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ABSTRACT Objective: Investigation of the regulatory mechanisms of cell stemness in cholangiocarcinoma (CCA) is essential for developing 

effective therapies to improve patient outcomes. The purpose of this study was to investigate the function and regulatory mechanism 

of m6A modifications in CCA cell stemness.

Methods: Interleukin 6 (IL-6) treatment was used to induce an inflammatory response, and loss-of-function studies were 

conducted using mammosphere culture assays. Chromatin immunoprecipitation, polysome profiling, and methylated RNA 

immunoprecipitation analyses were used to identify signaling pathways. The in vitro findings were verified in a mice model.

Results: We first identified that m6A writers were highly expressed in CCAs and further showed that STAT3 directly bound to 

the gene loci of m6A writers, showing that IL-6/STAT3 signaling regulated expressions of m6A writers. Downregulating m6A 

writers prevented cell proliferation and migration in vitro and suppressed CCA tumorigenesis in vivo. Notably, the knockdown of 

m6A writers inhibited CCA cell stemness that was triggered by IL-6 treatment. Mechanistically, IGF2BP2 was bound to CTNNB1 

transcripts, significantly enhancing their stability and translation, and conferring stem-like properties. Finally, we confirmed that the 

combination of m6A writers, IGF2BP2, and CTNNB1 distinguished CCA tissues from normal tissues.

Conclusions: Overall, this study showed that the IL-6-triggered inflammatory response facilitated the expressions of m6A writers 

and cell stemness in an m6A-IGF2BP2-dependent manner. Furthermore, the study showed that m6A modification was a targetable 

mediator of the response to inflammation factor exposure, was a potential diagnostic biomarker for CCA, and was critical to the 

progression of CCA.
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Introduction

Cholangiocarcinoma (CCA) is a common biliary malignant 

tumor, whose incidence is increasing annually, especially in 

China1-4. CCA is difficult to diagnose and cure, partly due to 

unknown molecular mechanisms and the underlying mecha-

nism of cancer cell self-renewal1,2. Studies have suggested that 

chronic inflammation plays important roles in CCA patho-

genesis, and that a large number of inflammatory cytokines 

are expressed because of chronic inflammatory reactions1,5-7. 

We have previously reported that microRNA clusters, let-7c/

miR-99a/miR-125b, regulated CCA progression and stem-like 

properties through the IL-6/STAT3 pathway, leading to the 

promotion of CCA cell transformation, which suggested that 

the inflammatory response facilitated cancer cell stemness and 

tumor progression8. However, how these inflammatory factors 

regulate cancer cell stemness and tumor progression in CCA 

remains largely unknown. A more comprehensive under-

standing of the mechanisms by which inflammatory factors 

drive cancer progression and metastasis is therefore needed to 

develop effective therapies9,10.

N6-methyladenosine (m6A) is the most abundant RNA 

modification in eukaryotic cells11,12. Accumulated evidence 

has indicated that m6A plays critical roles in multiple biologi-

cal processes, and aberrant m6A modification is closely associ-

ated with cancers12-16. The breakthrough in the discovery and 
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understanding of m6A writers, erasers, and readers, together 

with the development of high-throughput assays, have helped 

to elucidate the biological functions and the underlying 

mechanisms of m6A12,17,18. For example, methyltransferase 3 

(METTL3) serves as an oncogene to promote tumorigenesis 

by enhancing m6A modification and the translation of BCL2 

and PTEN in acute myeloid leukemia17, and methyltransferase 

14 (METTL14) acts as a suppressor to inhibit tumor metastasis 

by promoting miR-126 processing in an m6A-dependent man-

ner in hepatocellular carcinoma (HCC)18. Recent studies have 

also indicated that m6A modification plays critical roles in cell 

self-renewal and tumorigenesis17,19-21. However, whether m6A 

modification regulates the inflammatory response in CCA cell 

stemness remains unknown.

In this study, we aimed to identify the role and regula-

tory mechanism of the m6A modification in the CCA cell 

stemness and inflammatory response. We first showed that 

m6A writers were highly expressed in CCA tumor tissues 

and had distinct expression patterns in intra-hepatic CCA 

(ICC) and extra-hepatic CCA (ECC) samples, suggesting 

that they could potentially identify the location of cancerous 

lesions in CCA cells and discriminate between different CCA 

subtypes. We showed that the expressions of m6A writers in 

CCA cells were upregulated by cytokine IL-6 upon STAT3 

directly binding to the m6A writer gene region, making m6A 

a potential targetable mediator in response to inflammation 

factor exposure. Specifically, m6A modification significantly 

enhanced the stability and translation of stem genes, includ-

ing CTNNB1, and facilitated the stem-like properties of 

CCA cells, highlighting its crucial roles in the self-renewal 

of CCA cells. This study therefore provided insight into the 

inflammatory response and suggested that CCA stemness 

gene expression was regulated through an m6A-dependent 

pathway.

