Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Research progress in hepatitis B virus covalently closed circular DNA

Xiaodong Zhang, Yufei Wang and Guang Yang
Cancer Biology & Medicine April 2022, 19 (4) 415-431; DOI: https://doi.org/10.20892/j.issn.2095-3941.2021.0454
Xiaodong Zhang
1Department of Gastrointestinal Cancer Biology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xiaodong Zhang
  • For correspondence: [email protected]
Yufei Wang
2Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guang Yang
1Department of Gastrointestinal Cancer Biology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Lucifora J,
    2. Xia Y,
    3. Reisinger F,
    4. Zhang K,
    5. Stadler D,
    6. Cheng X, et al.
    Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014; 343: 1221–8.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Koniger C,
    2. Wingert I,
    3. Marsmann M,
    4. Rosler C,
    5. Beck J,
    6. Nassal M.
    Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc Natl Acad Sci U S A. 2014; 111: E4244–53.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Luo X,
    2. Huang Y,
    3. Chen Y,
    4. Tu Z,
    5. Hu J,
    6. Tavis JE, et al.
    Association of hepatitis B virus covalently closed circular DNA and human APOBEC3B in hepatitis B virus-related hepatocellular carcinoma. PLoS One. 2016; 11: e0157708–22.
    OpenUrl
  4. 4.↵
    1. Hu J,
    2. Protzer U,
    3. Siddiqui A.
    Revisiting hepatitis B virus: challenges of curative therapies. J Virol. 2019; 93: e01032-19.
  5. 5.↵
    1. Tropberger P,
    2. Mercier A,
    3. Robinson M,
    4. Zhong W,
    5. Ganem DE,
    6. Holdorf M.
    Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. Proc Natl Acad Sci U S A. 2015; 112: E5715–24.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Li X,
    2. Zhao J,
    3. Yuan Q,
    4. Xia N.
    Detection of HBV covalently closed circular DNA. Viruses. 2017; 9: 139–57.
    OpenUrl
  7. 7.
    1. Gao W,
    2. Hu J.
    Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein. J Virol. 2007; 81: 6164–74.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Levrero M,
    2. Pollicino T,
    3. Petersen J,
    4. Belloni L,
    5. Raimondo G,
    6. Dandri M.
    Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009; 51: 581–92.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Levrero M,
    2. Zucman-Rossi J.
    Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 2016; 64: S84–101.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Schwabe RF,
    2. Greten TF.
    Gut microbiome in HCC–mechanisms, diagnosis and therapy. J Hepatol. 2020; 72: 230–8.
    OpenUrlPubMed
  11. 11.↵
    1. Di Bisceglie AM.
    Hepatitis B and hepatocellular carcinoma. Hepatology. 2009; 49: S56–60.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.
    1. Chen Y,
    2. Tian Z.
    HBV-induced immune imbalance in the development of HCC. Front Immunol. 2019; 10: 2048–58.
    OpenUrl
  13. 13.
    1. Zhang C,
    2. Huang C,
    3. Sui X,
    4. Zhong X,
    5. Yang W,
    6. Hu X, et al.
    Association between gene methylation and HBV infection in hepatocellular carcinoma: a meta-analysis. J Cancer. 2019; 10: 6457–65.
    OpenUrl
  14. 14.↵
    1. Xu C,
    2. Zhou W,
    3. Wang Y,
    4. Qiao L.
    Hepatitis B virus-induced hepatocellular carcinoma. Cancer Lett. 2014; 345: 216–22.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Jia L,
    2. Gao Y,
    3. He Y,
    4. Hooper JD,
    5. Yang P.
    HBV induced hepatocellular carcinoma and related potential immunotherapy. Pharmacol Res. 2020; 159: 104992–7.
    OpenUrl
  16. 16.
    1. Zhang WY,
    2. Cai N,
    3. Ye LH,
    4. Zhang XD.
    Transformation of human liver L-O2 cells mediated by stable HBx transfection. Acta Pharmacol Sin. 2009; 30: 1153–61.
    OpenUrlPubMed
  17. 17.↵
    1. Zhang X,
    2. You X,
    3. Li N,
    4. Zhang W,
    5. Gagos S,
    6. Wang Q, et al.
    Involvement of hepatitis B virus X gene (HBx) integration in hepatocarcinogenesis via a recombination of HBx/Alu core sequence/subtelomeric DNA. FEBS Lett. 2012; 586: 3215–21.
    OpenUrlPubMed
  18. 18.↵
    1. Wang H,
    2. Liu Y,
    3. Wang D,
    4. Xu Y,
    5. Dong R,
    6. Yang Y, et al.
    The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells. 2019; 8: 1597–632.
    OpenUrlCrossRefPubMed
  19. 19.
    1. Lu X,
    2. Paliogiannis P,
    3. Calvisi DF,
    4. Chen X.
    Role of the mammalian target of rapamycin pathway in liver cancer: From molecular genetics to targeted therapies. Hepatology. 2021; 73 Suppl 1: 49–61.
  20. 20.↵
    1. Zheng YL,
    2. Li L,
    3. Jia YX,
    4. Zhang BZ,
    5. Li JC,
    6. Zhu YH, et al.
    LINC01554-mediated glucose metabolism reprogramming suppresses tumorigenicity in hepatocellular carcinoma via downregulating PKM2 expression and inhibiting Akt/mTOR signaling pathway. Theranostics. 2019; 9: 796–810.
    OpenUrl
  21. 21.↵
    1. Allweiss L,
    2. Dandri M.
    The role of cccDNA in HBV maintenance. Viruses. 2017; 9: 156–67.
    OpenUrlCrossRef
  22. 22.↵
    1. Newbold JE,
    2. Xin H,
    3. Tencza M,
    4. Sherman G,
    5. Dean J,
    6. Bowden S, et al.
    The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol. 1995; 69: 3350–7.
