Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Metabolic regulation of immune responses to cancer

Jannis Wißfeld, Anke Werner, Xin Yan, Nora ten Bosch and Guoliang Cui
Cancer Biology & Medicine November 2022, 19 (11) 1528-1542; DOI: https://doi.org/10.20892/j.issn.2095-3941.2022.0381
Jannis Wißfeld
1Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany
2T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anke Werner
1Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany
2T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xin Yan
1Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany
2T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
3Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nora ten Bosch
1Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany
2T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guoliang Cui
1Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany
2T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
3Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Guoliang Cui
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Trauth BC,
    2. Klas C,
    3. Peters AMJ,
    4. Matzku S,
    5. Möller P,
    6. Falk W, et al.
    Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science. 1989; 245: 301–5.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Igney FH,
    2. Behrens CK,
    3. Krammer PH.
    CD95L mediates tumor counterattack in vitro but induces neutrophil-independent tumor rejection in vivo. Int J Cancer. 2005; 113: 78–87.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Ribas A,
    2. Wolchok JD.
    Cancer immunotherapy using checkpoint blockade. Science. 2018; 359: 1350–5.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Liu M,
    2. Sun Q,
    3. Wei F,
    4. Ren X.
    Comprehensive insights into the effects and regulatory mechanisms of immune cells expressing programmed death-1/programmed death ligand 1 in solid tumors. Cancer Biol Med. 2020; 17: 626–39.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Baumann D,
    2. Hägele T,
    3. Mochayedi J,
    4. Drebant J,
    5. Vent C,
    6. Blobner S, et al.
    Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy. Nat Commun. 2020; 11: 2176.
    OpenUrlPubMed
  6. 6.↵
    1. Suarez-Carmona M,
    2. Williams A,
    3. Schreiber J,
    4. Hohmann N,
    5. Pruefer U,
    6. Krauss J, et al.
    Combined inhibition of CXCL12 and PD-1 in MSS colorectal and pancreatic cancer: modulation of the microenvironment and clinical effects. J Immunother Cancer. 2021; 9.
  7. 7.↵
    1. Hanna BS,
    2. Llaó-Cid L,
    3. Iskar M,
    4. Roessner PM,
    5. Klett LC,
    6. Wong JKL, et al.
    Interleukin-10 receptor signaling promotes the maintenance of a PD-1(int) TCF-1+ CD8+ T cell population that sustains anti-tumor immunity. Immunity. 2021; 54: 2825–41.e10.
    OpenUrl
  8. 8.↵
    1. Weisshaar N,
    2. Wu J,
    3. Ming Y,
    4. Madi A,
    5. Hotz-Wagenblatt A,
    6. Ma S, et al.
    Rgs16 promotes antitumor CD8+ T cell exhaustion. Sci Immunol. 2022; 7: eabh1873.
  9. 9.↵
    1. Pfister D,
    2. Núñez NG,
    3. Pinyol R,
    4. Govaere O,
    5. Pinter M,
    6. Szydlowska M, et al.
    NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021; 592: 450–6.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Dudek M,
    2. Pfister D,
    3. Donakonda S,
    4. Filpe P,
    5. Schneider A,
    6. Laschinger M, et al.
    Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature. 2021; 592: 444–9.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Yuan D,
    2. Huang S,
    3. Berger E,
    4. Liu L,
    5. Gross N,
    6. Heinzmann F, et al.
    Kupffer cell-derived Tnf triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS. Cancer Cell. 2017; 31: 771–89.e6.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Sektioglu IM,
    2. Carretero R,
    3. Bender N,
    4. Bogdan C,
    5. Garbi N,
    6. Umansky V, et al.
    Macrophage-derived nitric oxide initiates T-cell diapedesis and tumor rejection. Oncoimmunology. 2016; 5: e1204506.
  13. 13.↵
    1. Madi A,
    2. Cui G.
    Regulation of immune cell metabolism by cancer cell oncogenic mutations. Int J Cancer. 2020; 147: 307–16.