Materials and methods

Patients

Human CCA and peritumoral (designated as normal) tissues 

were obtained with informed consent between 2017 and 2019 

from Sun Yat-sen Memorial Hospital. Sample collection was 

approved by the Hospital’s Protection of Human Subjects 

Committee (Approval No. 2017126). Thirty-eight pairs of 

normal peritumoral specimens and pathologically diagnosed 

biopsy specimens were obtained from the same CCA patients 

who underwent surgical resections. The clinicopathologi-

cal characteristics of the CCA patients are summarized in 

Supplementary Table S1.

Cell lines and cell culture

SK-Cha-1, MZ-Cha-1, and RBE human CCA cells were kindly 

provided by Dr. Chundong Yu (Xiamen University, Fujian, 

China), and human embryonic kidney 293 cells were pur-

chased from the American Type Tissue Collection (Manassas, 

VA, USA) and were cultured in RPMI-1640 (HyClone, Logan, 

UT, USA) and DMEM (HyClone), respectively, with 10% fetal 

bovine serum (Gibco, Gaithersburg, MD, USA). All cells were 

cultured at 37 °C in a 5% CO2 atmosphere.

RNA isolation and quantitative real-time PCR 
(RT-PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen, 

Carlsbad, CA, USA) in accordance with the manufacturer’s 

instructions. RNA was reverse transcribed into cDNA using 

the RT reagent Kit RR047A (Takara, Shiga, Japan) and fol-

lowed by real-time PCR with a SYBR Premix ExTaq Real-time 

PCR Kit (Takara). All gene expression levels were normalized 

to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). 

Oligonucleotide sequences are listed in Supplementary 

Table S2.

Cell transfection and shRNA transduction 
of cells

Lipofectamine 2000 (Invitrogen) was used to perform the 

transient transfections of recombinant vectors and siRNAs. 

The pGreenPuro™ shRNA was packaged into lentiviruses 

using the Lentivector Expression Systems (System Biosciences, 

Heidelberg, Germany) consisting of pPACKH1-GAG, 

pPACKH1-REV, and pVSV-G22.

For stable expression assays, 2 × 105 SK-Cha-1 and RBE cells 

were prepared for each transfection system. The cells were cen-

trifuged and resuspended in 300 μL virus suspension, followed 

by incubation at 37 °C and 5% CO2 for 24 h. Then, the cells 

were centrifuged, washed, and resuspended in fresh medium 

containing 1.5 μg/mL puromycin and 1% penicillin-strepto-

mycin. To confirm target knockdown, the cells were collected 

for qRT-PCR analysis. The siRNA and shRNA sequences are 

listed in Supplementary Table S2.
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CCK-8 cell proliferation assay

Cells first transfected with m6A writer siRNAs were seeded 

at a density of 20,000 cells per well in 100 μL of complete 

medium in 96-well plates. Then, 10 μL of the Cell Counting 

Kit-8 (Dojindo Molecular Technologies, Nanjing, China) rea-

gent was added, and the cells were cultured for another 2 h. 

Absorbance was measured using a VICTOR™ X5 Multilabel 

Plate Reader (Perkin Elmer, San Jose, CA, USA) at wavelengths 

of 480 and 630 nm at 0, 24, 48, 72 and 96 h.

Scratch wound healing assay

The siRNA-transfected SK-Cha-1 cells were cultured in 

24-well plates for 24 h. Linear wounded tracks were gen-

erated with sterile, 10 μL pipettes. The scratched cells were 

then rinsed twice with phosphate-buffered saline (PBS) to 

remove non-adherent cells, and fresh culture medium was 

added. Photographs of the centers of gaps were taken using 

a phase-contrast microscope and the same magnification of 

100×. The cell migrations at 0 and 24 h after scratching were 

evaluated by determining the wound distance at random 

wound gap locations. The closure area of the wound was cal-

culated as follows: migration area (%) = (M0 – M24)/M0 × 100, 

where M0 represents the initial wound area, and M24 repre-

sents the remaining area of wound at the 24 h time point23,24.

Protein extraction and immunoblotting

Total protein was extracted from cell samples using RIPA lysis 

buffer (Beyotime Biotechnology, Beijing, China) supplemented 

with 1× complete ULTRA protease inhibitor (Roche, Basel, 

Switzerland) according to the manufacturer’s instructions. 