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. Bock CT,
    2. Schranz P,
    3. Schroder CH,
    4. Zentgraf H.
    Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes. 1994; 8: 215–29.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Bock CT,
    2. Schwinn S,
    3. Locarnini S,
    4. Fyfe J,
    5. Manns MP,
    6. Trautwein C, et al.
    Structural organization of the hepatitis B virus minichromosome. J Mol Biol. 2001; 307: 183–96.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.↵
    1. Belloni L,
    2. Pollicino T,
    3. De Nicola F,
    4. Guerrieri F,
    5. Raffa G,
    6. Fanciulli M, et al.
    Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc Natl Acad Sci U S A. 2009; 106: 19975–9.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Lucifora J,
    2. Arzberger S,
    3. Durantel D,
    4. Belloni L,
    5. Strubin M,
    6. Levrero M, et al.
    Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J Hepatol. 2011; 55: 996–1003.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Lee H,
    2. Jeong H,
    3. Lee SY,
    4. Kim SS,
    5. Jang KL.
    Hepatitis B virus X protein stimulates virus replication via DNA methylation of the C-1619 in covalently closed circular DNA. Mol Cells. 2019; 42: 67–78.
    OpenUrl
  28. 28.↵
    1. Chong CK,
    2. Cheng CYS,
    3. Tsoi SYJ,
    4. Huang FY,
    5. Liu F,
    6. Fung J, et al.
    HBV X protein mutations affect HBV transcription and association of histone-modifying enzymes with covalently closed circular DNA. Sci Rep. 2020; 10: 802–11.
    OpenUrl
  29. 29.↵
    1. Saeed U,
    2. Kim J,
    3. Piracha ZZ,
    4. Kwon H,
    5. Jung J,
    6. Chwae YJ, et al.
    Parvulin 14 and parvulin 17 bind to HBx and cccDNA and upregulate hepatitis B virus replication from cccDNA to virion in an HBx-dependent manner. J Virol. 2019; 93: e01840-18.
  30. 30.↵
    1. Kinoshita W,
    2. Ogura N,
    3. Watashi K,
    4. Wakita T.
    Host factor PRPF31 is involved in cccDNA production in HBV-replicating cells. Biochem Biophys Res Commun. 2017; 482: 638–44.
    OpenUrl
  31. 31.↵
    1. Decorsiere A,
    2. Mueller H,
    3. van Breugel PC,
    4. Abdul F,
    5. Gerossier L,
    6. Beran RK, et al.
    Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016; 531: 386–9.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Riviere L,
    2. Gerossier L,
    3. Ducroux A,
    4. Dion S,
    5. Deng Q,
    6. Michel ML, et al.
    HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J Hepatol. 2015; 63: 1093–102.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Cheng J,
    2. Zhao Q,
    3. Zhou Y,
    4. Tang L,
    5. Sheraz M,
    6. Chang J, et al.
    Interferon alpha induces multiple cellular proteins that coordinately suppress hepadnaviral covalently closed circular DNA transcription. J Virol. 2020; 94–115.
  34. 34.↵
    1. Yang Y,
    2. Zhao X,
    3. Wang Z,
    4. Shu W,
    5. Li L,
    6. Li Y, et al.
    Nuclear sensor interferon-inducible protein 16 inhibits the function of hepatitis B virus covalently closed circular DNA by integrating innate immune activation and epigenetic suppression. Hepatology. 2020; 71: 1154–69.
    OpenUrl
  35. 35.↵
    1. Belloni L,
    2. Allweiss L,
    3. Guerrieri F,
    4. Pediconi N,
    5. Volz T,
    6. Pollicino T, et al.
    IFN-alpha inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012; 122: 529–37.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.↵
    1. Benhenda S,
    2. Ducroux A,
    3. Riviere L,
    4. Sobhian B,
    5. Ward MD,
    6. Dion S, et al.
    Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J Virol. 2013; 87: 4360–71.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Salerno D,
    2. Chiodo L,
    3. Alfano V,
    4. Floriot O,
    5. Cottone G,
    6. Paturel A, et al.
    Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut. 2020; 69: 2016–24.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Yang G,
    2. Feng J,
    3. Liu Y,
    4. Zhao M,
    5. Yuan Y,
    6. Yuan H, et al.
    HAT1 signaling confers to assembly and epigenetic regulation of HBV cccDNA minichromosome. Theranostics. 2019; 9: 7345–58.
    OpenUrl
  39. 39.↵
    1. Feng J,
    2. Yang G,
    3. Liu Y,
    4. Gao Y,
    5. Zhao M,
    6. Bu Y, et al.
    LncRNA PCNAP1 modulates hepatitis B virus replication and enhances tumor growth of liver cancer. Theranostics. 2019; 9: 5227–45.
    OpenUrl
  40. 40.↵
    1. Hong X,
    2. Kim ES,
    3. Guo H.
    Epigenetic regulation of hepatitis B virus covalently closed circular DNA: Implications for epigenetic therapy against chronic hepatitis B. Hepatology. 2017; 66: 2066–77.
    OpenUrlCrossRef
  41. 41.↵
    1. Liu K,
    2. Ludgate L,
    3. Yuan Z,
    4. Hu J.
    Regulation of multiple stages of hepadnavirus replication by the carboxyl-terminal domain of viral core protein in trans. J Virol. 2015; 89: 2918–30.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. Cui X,
    2. Luckenbaugh L,
    3. Bruss V,
    4. Hu J.
    Alteration of mature nucleocapsid and enhancement of covalently closed circular DNA formation by hepatitis B virus core mutants defective in complete-virion formation. J Virol. 2015; 89: 10064–72.
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. Guo H,
    2. Mao R,
    3. Block TM,
    4. Guo JT.
    Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. J Virol. 2010; 84: 387–96.
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. Luo J,
    2. Luckenbaugh L,
    3. Hu H,
    4. Yan Z,
    5. Gao L,
    6. Hu J.
    Involvement of host ATR-CHK1 pathway in hepatitis B virus covalently closed circular DNA formation. mBio. 2020; 11: e03423-19.
  45. 45.↵
    1. Wing PA,
    2. Davenne T,
    3. Wettengel J,
    4. Lai AG,
    5. Zhuang X,
    6. Chakraborty A, et al.
    A dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle genesis. Life Sci Alliance. 2019; 2: e201900355–66.
