.↵
    1. Balachandran VP,
    2. Gonen M,
    3. Smith JJ,
    4. DeMatteo RP.
    Nomograms in oncology: more than meets the eye. Lancet Oncol. 2015; 16: e173–80.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Cheng W,
    2. Zhang C,
    3. Ren X,
    4. Wang Z,
    5. Liu X,
    6. Han S, et al.
    Treatment strategy and IDH status improve nomogram validity in newly diagnosed GBM patients. Neuro-Oncol. 2017; 19: 736–38.
    OpenUrl
PreviousNext
Back to top

In this issue

Cancer Biology & Medicine: 19 (4)
Cancer Biology & Medicine
Vol. 19, Issue 4
15 Apr 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comparative profiling of immune genes improves the prognoses of lower grade gliomas
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Comparative profiling of immune genes improves the prognoses of lower grade gliomas
Zhiliang Wang, Wen Cheng, Zheng Zhao, Zheng Wang, Chuanbao Zhang, Guanzhang Li, Anhua Wu, Tao Jiang
Cancer Biology & Medicine Apr 2022, 19 (4) 533-550; DOI: 10.20892/j.issn.2095-3941.2021.0173

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Comparative profiling of immune genes improves the prognoses of lower grade gliomas
Zhiliang Wang, Wen Cheng, Zheng Zhao, Zheng Wang, Chuanbao Zhang, Guanzhang Li, Anhua Wu, Tao Jiang
Cancer Biology & Medicine Apr 2022, 19 (4) 533-550; DOI: 10.20892/j.issn.2095-3941.2021.0173
Digg logo Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Material and methods
    • Results
    • Discussion
    • Conclusions
    • Supporting Information
    • Grant support
    • Conflict of interest statement
    • Author contributions
    • Availability of data and materials
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Identification of hub genes and their novel diagnostic and prognostic significance in pancreatic adenocarcinoma
  • Bilirubin inhibits the anticancer activity of sorafenib by blocking MCL-1 degradation in hepatocellular carcinoma cells
  • SY-1530, a highly selective BTK inhibitor, effectively treats B-cell malignancies by blocking B-cell activation
Show more Original Article

Similar Articles

Keywords

  • Lower grade glioma
  • immune
  • gene pairs
  • signature
  • prognosis

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2022 Cancer Biology & Medicine

Powered by HighWire