Proteins were resolved by 7.5%, 10%, or 12% bis-tris poly-

acrylamide gels and were transferred to polyvinylidene fluoride 

membranes and then blocked and probed with the appropri-

ate antibodies overnight at 4 °C. Finally, the membranes were 

incubated with horseradish peroxidase-conjugated secondary 

antibodies at room temperature for 1 h and visualized with an 

enhanced chemiluminescence detection system. Detailed infor-

mation of the antibodies is found in Supplementary Table S3.

Chromatin immunoprecipitation (ChIP)

ChIP analyses were performed on chromatin extracts 

from SK-Cha-1 and MZ-Cha-1 cells using a Magna ChIP™ 

G-Chromatin Immunoprecipitation Kit (Merck Millipore, 

Darmstadt, Germany) with STAT3 antibody according to 

the manufacturer’s standard protocol. In this assay, samples 

incubated with rabbit IgG served as the negative control. 

The fold enrichment of STAT3 was quantified by quan-

titative RT-PCR and calculated relative to input chroma-

tin. The primers used for ChIP-qPCR analysis are listed in 

Supplementary Table S2.

The m6A dot blot

Total cellular RNA was first denatured in a 3-fold volume of 

RNA incubation buffer (65.7% formamide, 7.77% formalde-

hyde, and 1.33× MOPS) at 65 °C for 5 min, and then mixed 

with a 1-fold volume of 20× SSC. After UV crosslinking, the 

membrane was stained with 0.02% methylene blue in 0.3 M 

sodium acetate. The membrane was then washed with 1× PBST 

buffer, blocked with 5% nonfat milk in PBST, and incubated 

with anti-m6A antibody overnight at 4 °C. After incubating 

with horseradish peroxidase-conjugated anti-rabbit IgG sec-

ondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA, 

USA), the membrane was visualized by ECL (Thermo Fisher 

Scientific, Waltham, MA, USA) in a dark room.

RNA immunoprecipitation (RIP)

For RIP assays, the proteins were first lysed with cell lysis 

buffer supplemented with Thermo Scientific™ Halt™ Protease 

Inhibitor Cocktail (Thermo Fisher Scientific). Then, IGF2BP2 

antibody was used along with an EZ-Magna RIP™ RNA-

Binding Protein Immunoprecipitation Kit (Merck Millipore) 

according to the manufacturer’s instructions. Finally, the 

fold enrichment of IGF2BP2 was quantified by quantitative 

RT-PCR and calculated relative to the input.

The methylated RNA immunoprecipitation 
(MeRIP) assay

Total RNA was first isolated before mRNA enrichment using 

the GenElute mRNA miniprep kit (Sigma-Aldrich, St. Louis, 

MO, USA). The mRNA of the sample was further treated with 

m6A MeRIP according to the protocol of the Magna MeRIP™ 

m6A Kit Transcriptome-wide Profiling of N6Methyladenosine 

(EMD Millipore, Hayward, CA, USA). Finally, m6A enrich-

ment was quantified by quantitative RT-PCR and calculated 

relative to the input.
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The RNA stability assay

SK-Cha-1 cells were treated with actinomycin D at a final con-

centration of 5 mg/mL for 5 and 10 h prior to cell collection. 

Total RNA was extracted by miRNeasy Kit (Qiagen, Hilden, 

Germany) and analyzed by RT-PCR.

Polysome profiling

The sh-NC and sh-IGF2BP2 SK-Cha-1 cells (3.5 × 107 cells) 

were treated with 200 μg/mL cycloheximide (CHX) for 15 min, 

and lysed in lysis buffer (20 mM Tris, pH 7.4, 15 mM MgCl2, 200 

mM KCl, and 1% Triton X-100) supplemented with 40 U/mL 

RNasin (Promega, Madison, WI, USA), 100 μg/mL CHX, and 1 

mM dithiothreitol. Cell lysates were centrifuged at 13,000 rpm 

at 4 °C for 10 min and then the supernatant ultracentrifuged 

using a SW41 rotor (Beckman, Brea, CA, USA) at 36,000 rpm at 

4 °C for 3 h, then loaded onto 10%–45% sucrose gradients. The 

absorbance at 260 nm was determined using a BioComp Piston 

Gradient Fractionator (BioComp Instruments, Fredericton, 

Canada) equipped with a Bio-Rad Econo UV Monitor (Bio-

Rad, Hercules, CA, USA). The corresponding isolated fractions 

were further used for RNA in TRIzol reagent (Invitrogen) and 

then for RT-qPCR. The relative distribution of mRNA in each 

fraction was normalized by the total abundance of mRNA in all 

fractions marked as 100%25.