    OpenUrlAbstract/FREE Full Text
  46. 46.↵
    1. Sheraz M,
    2. Cheng J,
    3. Tang L,
    4. Chang J,
    5. Guo JT.
    Cellular DNA topoisomerases are required for the synthesis of hepatitis B virus covalently closed circular DNA. J Virol. 2019; 93: e02230-18.
  47. 47.↵
    1. Kitamura K,
    2. Que L,
    3. Shimadu M,
    4. Koura M,
    5. Ishihara Y,
    6. Wakae K, et al.
    Flap endonuclease 1 is involved in cccDNA formation in the hepatitis B virus. PLoS Pathog. 2018; 14: e1007124–43.
    OpenUrlCrossRef
  48. 48.
    1. Qi Y,
    2. Gao Z,
    3. Xu G,
    4. Peng B,
    5. Liu C,
    6. Yan H, et al.
    DNA Polymerase kappa is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog. 2016; 12: e1005893–918.
    OpenUrlCrossRef
  49. 49.↵
    1. Tang L,
    2. Sheraz M,
    3. McGrane M,
    4. Chang J,
    5. Guo JT.
    DNA Polymerase alpha is essential for intracellular amplification of hepatitis B virus covalently closed circular DNA. PLoS Pathog. 2019; 15: e1007742–69.
    OpenUrlCrossRef
  50. 50.↵
    1. Long Q,
    2. Yan R,
    3. Hu J,
    4. Cai D,
    5. Mitra B,
    6. Kim ES, et al.
    The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation. PLoS Pathog. 2017; 13: e1006784.
  51. 51.↵
    1. Wei L,
    2. Ploss A.
    Core components of DNA lagging strand synthesis machinery are essential for hepatitis B virus cccDNA formation. Nat Microbiol. 2020; 5: 715–26.
    OpenUrl
  52. 52.↵
    1. Brezgin S,
    2. Kostyusheva A,
    3. Bayurova E,
    4. Gordeychuk I,
    5. Isaguliants M,
    6. Goptar I, et al.
    Replenishment of hepatitis B virus cccDNA pool is restricted by baseline expression of host restriction factors in vitro. Microorganisms. 2019; 7: 533–48.
    OpenUrl
  53. 53.↵
    1. Zhou L,
    2. Ren JH,
    3. Cheng ST,
    4. Xu HM,
    5. Chen WX,
    6. Chen DP, et al.
    A Functional variant in ubiquitin conjugating enzyme E2 L3 contributes to hepatitis B virus infection and maintains covalently closed circular DNA stability by inducing degradation of apolipoprotein B mRNA editing enzyme catalytic subunit 3A. Hepatology. 2019; 69: 1885–902.
    OpenUrl
  54. 54.↵
    1. Liu Z,
    2. Wang J,
    3. Yuan H,
    4. Liu L,
    5. Bu Y,
    6. Zhao M, et al.
    IFN-alpha2b inhibits the ethanol enriched-HBV cccDNA through blocking a positive feedback loop of HBx/MSL2/cccDNA/HBV/HBx in liver. Biochem Biophys Res Commun. 2020; 527: 76–82.
    OpenUrl
  55. 55.↵
    1. Gao Y,
    2. Feng J,
    3. Yang G,
    4. Zhang S,
    5. Liu Y,
    6. Bu Y, et al.
    Hepatitis B virus X protein-elevated MSL2 modulates hepatitis B virus covalently closed circular DNA by inducing degradation of APOBEC3B to enhance hepatocarcinogenesis. Hepatology. 2017; 66: 1413–29.
    OpenUrlCrossRef
  56. 56.↵
    1. Liu Y,
    2. Feng J,
    3. Sun M,
    4. Yang G,
    5. Yuan H,
    6. Wang Y, et al.
    Long non-coding RNA HULC activates HBV by modulating HBx/STAT3/miR-539/APOBEC3B signaling in HBV-related hepatocellular carcinoma. Cancer Lett. 2019; 454: 158–70.
    OpenUrl
  57. 57.↵
    1. Wang YX,
    2. Niklasch M,
    3. Liu T,
    4. Wang Y,
    5. Shi B,
    6. Yuan W, et al.
    Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. J Hepatol. 2020; 72: 865–76.
    OpenUrl
  58. 58.↵
    1. Flecken T,
    2. Meier MA,
    3. Skewes-Cox P,
    4. Barkan DT,
    5. Heim MH,
    6. Wieland SF, et al.
    Mapping the heterogeneity of Histone modifications on hepatitis B virus DNA using liver needle biopsies obtained from chronically infected patients. J Virol. 2019; 93: e02036-18.
  59. 59.↵
    1. Ren JH,
    2. Hu JL,
    3. Cheng ST,
    4. Yu HB,
    5. Wong VKW,
    6. Law BYK, et al.
    SIRT3 restricts hepatitis B virus transcription and replication through epigenetic regulation of covalently closed circular DNA involving suppressor of variegation 3-9 homolog 1 and SET domain containing 1A histone methyltransferases. Hepatology. 2018; 68: 1260–76.
    OpenUrlCrossRef
  60. 60.↵
    1. Guerrieri F,
    2. Belloni L,
    3. D’Andrea D,
    4. Pediconi N,
    5. Le Pera L,
    6. Testoni B, et al.
    Genome-wide identification of direct HBx genomic targets. BMC Genomics. 2017; 18: 184.
    OpenUrlCrossRef
  61. 61.↵
    1. Slagle BL,
    2. Bouchard MJ.
    Hepatitis B virus X and regulation of viral gene expression. Cold Spring Harb Perspect Med. 2016; 6: a021402.
  62. 62.↵
    1. Guo YH,
    2. Li YN,
    3. Zhao JR,
    4. Zhang J,
    5. Yan Z.
    HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic permissive state. Epigenetics. 2011; 6: 720–6.
    OpenUrlCrossRefPubMed
  63. 63.
    1. Zhang Y,
    2. Mao R,
    3. Yan R,
    4. Cai D,
    5. Zhang Y,
    6. Zhu H, et al.
    Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection. PLoS One. 2014; 9: e110442.
  64. 64.↵
    1. Jain S,
    2. Chang TT,
    3. Chen S,
    4. Boldbaatar B,
    5. Clemens A,
    6. Lin SY, et al.
    Comprehensive DNA methylation analysis of hepatitis B virus genome in infected liver tissues. Sci Rep. 2015; 5: 10478–88.