    OpenUrl
  14. 14.↵
    1. Xu S,
    2. Chaudhary O,
    3. Rodríguez-Morales P,
    4. Sun X,
    5. Chen D,
    6. Zappasodi R, et al.
    Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity. 2021; 54: 1561–77.e7.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Opitz CA,
    2. Litzenburger UM,
    3. Sahm F,
    4. Ott M,
    5. Tritschler I,
    6. Trump S, et al.
    An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011; 478: 197–203.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Sadik A,
    2. Somarribas Patterson LF,
    3. Öztürk S,
    4. Mohapatra SR,
    5. Panitz V,
    6. Secker PF, et al.
    IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell. 2020; 182: 1252–70.e34.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Bunse L,
    2. Pusch S,
    3. Bunse T,
    4. Sahm F,
    5. Sanghvi K,
    6. Friedrich M, et al.
    Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med. 2018; 24: 1192–203.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Liu X,
    2. Zhao Y,
    3. Wu X,
    4. Liu Z,
    5. Liu X.
    A novel strategy to fuel cancer immunotherapy: targeting glucose metabolism to remodel the tumor microenvironment. Front Oncol. 2022; 12: 931104.
  19. 19.
    1. Rangel Rivera GO,
    2. Knochelmann HM,
    3. Dwyer CJ,
    4. Smith AS,
    5. Wyatt MM,
    6. Rivera-Reyes AM, et al.
    Fundamentals of T cell metabolism and strategies to enhance cancer immunotherapy. Front Immunol. 2021; 12: 645242.
  20. 20.
    1. Lim AR,
    2. Rathmell WK,
    3. Rathmell JC.
    The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. Elife. 2020; 9: e55185.
  21. 21.
    1. Terren I,
    2. Orrantia A,
    3. Vitalle J,
    4. Zenarruzabeitia O,
    5. Borrego F.
    NK cell metabolism and tumor microenvironment. Front Immunol. 2019; 10: 2278.
    OpenUrlPubMed
  22. 22.↵
    1. Wu F,
    2. Cheng Y,
    3. Wu L,
    4. Zhang W,
    5. Zheng W,
    6. Wang Q, et al.
    Emerging landscapes of tumor immunity and metabolism. Front Oncol. 2020; 10: 575037.
  23. 23.↵
    1. Butler LM,
    2. Perone Y,
    3. Dehairs J,
    4. Lupien LE,
    5. de Laat V,
    6. Talebi A, et al.
    Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020; 159: 245–93.
    OpenUrl
  24. 24.↵
    1. Zhang Y,
    2. Kurupati R,
    3. Liu L,
    4. Zhou XY,
    5. Zhang G,
    6. Hudaihed A, et al.
    Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 2017; 32: 377–91.e9.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Wang R,
    2. Dillon CP,
    3. Shi LZ,
    4. Milasta S,
    5. Carter R,
    6. Finkelstein D, et al.
    The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011; 35: 871–82.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Chang C-H,
    2. Qiu J,
    3. O’Sullivan D,
    4. Buck MD,
    5. Noguchi T,
    6. Curtis JD, et al.
    Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015; 162: 1229–41.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Ho P-C,
    2. Bihuniak JD,
    3. Macintyre AN,
    4. Staron M,
    5. Liu X,
    6. Amezquita R, et al.
    Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell. 2015; 162: 1217–28.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Chowdhury PS,
    2. Chamoto K,
    3. Kumar A,
    4. Honjo T.
    PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer Immunol Res. 2018; 6: 1375–87.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Saibil SD,
    2. St Paul M,
    3. Laister RC,
    4. Garcia-Batres CR,
    5. Israni-Winger K,
    6. Elford AR, et al.
    Activation of peroxisome proliferator-activated receptors α and δ synergizes with inflammatory signals to enhance adoptive cell therapy. Cancer Res. 2019; 79: 445–51.
    OpenUrlAbstract/FREE Full Text
  30. 30.↵
    1. Manzo T,
    2. Prentice BM,
    3. Anderson KG,
    4. Raman A,
    5. Schalck A,
    6. Codreanu GS, et al.
    Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J Exp Med. 2020; 217: e20191920.
  31. 31.↵
    1. Patsoukis N,
    2. Bardhan K,
    3. Chatterjee P,
    4. Sari D,
    5. Liu B,
    6. Bell LN, et al.
    PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015; 6: 6692.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Zhang C,
    2. Yue C,
    3. Herrmann A,
    4. Song J,
    5. Egelston C,
    6. Wang T, et al.
    STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab. 2020; 31: 148–61 e5.
    OpenUrlPubMed
  33. 33.↵
    1. Blagih J,
    2. Coulombe F,
    3. Vincent Emma E,
    4. Dupuy F,
    5. Galicia-Vázquez G,
    6. Yurchenko E, et al.
    The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity. 2015; 42: 41–54.