Mammosphere cultures

Cells (1,500 cells/mL) were cultured for 8 days in serum-free 

DMEM-F12 (BioWhittaker, Radnor, PA, USA) supplemented 

with B27 (1:50; Invitrogen), 20 ng/mL EGF (Invitrogen), 20 

ng/mL bFGF (Invitrogen), and anti-mycoticantibiotic (1:100; 

Invitrogen) in suspension in 6-well plates (Costar 3471; 

Corning, Corning, NY, USA).

Animal model

Six-week-old male BALB/c nude mice were maintained under 

specific pathogen-free conditions in the Laboratory Animal 

Center of Sun Yat-sen University, and all experiments were per-

formed according to our Institutional Animal Guidelines. Mice 

were randomly assigned to 2 groups (N = 6). In each group, 

lentiviral-transduced SK-Cha-1 cells (2.5 × 106) were subcuta-

neously injected into the dorsal right flanks of the mice, and the 

mice were monitored every 3 days for tumor growth.

Statistical analysis

The t-test was used to determine the significance between 2 

groups. Data are expressed as the mean ± SEM of 3 independ-

ent experiments. One way analysis of variance was performed 

to compare multiple groups, and Dunnett’s test was used to 

analyze multiple comparisons. For clinical data analysis, the 

Kruskal-Wallis test was used when comparing multiple groups, 

and multiple comparisons were conducted using the least sig-

nificant difference t-test. Spearman’s correction was used to 

determine the correlation between CTNNB1 expression with 

m6A writers and IGF2BP2 levels. Receiver operating charac-

teristic (ROC) curves were used to determine the diagnostic 

utility of CTNNB1, m6A writers, and IGF2BP2. Discriminant 

analysis was used to identify the combination of molecules to 

build an optimal model of predicted probability. The sensitiv-

ity and specificity were obtained at the optimal cutoff points 

when the Youden’s index was maximal. P < 0.05 was consid-

ered statistically significant.

Results

The m6A modification writers were highly 
expressed in CCA and were regulated by IL-6 
treatment

To understand the function and regulatory mechanism of 

m6A modification in cancer cell stemness and inflammatory 

response in CCA development, we first detected the expres-

sions of these m6A writers in 38 matched pairs of CCA 

cancerous and adjacent tissues. We found that m6A modifi-

cation writers, including METTL3, METTL14, and Wilms’ 

tumor 1-associating protein (WTAP), were upregulated in the 

CCA tissues (Figure 1A), which was further validated by the 

CCA cohort in The Cancer Genome Atlas (TCGA) database 

(Supplementary Figure S1). Not only did the m6A writers 

show high expression levels in both ICC and ECC subgroups, 

but they also showed distinct expression patterns in these sub-

groups (Figure 1B). Because ICC and ECC subgroups had dif-

ferent clinical characteristics and manifestations, m6A writers 

could potentially be used to identify the liver metastatic foci of 

CCA cells and discriminate different CCA subtypes. The m6A 

dot blot assay showed that CCA tissue samples had a higher 

m6A level than the adjacent tissues (Figure 1C), suggesting 

that m6A modification and its writers highly expressed in 

CCA could be beneficial for CCA development.
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Figure 1 The m6A modification writers were highly expressed in CCAs and regulated by IL-6/STAT3 inflammatory signaling. (A) The m6A 
writers were more highly expressed in cancerous tissues than those in matched adjacent tissues of 38 paired CCA patient samples. The 
Wilcoxon matched-pairs signed rank test was used to calculate the significance. (B) The m6A writers were more highly expressed in extra-he-
patic (ECC) cancerous tissues (N = 20) than in intra-hepatic (ICC) cancerous tissues (N = 18) from CCA patients. The m6A writers were also 
highly expressed in ICC and ECC samples compared to normal tissues. BB indicates CCA adjacent tissue, and BC indicates CCA cancerous 
tissue. (C) Dot blots showing the global m6A levels in matched pairs of cancerous and adjacent tissues from patients with CCA. MB indicates 
methylene blue, which shows the total RNA level. (D) Dot blots showing the global m6A levels between CCA cells treated with or without 20 
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WTAP measured by qRT-PCR, and immunoblots of CCA cells treated with 20 ng/mL IL-6 for 2 h. Error bars denote ± SEM (***P < 0.001) in 3 
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chromatin immunoprecipitation (ChIP) assay showed the enrichment of STAT3 located at the METTL3 and METTL14 gene loci in CCA cells 
treated with or without 20 ng/mL IL-6 for 2 h. Western blot for the STAT3 of ChIP/IP; glyceraldehyde 3-phosphate dehydrogenase served as 
the negative control. Error bars denote ± SEM (**P < 0.01) based on 3 independent experiments. (I) Western blot showed the expressions of 
METTL3 and METTL14 in the sh-METTL3 and sh-METTL14 CCA cells treated with or without 20 ng/mL IL-6 for 2 h, respectively.