    OpenUrlCrossRef
  65. 65.↵
    1. Chong CK,
    2. Cheng CYS,
    3. Tsoi SYJ,
    4. Huang FY,
    5. Liu F,
    6. Seto WK, et al.
    Role of hepatitis B core protein in HBV transcription and recruitment of histone acetyltransferases to cccDNA minichromosome. Antiviral Res. 2017; 144: 1–7.
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. Lucifora J,
    2. Pastor F,
    3. Charles É,
    4. Pons C,
    5. Auclair H,
    6. Fusil F, et al.
    Evidence for long-term association of virion-delivered HBV core protein with cccDNA independently of viral protein production. JHEP reports: innovation in hepatology. 2021; 3: 100330–5.
    OpenUrl
  67. 67.↵
    1. Wang Z,
    2. Kawaguchi K,
    3. Honda M,
    4. Hashimoto S,
    5. Shirasaki T,
    6. Okada H, et al.
    Notch signaling facilitates hepatitis B virus covalently closed circular DNA transcription via cAMP response element-binding protein with E3 ubiquitin ligase-modulation. Sci Rep. 2019; 9: 1621–2.
    OpenUrl
  68. 68.↵
    1. Zeng J,
    2. Wu D,
    3. Hu H,
    4. Young JAT,
    5. Yan Z,
    6. Gao L.
    Activation of the liver X receptor pathway inhibits HBV replication in primary human Hepatocytes. Hepatology. 2020; 72: 1935–48.
    OpenUrl
  69. 69.↵
    1. Yuan Y,
    2. Zhao K,
    3. Yao Y,
    4. Liu C,
    5. Chen Y,
    6. Li J, et al.
    HDAC11 restricts HBV replication through epigenetic repression of cccDNA transcription. Antiviral Res. 2019; 172: 104619–27.
    OpenUrl
  70. 70.↵
    1. Zhang W,
    2. Chen J,
    3. Wu M,
    4. Zhang X,
    5. Zhang M,
    6. Yue L, et al.
    PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatology. 2017; 66: 398–415.
    OpenUrlCrossRef
  71. 71.↵
    1. Sekiba K,
    2. Otsuka M,
    3. Ohno M,
    4. Yamagami M,
    5. Kishikawa T,
    6. Seimiya T, et al.
    Pevonedistat, a neuronal precursor cell-expressed developmentally down-regulated protein 8-activating enzyme inhibitor, is a potent inhibitor of hepatitis B virus. Hepatology. 2019; 69: 1903–15.
    OpenUrl
  72. 72.↵
    1. Liu N,
    2. Zhang J,
    3. Yang X,
    4. Jiao T,
    5. Zhao X,
    6. Li W, et al.
    HDM2 promotes NEDDylation of hepatitis B virus HBx to enhance its stability and function. J Virol. 2017; 91: e00340-17.
  73. 73.↵
    1. Han S,
    2. Shin H,
    3. Oh JW,
    4. Oh YJ,
    5. Her NG,
    6. Nam DH.
    The protein neddylation inhibitor MLN4924 suppresses patient-derived glioblastoma cells via inhibition of ERK and AKT signaling. Cancers. 2019; 11: 1849–63.
    OpenUrl
  74. 74.↵
    1. Zhang H,
    2. Xing Z,
    3. Mani SK,
    4. Bancel B,
    5. Durantel D,
    6. Zoulim F, et al.
    RNA helicase DEAD box protein 5 regulates Polycomb repressive complex 2/Hox transcript antisense intergenic RNA function in hepatitis B virus infection and hepatocarcinogenesis. Hepatology. 2016; 64: 1033–48.
    OpenUrlCrossRefPubMed
  75. 75.↵
    1. Moon IY,
    2. Choi JH,
    3. Chung JW,
    4. Jang ES,
    5. Jeong SH,
    6. Kim JW.
    MicroRNA20 induces methylation of hepatitis B virus covalently closed circular DNA in human hepatoma cells. Mol Med Rep. 2019; 20: 2285–93.
    OpenUrl
  76. 76.↵
    1. Xing T,
    2. Zhu J,
    3. Xian J,
    4. Li A,
    5. Wang X,
    6. Wang W, et al.
    miRNA-548ah promotes the replication and expression of hepatitis B virus by targeting histone deacetylase 4. Life Sci. 2019; 219: 199–208.
    OpenUrl
  77. 77.↵
    1. Xia Y,
    2. Guo H.
    Hepatitis B virus cccDNA: Formation, regulation and therapeutic potential. Antiviral Res. 2020; 180: 104824.
  78. 78.↵
    1. Hamada-Tsutsumi S,
    2. Naito Y,
    3. Sato S,
    4. Takaoka A,
    5. Kawashima K,
    6. Isogawa M, et al.
    The antiviral effects of human microRNA miR-302c-3p against hepatitis B virus infection. Aliment Pharmacol Ther. 2019; 49: 1060–70.
    OpenUrl
  79. 79.↵
    1. Bai F,
    2. Yano Y,
    3. Fukumoto T,
    4. Takebe A,
    5. Tanaka M,
    6. Kuramitsu K, et al.
    Quantification of pregenomic RNA and covalently closed circular DNA in hepatitis B virus-related hepatocellular carcinoma. Int J Hepatol. 2013; 2013: 849290–8.
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. Meng C,
    2. Liu T,
    3. Liu YW,
    4. Zhang LZ,
    5. Wang YL.
    Hepatitis B virus cccDNA in hepatocellular carcinoma tissue increases the risk of recurrence after liver transplantation. Transplant Proc. 2019; 51: 3364–8.
    OpenUrl
  81. 81.↵
    1. Gao J,
    2. Xiong Y,
    3. Wang Y,
    4. Wang Y,
    5. Zheng G,
    6. Xu H.
    Hepatitis B virus X protein activates Notch signaling by its effects on Notch1 and Notch4 in human hepatocellular carcinoma. Int J Oncol. 2016; 48: 329–37.