    OpenUrlCrossRefPubMed
  34. 34.
    1. Cham CM,
    2. Driessens G,
    3. O’Keefe JP,
    4. Gajewski TF.
    Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol. 2008; 38: 2438–50.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Cham CM,
    2. Gajewski TF.
    Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells. J Immunol. 2005; 174: 4670–7.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Michalek RD,
    2. Gerriets VA,
    3. Jacobs SR,
    4. Macintyre AN,
    5. MacIver NJ,
    6. Mason EF, et al.
    Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011; 186: 3299–303.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Beier UH,
    2. Angelin A,
    3. Akimova T,
    4. Wang L,
    5. Liu Y,
    6. Xiao H, et al.
    Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. FASEB J. 2015; 29: 2315–26.
    OpenUrlCrossRefPubMed
  38. 38.↵
    1. Gerriets VA,
    2. Kishton RJ,
    3. Johnson MO,
    4. Cohen S,
    5. Siska PJ,
    6. Nichols AG, et al.
    Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016; 17: 1459–66.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Angelin A,
    2. Gil-de-Gomez L,
    3. Dahiya S,
    4. Jiao J,
    5. Guo L,
    6. Levine MH, et al.
    Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017; 25: 1282–93 e7.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Howie D,
    2. Cobbold SP,
    3. Adams E,
    4. Ten Bokum A,
    5. Necula AS,
    6. Zhang W, et al.
    Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight. 2017; 2: e89160.
  41. 41.↵
    1. Ma X,
    2. Bi E,
    3. Lu Y,
    4. Su P,
    5. Huang C,
    6. Liu L, et al.
    Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 2019; 30: 143–56 e5.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Wu J,
    2. Ma S,
    3. Sandhoff R,
    4. Ming Y,
    5. Hotz-Wagenblatt A,
    6. Timmerman V, et al.
    Loss of neurological disease HSAN-I-associated gene SPTLC2 impairs CD8+ T cell responses to infection by inhibiting T cell metabolic fitness. Immunity. 2019; 50: 1218–31.e5.
    OpenUrl
  43. 43.↵
    1. Yang W,
    2. Bai Y,
    3. Xiong Y,
    4. Zhang J,
    5. Chen S,
    6. Zheng X, et al.
    Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature. 2016; 531: 651–5.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Smyth MJ,
    2. Cretney E,
    3. Kelly JM,
    4. Westwood JA,
    5. Street SE,
    6. Yagita H, et al.
    Activation of NK cell cytotoxicity. Mol Immunol. 2005; 42: 501–10.
    OpenUrlCrossRefPubMedWeb of Science
  45. 45.↵
    1. Xue W,
    2. Zhang M.
    Updating targets for natural killer/T-cell lymphoma immunotherapy. Cancer Biol Med. 2021; 18: 52–62.
    OpenUrlAbstract/FREE Full Text
  46. 46.↵
    1. Yaqoob P,
    2. Newsholme EA,
    3. Calder PC.
    Inhibition of natural killer cell activity by dietary lipids. Immunol Lett. 1994; 41: 241–7.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.
    1. Tobin LM,
    2. Mavinkurve M,
    3. Carolan E,
    4. Kinlen D,
    5. O’Brien EC,
    6. Little MA, et al.
    NK cells in childhood obesity are activated, metabolically stressed, and functionally deficient. JCI Insight. 2017; 2: e94939.
  48. 48.↵
    1. Viel S,
    2. Besson L,
    3. Charrier E,
    4. Marcais A,
    5. Disse E,
    6. Bienvenu J, et al.
    Alteration of natural killer cell phenotype and function in obese individuals. Clin Immunol. 2017; 177: 12–7.
    OpenUrlPubMed
  49. 49.↵
    1. Park A,
    2. Lee Y,
    3. Kim MS,
    4. Kang YJ,
    5. Park YJ,
    6. Jung H, et al.
    Prostaglandin E2 secreted by thyroid cancer cells contributes to immune escape through the suppression of natural killer (NK) cell cytotoxicity and NK cell differentiation. Front Immunol. 2018; 9: 1859.