348 Ye et al. The m6A maintains cell stemness in cholangiocarcinoma

Previous studies have shown that the inflammatory 

response plays critical roles in CCA development. We therefore 

hypothesized that the expression of writers may be enhanced 

by inflammatory responses in CCA cells. When CCA cells were 

exposed to IL-6, a key inflammatory factor in the CCA tumor 

microenvironment8,26, the level of the m6A modification was 

significantly elevated (Figure 1D), accompanied by higher 

expression levels of phosphorylated STAT3 in the CCA cells 

exposed to IL-6 (Figure 1E). Notably, IL-6 treatment signifi-

cantly enhanced the expressions of MELLT3, METTL14, and 

WTAP in CCA cells (Figure 1F). These data suggested that 

the inflammatory response increased total RNA m6A lev-

els and the expressions of m6A writers, leading to enhance-

ment of CCA development. Mechanistically, we found that 

the expressions of m6A writers were regulated by the IL-6/

STAT3 inflammatory pathway. Reanalyzing STAT3 ChIP-seq 

data (GES31477)27, we found a considerable enrichment of 

STAT3 at the METTL3, METTL14, and WTAP gene loci in the 

cell lines (Figure 1G and Supplementary Figure S2), indicat-

ing that IL-6/STAT3 inflammatory signaling, which regulated 

the m6A writers, may depend on the activation of STAT3. 

Subsequently, we performed ChIP assays using anti-STAT3 

antibody in CCA cell lines, which showed that the STAT3 

ChIP assays showed significant enrichment of STAT3 located 

at the METTL3 and METTL14 gene loci in CCA cells (Figure 

1H). As shown in Figure 1I and Supplementary Figure S3A, 

S3B, knockdown of METTL3 or METTL14 also reduced the 

increased expression levels of m6A writers triggered by IL-6 

treatment. Together, these results showed that m6A modifi-

cation writers were highly expressed in CCA and were direct 

downstream genes of the IL-6/STAT3 inflammatory pathway.

The m6A writers promoted CCA cell stemness 
in inflammatory responses

Previous studies have shown that the activation of IL-6/STAT3 

signaling is an important contributor to CCA8,28,29. We next 

investigated the function of m6A writers, involving the direct 

downstream genes of the IL-6/STAT3 inflammatory signaling, 

on the pathogenesis of CCA in sh-METTL3, sh-METTL14, 

and sh-WTAP cells (Supplementary Figure S3A). The CCK-8 

and scratch wound healing assays showed that silencing m6A 

writers dramatically prevented the proliferation and migration 

of the CCA cells (Figure 2A and Supplementary Figure S3C), 

suggesting their tumor-promoting roles. We also showed that 

IL-6 treatment regulated the stem-like properties of CCA cells 

(Figure 2B, 2C), indicating a potential role of m6A writers in 

the stemness of CCA cells. To determine whether METTL3, 

METTL14, and WTAP regulated CCA cell stemness induced 

by inflammatory responses, we further performed mam-

mosphere culture assays. Silencing of m6A genes in CCA cells 

resulted in a significant reduction in mammosphere num-

bers (Figure 2D, 2E). Consistently, the expression levels of 

CD133, a marker of CCA stem cells, were also decreased in 

mammospheres with downregulated METTL3 and METTL14 

(Figure 2F, 2G). More importantly, knockdown of METTL3 or 

METTL14 extensively reduced the increase of CCA stem-like 

properties, including the number of mammospheres and the 

expression of CD133 in mammospheres, which were triggered 

by IL-6 treatment in CCA cells (Figure 2H, 2I). Together, these 

results showed that inflammatory responses controlled the 

stem-like properties of CCA cells through m6A modification 

triggered by METTL3, METTL14, and WTAP genes.

The m6A writers maintained the expression 
of stemness-related genes through m6A 
modification during inflammation

To determine whether these inflammatory responses con-

trolled the stem-like properties of CCA cells through m6A 

modification, we used RNA-seq to screen stemness-related 

genes that may have been regulated by m6A writers. The results 

showed that METTL3, METTL14, and WTAP shared 1727 

RNA targets (Figure 3A and Supplementary Figure S4A). 

Notably, a set of stemness genes, such as SOX4, SOX6, and 

CTNNB1, was significantly downregulated in cells when m6A 

writers were knocked down (Figure 3B-D and Supplementary 

Figure S4B). Additionally, knockdown of METTL3 or 

METTL14 reduced the increased expression levels of CD133 

and CTNNB1 triggered by IL-6 treatment, suggesting that the 

inflammatory response maintained the stem-like properties of 

CCA cells through modification of  m6A modification (Figure 

3E). It is well-known that m6A modification is the functional 

mechanism by which m6A writers affect target genes11,13,30. 