    OpenUrl
  82. 82.↵
    1. Jin XL,
    2. Hong SK,
    3. Kim H,
    4. Lee SK,
    5. Yi NJ,
    6. Lee KW, et al.
    Antiviral therapy may decrease HBx, affecting cccDNA and MSL2 in hepatocarcinogenesis. Oncol Lett. 2019; 18: 4984–91.
    OpenUrl
  83. 83.↵
    1. Moyo B,
    2. Nicholson SA,
    3. Arbuthnot PB.
    The role of long non-coding RNAs in hepatitis B virus-related hepatocellular carcinoma. Virus Res. 2016; 212: 103–13.
    OpenUrl
  84. 84.↵
    1. Cai D,
    2. Nie H,
    3. Yan R,
    4. Guo JT,
    5. Block TM,
    6. Guo H.
    A southern blot assay for detection of hepatitis B virus covalently closed circular DNA from cell cultures. Methods Mol Biol. 2013; 1030: 151–61.
    OpenUrlCrossRefPubMed
  85. 85.↵
    1. Mazet-Wagner AA,
    2. Baclet MC,
    3. Loustaud-Ratti V,
    4. Denis F,
    5. Alain S.
    Real-time PCR quantitation of hepatitis B virus total DNA and covalently closed circular DNA in peripheral blood mononuclear cells from hepatitis B virus-infected patients. J Virol Methods. 2006; 138: 70–9.
    OpenUrlPubMed
  86. 86.↵
    1. Xu CH,
    2. Li ZS,
    3. Dai JY,
    4. Zhu HY,
    5. Yu JW,
    6. Lu SL.
    Nested real-time quantitative polymerase chain reaction assay for detection of hepatitis B virus covalently closed circular DNA. Chin Med J (Engl). 2011; 124: 1513–6.
    OpenUrlPubMed
  87. 87.↵
    1. Takkenberg RB,
    2. Zaaijer HL,
    3. Menting S,
    4. Weegink CJ,
    5. Terpstra V,
    6. Cornelissen M, et al.
    Detection of hepatitis B virus covalently closed circular DNA in paraffin-embedded and cryo-preserved liver biopsies of chronic hepatitis B patients. Eur J Gastroenterol Hepatol. 2010; 22: 952–60.
    OpenUrlPubMed
  88. 88.
    1. Zhong Y,
    2. Hu S,
    3. Xu C,
    4. Zhao Y,
    5. Xu D,
    6. Zhao Y, et al.
    A novel method for detection of HBVcccDNA in hepatocytes using rolling circle amplification combined with in situ PCR. BMC Infect Dis. 2014; 14: 608–15.
    OpenUrl
  89. 89.
    1. Guo Y,
    2. Sheng S,
    3. Nie B,
    4. Tu Z.
    Development of magnetic capture hybridization and quantitative polymerase chain reaction for hepatitis B virus covalently closed circular DNA. Hepat Mon. 2015; 15: e23729.
  90. 90.
    1. Jiang PX,
    2. Mao RC,
    3. Dong MH,
    4. Yu XP,
    5. Xun Q,
    6. Wang JY, et al.
    Exonuclease I and III improve the detection efficacy of hepatitis B virus covalently closed circular DNA. Hepatobiliary Pancreat Dis Int. 2019; 18: 458–63.
    OpenUrl
  91. 91.
    1. Mu D,
    2. Yan L,
    3. Tang H,
    4. Liao Y.
    A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system. Biotechnol Lett. 2015; 37: 2063–73.
    OpenUrlCrossRefPubMed
  92. 92.↵
    1. Caviglia GP,
    2. Abate ML,
    3. Tandoi F,
    4. Ciancio A,
    5. Amoroso A,
    6. Salizzoni M, et al.
    Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR: A new tool to detect occult infection. J Hepatol. 2018; 69: 301–7.
    OpenUrlCrossRefPubMed
  93. 93.↵
    1. Huang JT,
    2. Yang Y,
    3. Hu YM,
    4. Liu XH,
    5. Liao MY,
    6. Morgan R, et al.
    A highly sensitive and robust method for hepatitis B virus covalently closed circular DNA detection in single cells and serum. J Mol Diagn. 2018; 20: 334–43.
    OpenUrl
  94. 94.↵
    1. Zhang X,
    2. Lu W,
    3. Zheng Y,
    4. Wang W,
    5. Bai L,
    6. Chen L, et al.
    In situ analysis of intrahepatic virological events in chronic hepatitis B virus infection. J Clin Invest. 2016; 126: 1079–92.
    OpenUrlCrossRefPubMed
  95. 95.↵
    European association for the study of the liver. Electronic address EEE, European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol. 2017; 67: 370–98.
    OpenUrlCrossRefPubMed
  96. 96.↵
    1. Tu T,
    2. Zehnder B,
    3. Qu B,
    4. Ni Y,
    5. Main N,
    6. Allweiss L, et al.
    A novel method to precisely quantify hepatitis B virus covalently closed circular (ccc)DNA formation and maintenance. Antiviral Res. 2020; 181: 104865–74.
    OpenUrl
  97. 97.↵
    1. Gao Y,
    2. Li Y,
    3. Meng Q,
    4. Zhang Z,
    5. Zhao P,
    6. Shang Q, et al.
    Serum hepatitis B virus DNA, RNA, and HBsAg: Which correlated better with intrahepatic covalently closed circular DNA before and after nucleos(t)ide analogue treatment? J Clin Microbiol. 2017; 55: 2972–82.
    OpenUrlAbstract/FREE Full Text
  98. 98.↵
    1. Liu Y,
    2. Jiang M,
    3. Xue J,
    4. Yan H,
    5. Liang X.
    Serum HBV RNA quantification: useful for monitoring natural history of chronic hepatitis B infection. BMC Gastroenterol. 2019; 19: 53–61.
    OpenUrlCrossRef
  99. 99.↵
    1. Huang Q,
    2. Zhou B,
    3. Cai D,
    4. Zong Y,
    5. Wu Y,
    6. Liu S, et al.
    Rapid turnover of hepatitis B virus covalently closed circular DNA Indicated by monitoring emergence and reversion of signature-mutation in treated chronic hepatitis B patients. Hepatology. 2021; 73: 41–52.