Thus, we next investigated whether METTL3/14 regulated the 

expression of stemness genes in an m6A modification man-

ner. An m6A RNA immunoprecipitation assay showed that 

the lower enrichment of m6A modification was associated 

with some stemness-regulated genes, including CTNNB1, in 

METTL3- and METTL14-silenced CCA cells, which is consist-

ent with the data in the GSE90642 data set based on a study of 

HepG2 cells31 (Figure 4A, B and Supplementary Figure S5A). 
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Figure 2 The m6A writers maintained the stem-like properties of CCA cells in response to inflammation. (A) Using a wound healing assay, the 
cell motilities of METTL3, METTL14, and WTAP-silenced CCA SK-Cha-1 cells were observed at 0 and 24 h following wounding by a pipette tip. 
Original magnification: 100×. Quantitative analysis of the migration. Error bars denote ± SEM (*P < 0.05; ***P < 0.001) based on 3 independent 
experiments. (B) Morphology and number of mammospheres of CCA cells treated with or without 20 ng/mL IL-6 for 2 h. Scale bars: 50 μm. 
Error bars denote ± SEM (*P < 0.05; ***P < 0.001). (C) The qRT-PCR showing the expression levels of CD133 in SK-Cha-1 cell mammospheres 
in the IL-6 treatment vs. control groups. Error bars denote ± SEM (***P < 0.001) based on 3 independent experiments. (D, E) Morphology and 
numbers of mammospheres of SK-Cha-1 cells upon sh-METTL3 (D) and METTL14 (E) knockdown. Scale bars: 50 μm. Error bars denote ± SEM 
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CD133 significantly downregulated in the knockdown of METTL3 (F) and METTL14 (G) SK-Cha-1 cell mammospheres. (H) Measurement of the 
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bars: 50 μm. Error bars denote ± SEM (*P < 0.05; ***P < 0.001) in 3 independent experiments. (I) The qRT-PCR showed the expression levels 
of CD133 after 20 ng/mL IL-6 treatment in the sh-METTL3 or sh-METTL14 CCA cells for 2 h. Error bars denote ± SEM (*P < 0.05; ***P < 0.001) 
in 3 independent experiments.
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Together, these findings suggested that m6A writers regulated 

the expression of stemness-related genes through an m6A- 

dependent manner in response to inflammation.

The m6A writers regulated the mRNA stability 
and translation of stemness-related genes via 
m6A modification during inflammation

It was reported that m6A affected mRNA stability and trans-

lation, which was mediated by specific m6A-binding proteins 

known as m6A readers30-32. To search for specific m6A read-

ers in CCA cells, we again analyzed TCGA database and found 

that 6 m6A readers, including IGF2BP2, YTH domain con-

taining 2 (YTHDC2), embryonic lethal, abnormal vision, and 

Drosophila-like protein 1 (ELAVL1), were highly expressed in 

CCA tumors, with IGF2BP2 displaying the highest expression 

(Supplementary Figure S5B). We also confirmed the expres-

sion patterns of these m6A readers in 38 paired CCA samples 

and found that the expression of IGF2BP2 was the highest 

(5.9-fold change; P < 0.0001) (Figure 4C). Notably, many 

stemness-related RNAs, including CTNNB1, were significantly 

enriched with IGF2BP2 in HepG2 cells (Supplementary 

Figure S5C). These results suggested that the highly expressed 

IGF2BP2 might have a critical role in CCA progression, and 
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might directly control the stability and translation of stem-

ness-related transcripts in an m6A-dependent manner. To val-

idate this possibility, we measured the enrichment of IGF2BP2 

on CTNNB1 mRNA, which was highly expressed in CCA tum-

ors (Figure 4D). The results showed that the enrichment of 

IGF2BP2 significantly increased after IL-6 treatment; however, 

the increase of IGF2BP2 enrichment by IL-6 was reduced by 

knockdown of METTL3 (Figure 4E). We also treated CCA cells 

with the transcription inhibitor, actinomycin D (Act D)25,31, 

and then determined the RNA stability of CTNNB1 tran-

scripts in the control and METTL3-, METTL14-, or IGF2BP2-

knockdown cells (Supplementary Figure S3A, S5D). Knocking 

down METTL3, METTL14, or IGF2BP2 resulted in a signifi-

cant increase in the degradation of CTNNB1 (Figure 5A), and 

the degradation of CTNNB1 caused by IGF2BP2 knockdown 

was reversed by IL-6 treatment (Figure 5B). These findings 

showed that the higher m6A modification of CTNNB1 tran-

scripts was induced by the IL-6/STAT3 inflammatory pathway, 

and was recognized by IGF2BP2, a special m6A reader, which 

regulated CTNNB1 mRNA stability.

To investigate whether IGF2BP2 regulated the translational 

efficiency of CTNNB1, a process that is dependent on mRNA 

stability, polysome profile experiments were conducted. In 

principle, mRNAs distributed to non-polysomal fractions were 

inefficiently translated, with low molecular weight fractions 

having a moderate translational efficiency; and high mole-

cular weight (HMW) fractions having a high translational 

efficiency33,34. IL-6 treatment of the CCA cell line, SK-Cha-1, 

caused a greater enrichment of the CTNNB1 mRNA in the 

HMW portion, whereas it did not change the polysome distri-

bution profile of GAPDH mRNA (Figure 5C). This indicated 

that increased m6A modification of the CTNNB1 transcripts 
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induced by the IL-6/STAT3 inflammatory pathway enhanced 

their translational efficiencies. In addition, knockdown of 

IGF2BP2 in SK-Cha-1 cells significantly decreased the enrich-

ment of CTNNB1 mRNA in the HMW fraction, with GAPDH 

mRNA acting as a negative control (Figure 5D, 5E), suggest-

ing that IGF2BP2 might increase the translational efficiency of 

CTNNB1 mRNA in an m6A-dependent manner. The expres-

sion levels of stemness-related genes were also significantly 
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reduced in IGF2BP2-knockdown CCA cells (Figure 5F, 5G). 

Overall, these results showed that the inflammatory response 

facilitated cancer cell stemness was modulated by the stability 

and translation of stemness-related transcripts in an m6A-IG-

F2BP2-dependent manner in CCA cells.

The m6A writers maintained CCA cell 
stemness in vivo and their clinical relevance 
in CCA

Using a subcutaneous xenotransplantation model, we deter-

mined whether m6A genes promoted CCA cell stemness 

and development8. METTL3 is the major m6A modification 

enzyme that has a core role in enhancing stem-like properties 

in various types of cancers16,17,20,21. We have also shown that 

METTL3 showed powerful effects on stem-like properties of 

CCA cells via m6A modification. Thus, METTL3 was selected 

to perform the in vivo experiments in this study. When METTL3 

knockdown SK-Cha-1 cells were implanted, tumor growth was 

inhibited, and the xenograft tumor weight was reduced, com-

pared to controls (Figure 6A, 6B). In addition, the expression 

levels of CD133 and CTNNB1 were significantly decreased in 

tumors from mice implanted with METTL3 knockdown CCA 

cells (Figure 6C). Based on the mechanism and function of 

m6A writers in CCA cells identified in vitro and in vivo, we 

determined the clinical relevance of m6A writers, IGF2BP2, 

and CTNNB1. CTNNB1 expression positively correlated with 

both m6A writers and IGF2BP2 in 38 paired CCA tumor and 

adjacent normal tissues (Figure 7A), which was further vali-

dated by data sets in TCGA database (Supplementary Figure 

S6). Moreover, ROC curve analysis was performed with the rel-

ative expression of m6A writers, IGF2BP2, and CTNNB1, and 

the associated area under the ROC curve (AUC), as well as the 

sensitivity and specificity being used to evaluate the diagnostic 

potency in CCA. Figure 7B shows that all 5 molecules showed 

considerable AUC values and significantly distinguished the 

CCA tumors from adjacent normal tissues. Notably, the com-

bination of m6A writers, IGF2BP2 and CTNNB1, showed 

an additive predictive value, and the AUC was up to 0.7722 

(95% CI: 0.6679 to 0.8764; P < 0.001) with a cutoff point of 

68.42% sensitivity and 76.32% specificity (Figure 7B). These 

results suggested that changes in the levels of m6A writers, 

IGF2BP2, and CTNNB1, were potential tools for the detection 

of CCA, especially when these molecules were simultaneously 

evaluated.

Taken together, our data showed that the inflammatory 

response triggered by IL-6 enhanced the expressions of m6A 

genes by activating the STAT3 pathway, and then regulated 

the stability and translation of stemness-related genes in an 

m6A-IGF2BP2-dependent manner, ultimately facilitating 

CCA cell stemness and tumor progression (Figure 7C). This 

is the first report showing that m6A modification was linked 

with the inflammatory response to cell stemness in CCA.

Discussion

Cancer cell stemness is reported to be critical for cancer 

initiation, metastasis, relapse, and chemoresistance1,35-38. 

Investigation of the regulatory mechanisms of CSCs in CCA 

is essential for developing effective therapies that improve 

patient outcomes1,36,37. Previous studies have indicated that 

aberrant inflammatory factors, including IL-6, are increased 

in patients with CCA, induce inflammatory responses, and are 

closely associated with stemness maintenance in CCA29,36,39,40. 
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The m6A modification plays important roles in cell stemness 

and tumorigenesis17,19-21. However, whether m6A modifica-

tion is involved in the inflammatory response and cell self-re-

newal in CCA remains unknown.