    OpenUrl
  100. 100.↵
    1. Limothai U,
    2. Chuaypen N,
    3. Poovorawan K,
    4. Chotiyaputta W,
    5. Tanwandee T,
    6. Poovorawan Y, et al.
    Baseline and kinetics of serum hepatitis B virus RNA predict response to pegylated interferon-based therapy in patients with hepatitis B e antigen-negative chronic hepatitis B. J Viral Hepat. 2019; 26: 1481–8.
    OpenUrl
  101. 101.↵
    1. van Campenhout MJH,
    2. van Bommel F,
    3. Pfefferkorn M,
    4. Fischer J,
    5. Deichsel D,
    6. Boonstra A, et al.
    Serum hepatitis B virus RNA predicts response to peginterferon treatment in HBeAg-positive chronic hepatitis B. J Viral Hepat. 2020; 27: 610–9.
    OpenUrl
  102. 102.↵
    1. Wang J,
    2. Yu Y,
    3. Li G,
    4. Shen C,
    5. Meng Z,
    6. Zheng J, et al.
    Relationship between serum HBV-RNA levels and intrahepatic viral as well as histologic activity markers in entecavir-treated patients. J Hepatol. 2018; 68: 16–24.
    OpenUrlCrossRef
  103. 103.↵
    1. Wang J,
    2. Shen T,
    3. Huang X,
    4. Kumar GR,
    5. Chen X,
    6. Zeng Z, et al.
    Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J Hepatol. 2016; 65: 700–10.
    OpenUrlCrossRefPubMed
  104. 104.↵
    1. Huang H,
    2. Wang J,
    3. Li W,
    4. Chen R,
    5. Chen X,
    6. Zhang F, et al.
    Serum HBV DNA plus RNA shows superiority in reflecting the activity of intrahepatic cccDNA in treatment-naive HBV-infected individuals. J Clin Virol. 2018; 99–100: 71–8.
    OpenUrlCrossRef
  105. 105.↵
    1. Bai L,
    2. Zhang X,
    3. Kozlowski M,
    4. Li W,
    5. Wu M,
    6. Liu J, et al.
    Extracellular hepatitis B virus RNAs are heterogeneous in length and circulate as capsid-antibody complexes in addition to virions in chronic hepatitis B patients. J Virol. 2018; 92: e00798-18.
  106. 106.↵
    1. Shen S,
    2. Xie Z,
    3. Cai D,
    4. Yu X,
    5. Zhang H,
    6. Kim ES, et al.
    Biogenesis and molecular characteristics of serum hepatitis B virus RNA. PLoS Pathog. 2020; 16: e1008945.
  107. 107.
    1. Kimura T,
    2. Rokuhara A,
    3. Sakamoto Y,
    4. Yagi S,
    5. Tanaka E,
    6. Kiyosawa K, et al.
    Sensitive enzyme immunoassay for hepatitis B virus core-related antigens and their correlation to virus load. J Clin Microbiol. 2002; 40: 439–45.
    OpenUrlAbstract/FREE Full Text
  108. 108.↵
    1. Kimura T,
    2. Ohno N,
    3. Terada N,
    4. Rokuhara A,
    5. Matsumoto A,
    6. Yagi S, et al.
    Hepatitis B virus DNA-negative dane particles lack core protein but contain a 22-kDa precore protein without C-terminal arginine-rich domain. J Biol Chem. 2005; 280: 21713–9.
    OpenUrlAbstract/FREE Full Text
  109. 109.↵
    1. Rokuhara A,
    2. Tanaka E,
    3. Matsumoto A,
    4. Kimura T,
    5. Yamaura T,
    6. Orii K, et al.
    Clinical evaluation of a new enzyme immunoassay for hepatitis B virus core-related antigen; a marker distinct from viral DNA for monitoring lamivudine treatment. J Viral Hepat. 2003; 10: 324–30.
    OpenUrlCrossRefPubMed
  110. 110.↵
    1. Chen EQ,
    2. Feng S,
    3. Wang ML,
    4. Liang LB,
    5. Zhou LY,
    6. Du LY, et al.
    Serum hepatitis B core-related antigen is a satisfactory surrogate marker of intrahepatic covalently closed circular DNA in chronic hepatitis B. Sci Rep. 2017; 7: 173–80.
    OpenUrlCrossRef
  111. 111.↵
    1. Wang L,
    2. Cao X,
    3. Wang Z,
    4. Gao Y,
    5. Deng J,
    6. Liu X, et al.
    Correlation of HBcrAg with intrahepatic hepatitis B virus total DNA and covalently closed circular DNA in HBeAg-positive chronic hepatitis B patients. J Clin Microbiol. 2019; 57: e01303–18.
    OpenUrl
  112. 112.
    1. Matsuzaki T,
    2. Tatsuki I,
    3. Otani M,
    4. Akiyama M,
    5. Ozawa E,
    6. Miuma S, et al.
    Significance of hepatitis B virus core-related antigen and covalently closed circular DNA levels as markers of hepatitis B virus re-infection after liver transplantation. J Gastroenterol Hepatol. 2013; 28: 1217–22.
    OpenUrlCrossRefPubMed
  113. 113.↵
    1. Wong DK,
    2. Seto WK,
    3. Cheung KS,
    4. Chong CK,
    5. Huang FY,
    6. Fung J, et al.
    Hepatitis B virus core-related antigen as a surrogate marker for covalently closed circular DNA. Liver Int. 2017; 37: 995–1001.
    OpenUrlPubMed
  114. 114.↵
    1. Testoni B,
    2. Lebosse F,
    3. Scholtes C,
    4. Berby F,
    5. Miaglia C,
    6. Subic M, et al.
    Serum hepatitis B core-related antigen (HBcrAg) correlates with covalently closed circular DNA transcriptional activity in chronic hepatitis B patients. J Hepatol. 2019; 70: 615–25.
    OpenUrlCrossRefPubMed
  115. 115.↵
    1. Chen EQ,
    2. Wang ML,
    3. Tao YC,
    4. Wu DB,
    5. Liao J,
    6. He M, et al.
    Serum HBcrAg is better than HBV RNA and HBsAg in reflecting intrahepatic covalently closed circular DNA. J Viral Hepat. 2019; 26: 586–95.
    OpenUrlPubMed
  116. 116.↵
    1. van Campenhout MJH,
    2. Rijckborst V,
    3. Brouwer WP,
    4. van Oord GW,
    5. Ferenci P,
    6. Tabak F, et al.
    Hepatitis B core-related antigen monitoring during peginterferon alfa treatment for HBeAg-negative chronic hepatitis B. J Viral Hepat. 2019; 26: 1156–63.
    OpenUrlCrossRef
  117. 117.↵
    1. Yuan Y,
    2. Yuan H,
    3. Yang G,
    4. Yun H,
    5. Zhao M,
    6. Liu Z, et al.
    IFN-alpha confers epigenetic regulation of HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Clin Epigenetics. 2020; 12: 135.
    OpenUrlCrossRef
  118. 118.↵
    1. Liu F,
    2. Campagna M,
    3. Qi Y,
    4. Zhao X,
    5. Guo F,
    6. Xu C, et al.
    Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLoS Pathog. 2013; 9: e1003613.
  119. 119.↵
    1. Furutani Y,
    2. Toguchi M,
    3. Shiozaki-Sato Y,
    4. Qin XY,
    5. Ebisui E,
    6. Higuchi S, et al.
    An interferon-like small chemical compound CDM-3008 suppresses hepatitis B virus through induction of interferon-stimulated genes. PLoS One. 2019; 14: e0216139.
  120. 120.↵
    1. Bockmann JH,
    2. Stadler D,
    3. Xia Y,
    4. Ko C,
    5. Wettengel JM,
    6. Schulze Zur Wiesch J, et al.
    Comparative analysis of the antiviral effects mediated by type I and III interferons in hepatitis B virus-infected hepatocytes. J Infect Dis. 2019; 220: 567–77.
    OpenUrl
  121. 121.↵
    1. Xia Y,
    2. Stadler D,
    3. Lucifora J,
    4. Reisinger F,
    5. Webb D,
    6. Hösel M, et al.
    Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology. 2016; 150: 194–205.
    OpenUrlCrossRefPubMed
  122. 122.↵
    1. Qiao Y,
    2. Han X,
    3. Guan G,
    4. Wu N,
    5. Sun J,
    6. Pak V, et al.
    TGF-beta triggers HBV cccDNA degradation through AID-dependent deamination. FEBS Lett. 2016; 590: 419–27.
    OpenUrlCrossRef
  123. 123.↵
    1. Shi A,
    2. Zhang X,
    3. Xiao F,
    4. Zhu L,
    5. Yan W,
    6. Han M, et al.
    CD56(bright) natural killer cells induce HBsAg reduction via cytolysis and cccDNA decay in long-term entecavir-treated patients switching to peginterferon alfa-2a. J Viral Hepat. 2018; 25: 1352–62.
    OpenUrl
  124. 124.↵
    1. Shen Z,
    2. Liu J,
    3. Wu J,
    4. Zhu Y,
    5. Li G,
    6. Wang J, et al.
    IL-21-based therapies induce clearance of hepatitis B virus persistence in mouse models. Theranostics. 2019; 9: 3798–811.
    OpenUrl
  125. 125.↵
    1. Palumbo GA,
    2. Scisciani C,
    3. Pediconi N,
    4. Lupacchini L,
    5. Alfalate D,
    6. Guerrieri F, et al.
    IL6 inhibits HBV transcription by targeting the epigenetic control of the nuclear cccDNA minichromosome. PLoS One. 2015; 10: e0142599.
  126. 126.↵
    1. Cai D,
    2. Mills C,
    3. Yu W,
    4. Yan R,
    5. Aldrich CE,
    6. Saputelli JR, et al.
    Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently closed circular DNA formation. Antimicrob Agents Chemother. 2012; 56: 4277–88.
    OpenUrlAbstract/FREE Full Text
  127. 127.↵
    1. Fanning GC,
    2. Zoulim F,
    3. Hou J,
    4. Bertoletti A.
    Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov. 2019; 18: 827–44.
    OpenUrlPubMed
  128. 128.↵
    1. Amblard F,
    2. Boucle S,
    3. Bassit L,
    4. Cox B,
    5. Sari O,
    6. Tao S, et al.
    Novel hepatitis B virus capsid assembly modulator induces potent antiviral responses in vitro and in humanized mice. Antimicrob Agents Chemother. 2020; 64: e01701–19.
    OpenUrl
  129. 129.↵
    1. Ko C,
    2. Bester R,
    3. Zhou X,
    4. Xu Z,
    5. Blossey C,
    6. Sacherl J, et al.
    A new role for capsid assembly modulators to target mature hepatitis B virus capsids and prevent virus infection. Antimicrob Agents Chemother. 2019; 64: e01440-19.
  130. 130.↵
    1. Liu C,
    2. Cai D,
    3. Zhang L,
    4. Tang W,
    5. Yan R,
    6. Guo H, et al.
    Identification of hydrolyzable tannins (punicalagin, punicalin and geraniin) as novel inhibitors of hepatitis B virus covalently closed circular DNA. Antiviral Res. 2016; 134: 97–107.
    OpenUrl
  131. 131.↵
    1. Sekiba K,
    2. Otsuka M,
    3. Ohno M,
    4. Yamagami M,
    5. Kishikawa T,
    6. Suzuki T, et al.
    Inhibition of HBV transcription from cccDNA with nitazoxanide by targeting the HBx-DDB1 interaction. Cell Mol Gastroenterol Hepatol. 2019; 7: 297–312.
    OpenUrl
  132. 132.↵
    1. Cheng ST,
    2. Hu JL,
    3. Ren JH,
    4. Yu HB,
    5. Zhong S,
    6. Wai Wong VK, et al.
    Dicoumarol, an NQO1 inhibitor, blocks cccDNA transcription by promoting degradation of HBx. J Hepatol. 2021; 74: 522–34.
    OpenUrl
  133. 133.↵
    1. Wei ZQ,
    2. Zhang YH,
    3. Ke CZ,
    4. Chen HX,
    5. Ren P,
    6. He YL, et al.
    Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol. 2017; 23: 6252–60.