Using loss-of-function experiments, we showed that the 

inflammatory response triggered by IL-6 facilitated cancer 

cell stemness and tumor progression in an m6A-IGF2BP2-de-

pendent manner in CCA patients. The results showed that the 

expressions of m6A writers in CCA cells were upregulated 

by IL-6. Mechanistically, IL-6/STAT3 signaling improved the 

expressions of m6A writers in gene regions, which directly 

bound to activated STAT3. The m6A RNA modification can 

significantly enhance the stability and translation of stem 

genes, including CTNNB141 and CD1338, and facilitate the 

stem-like properties of CCA, highlighting its crucial role in 

the self-renewal of CCA cells and its potential as a valuable 

therapeutic target for CCA treatment. Clinically, we have also 

shown that m6A writers, IGF2BP2 and CTNNB1, were highly 

expressed in CCA patient samples, suggesting their potential 

roles for the detection of CCA, especially when these molecu-

lar were simultaneously evaluated. Of note, m6A writers pre-

sented distinct expression patterns in ICC and ECC samples, 

implying that they could potentially identify different CCA 

subtypes and may contribute to their differences in etiologies 

and pathogenesis. The study has also provided insight into 

the inflammatory response that regulates CCA stemness gene 

expression through an m6A-dependent pathway.

Recent progress has indicated that m6A plays indispensable 

roles in inflammation and antitumor effects through its inter-

actions with various m6A regulators, such as IGF2BPs, YTH 
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domain containing 1(YTHDC1), etc.12,30,32. Most studies have 

focused on m6A as a regulator of inflammatory signaling42-44. 

For example, YTH N(6)-methyl adenosine RNA binding 

protein 2 (YTHDF2) serves as a tumor suppressor to resolve 

cancer-promoting inflammation by degrading interleukin 11 

mRNAs in HCCs42, and METTL3 depletion decreased the 

expressions of inflammatory cytokines in human dental pulp 

cells43. Different from these reports, our results showed that 

the inflammatory pathway can regulate m6A modification by 

directly binding to the gene loci of m6A writers to activate the 

transcription process of m6A methylase to increase total m6A 

levels in CCA cells. These findings identified the upstream reg-

ulatory mechanism of the m6A modification and highlighted 

the important roles of the inflammatory pathway in the regu-

lation of epigenetic alterations.

Increased evidence has led to an appreciation of the con-

nection between cancer cell stemness maintenance and m6A 

modification, where a universal regulation model functions as 

a signal to mark specific RNAs, whose fate is determined by 

the “reader” protein that subsequently recognizes and interacts 

with it17,19,45. It seems that 1 type of cancer involves having a 

main m6A reader that recognizes the m6A modification and 

regulates cancer cell stemness21,46. For example, YTHDF2 is 

highly expressed in hepatocellular carcinoma and specifically 

reads the m6A modification of OCT4, and enhances its expres-

sion, which promotes the liver cancer stem cell phenotype and 

cancer metastasis46. For colorectal carcinoma cells, highly 

expressed IGF2BP2 can regulate sex-determining region Y-box 

2 (SOX2) expression through an m6A-IGF2BP2-dependent 

mechanism to maintain cell self-renewal21. In this study, we 

showed that IGF2BP2 displayed the highest expression pattern 

in CCA cells, and specifically promoted CTNNB1 expression 

in an m6A-dependent manner, indicating that it may be a key 

m6A reader in CCA patients. Furthermore, our study screened 

a set of cancer cell genes in different stemness-related signaling 

pathways, including CTNNB1, SOX6, and CD133 in CCA, to 

show that stemness genes were targeted by m6A modification. 

We found that the m6A/IGF2BP2 axis functioned in main-

taining CCA stemness, suggesting that it might be a new target 

for CCA diagnosis and treatment.

Conclusions

Collectively, we showed that m6A writers were highly 

expressed in CCA, and could potentially be used as diagnos-

tic biomarkers for CCA. In CCA patients, the inflammatory 

factors regulating cancer cell stemness and tumor progres-

sion may be partially dependent on m6A modifications. IL-6/

STAT3 signaling can facilitate the expression of m6A genes, 

which enhances m6A modifications related to stemness-re-

lated genes, to improve their mRNA stabilities and translations 

in an m6A-IGF2BP2-dependent manner. This study therefore 

provided insight into the mechanisms of the inflammatory 

response and CCA cell stemness, and suggested that m6A 

modification is a targetable mediator in the response to expo-

sure to inflammatory factors.
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