    OpenUrl
  134. 134.↵
    1. Nkongolo S,
    2. Nussbaum L,
    3. Lempp FA,
    4. Wodrich H,
    5. Urban S,
    6. Ni Y.
    The retinoic acid receptor (RAR) alpha-specific agonist Am80 (tamibarotene) and other RAR agonists potently inhibit hepatitis B virus transcription from cccDNA. Antiviral Res. 2019; 168: 146–55.
    OpenUrl
  135. 135.↵
    1. Cradick TJ,
    2. Keck K,
    3. Bradshaw S,
    4. Jamieson AC,
    5. McCaffrey AP.
    Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. 2010; 18: 947–54.
    OpenUrlCrossRefPubMedWeb of Science
  136. 136.↵
    1. Schiffer JT,
    2. Swan DA,
    3. Stone D,
    4. Jerome KR.
    Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach. PLoS Comput Biol. 2013; 9: e1003131.
  137. 137.↵
    1. Teng Y,
    2. Xu Z,
    3. Zhao K,
    4. Zhong Y,
    5. Wang J,
    6. Zhao L, et al.
    Novel function of SART1 in HNF4α transcriptional regulation contributes to its antiviral role during HBV infection. J Hepatol. 2021; 75: 1072–82.
    OpenUrl
  138. 138.↵
    1. Kennedy EM,
    2. Bassit LC,
    3. Mueller H,
    4. Kornepati AVR,
    5. Bogerd HP,
    6. Nie T, et al.
    Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology. 2015; 476: 196–205.
    OpenUrlCrossRefPubMed
  139. 139.↵
    1. Schiwon M,
    2. Ehrke-Schulz E,
    3. Oswald A,
    4. Bergmann T,
    5. Michler T,
    6. Protzer U, et al.
    One-vector system for multiplexed CRISPR/Cas9 against hepatitis B virus cccDNA utilizing high-capacity adenoviral vectors. Mol Ther Nucleic Acids. 2018; 12: 242–53.
    OpenUrlCrossRefPubMed
  140. 140.↵
    1. Kostyushev D,
    2. Brezgin S,
    3. Kostyusheva A,
    4. Zarifyan D,
    5. Goptar I,
    6. Chulanov V.
    Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed circular DNA of hepatitis B virus. Cell Mol Life Sci. 2019; 76: 1779–94.
    OpenUrl
  141. 141.
    1. Seeger C,
    2. Sohn JA.
    Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol Ther. 2016; 24: 1258–66.
    OpenUrl
  142. 142.
    1. Zhu Y,
    2. Yamamoto T,
    3. Cullen J,
    4. Saputelli J,
    5. Aldrich CE,
    6. Miller DS, et al.
    Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis. J Virol. 2001; 75: 311–22.
    OpenUrlAbstract/FREE Full Text
  143. 143.
    1. van den Berg F,
    2. Limani SW,
    3. Mnyandu N,
    4. Maepa MB,
    5. Ely A,
    6. Arbuthnot P.
    Advances with RNAi-based therapy for hepatitis B virus infection. Viruses. 2020; 12; 851–70.
    OpenUrl
  144. 144.↵
    1. Wang J,
    2. Chen R,
    3. Zhang R,
    4. Ding S,
    5. Zhang T,
    6. Yuan Q, et al.
    The gRNA-miRNA-gRNA ternary cassette combining CRISPR/Cas9 with RNAi approach strongly inhibits hepatitis B virus replication. Theranostics. 2017; 7: 3090–105.
    OpenUrl
  145. 145.↵
    1. Lutgehetmann M,
    2. Volz T,
    3. Kopke A,
    4. Broja T,
    5. Tigges E,
    6. Lohse AW, et al.
    In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently closed circular DNA in mice. Hepatology. 2010; 52: 16–24.
    OpenUrlCrossRefPubMed
  146. 146.↵
    1. Allweiss L,
    2. Volz T,
    3. Giersch K,
    4. Kah J,
    5. Raffa G,
    6. Petersen J, et al.
    Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut. 2018; 67: 542–52.
    OpenUrlAbstract/FREE Full Text
  147. 147.↵
    1. Petersen J,
    2. Thompson AJ,
    3. Levrero M.
    Aiming for cure in HBV and HDV infection. J Hepatol. 2016; 65: 835–48.
    OpenUrlCrossRefPubMed
  148. 148.↵
    1. Dandri M,
    2. Lutgehetmann M.
    Mouse models of hepatitis B and delta virus infection. J Immunol Methods. 2014; 410: 39–49.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Cancer Biology & Medicine: 19 (4)
Cancer Biology & Medicine
Vol. 19, Issue 4
15 Apr 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Research progress in hepatitis B virus covalently closed circular DNA
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Research progress in hepatitis B virus covalently closed circular DNA
Xiaodong Zhang, Yufei Wang, Guang Yang
Cancer Biology & Medicine Apr 2022, 19 (4) 415-431; DOI: 10.20892/j.issn.2095-3941.2021.0454

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research progress in hepatitis B virus covalently closed circular DNA
Xiaodong Zhang, Yufei Wang, Guang Yang
Cancer Biology & Medicine Apr 2022, 19 (4) 415-431; DOI: 10.20892/j.issn.2095-3941.2021.0454
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Mapping the HBV cccDNA minichromosome
    • Regulation and epigenetic modulation of the HBV cccDNA minichromosome
    • HBx links the cccDNA minichromosome to hepatocarcinogenesis
    • Detection of HBV cccDNA
    • IFN and cccDNA
    • Therapeutic strategies against cccDNA
    • Perspectives
    • Conflict of interest statement
    • Author contributions
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Bispecific antibodies targeting immunomodulatory checkpoints for cancer therapy
  • Understanding the mechanisms underlying obesity in remodeling the breast tumor immune microenvironment: from the perspective of inflammation
  • Circular RNAs: implications of signaling pathways and bioinformatics in human cancer
Show more Review

Similar Articles

Keywords

  • Hepatitis B virus
  • cccDNA
  • HBx
  • hepatocarcinogenesis
  • epigenetic modulation
  • therapy

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2023 Cancer Biology & Medicine

Powered by HighWire