    OpenUrl
  50. 50.↵
    1. Ma X,
    2. Holt D,
    3. Kundu N,
    4. Reader J,
    5. Goloubeva O,
    6. Take Y, et al.
    A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE2-mediated immunosuppression and inhibits breast cancer metastasis. Oncoimmunology. 2013; 2: e22647.
  51. 51.↵
    1. Kobayashi T,
    2. Lam PY,
    3. Jiang H,
    4. Bednarska K,
    5. Gloury R,
    6. Murigneux V, et al.
    Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood. 2020; 136: 3004–17.
    OpenUrl
  52. 52.↵
    1. Michelet X,
    2. Dyck L,
    3. Hogan A,
    4. Loftus RM,
    5. Duquette D,
    6. Wei K, et al.
    Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol. 2018; 19: 1330–40.
    OpenUrlCrossRefPubMed
  53. 53.
    1. Assmann N,
    2. O’Brien KL,
    3. Donnelly RP,
    4. Dyck L,
    5. Zaiatz-Bittencourt V,
    6. Loftus RM, et al.
    Srebp-controlled glucose metabolism is essential for nk cell functional responses. Nat Immunol. 2017; 18: 1197–206.
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. Jensen TO,
    2. Schmidt H,
    3. Moller HJ,
    4. Hoyer M,
    5. Maniecki MB,
    6. Sjoegren P, et al.
    Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J Clin Oncol. 2009; 27: 3330–7.
    OpenUrlAbstract/FREE Full Text
  55. 55.
    1. Kamper P,
    2. Bendix K,
    3. Hamilton-Dutoit S,
    4. Honore B,
    5. Nyengaard JR,
    6. d’Amore F.
    Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica. 2011; 96: 269–76.
    OpenUrlAbstract/FREE Full Text
  56. 56.
    1. Lee CH,
    2. Espinosa I,
    3. Vrijaldenhoven S,
    4. Subramanian S,
    5. Montgomery KD,
    6. Zhu S, et al.
    Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res. 2008; 14: 1423–30.
    OpenUrlAbstract/FREE Full Text
  57. 57.
    1. Medrek C,
    2. Ponten F,
    3. Jirstrom K,
    4. Leandersson K.
    The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer. 2012; 12: 306.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Zhang BC,
    2. Gao J,
    3. Wang J,
    4. Rao ZG,
    5. Wang BC,
    6. Gao JF.
    Tumor-associated macrophages infiltration is associated with peritumoral lymphangiogenesis and poor prognosis in lung adenocarcinoma. Med Oncol. 2011; 28: 1447–52.
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. Mills CD,
    2. Kincaid K,
    3. Alt JM,
    4. Heilman MJ,
    5. Hill AM.
    M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000; 164: 6166–73.
    OpenUrlAbstract/FREE Full Text
  60. 60.↵
    Webpage biorad; macrophage polarization mini-review. 2020.
  61. 61.↵
    1. Stein M,
    2. Keshav S,
    3. Harris N,
    4. Gordon S.
    Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992; 176: 287–92.
    OpenUrlAbstract/FREE Full Text
  62. 62.
    1. Martinez FO,
    2. Gordon S.
    The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014; 6: 13.
    OpenUrl
  63. 63.↵
    1. Nathan CF,
    2. Murray HW,
    3. Wiebe ME,
    4. Rubin BY.
    Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983; 158: 670–89.
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. Colegio OR,
    2. Chu NQ,
    3. Szabo AL,
    4. Chu T,
    5. Rhebergen AM,
    6. Jairam V, et al.
    Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014; 513: 559–63.
    OpenUrlCrossRefPubMedWeb of Science
  65. 65.↵
    1. Su P,
    2. Wang Q,
    3. Bi E,
    4. Ma X,
    5. Liu L,
    6. Yang M, et al.
    Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res. 2020; 80: 1438–50.
    OpenUrlAbstract/FREE Full Text
  66. 66.↵
    1. Wang R,
    2. Lu M,
    3. Zhang J,
    4. Chen S,
    5. Luo X,
    6. Qin Y, et al.
    Increased IL-10 mRNA expression in tumor-associated macrophage correlated with late stage of lung cancer. J Exp Clin Cancer Res. 2011; 30: 62.
    OpenUrlCrossRefPubMed
  67. 67.↵
    1. Sica A,
    2. Saccani A,
    3. Bottazzi B,
    4. Polentarutti N,
    5. Vecchi A,
    6. van Damme J, et al.
    Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol. 2000; 164: 762–7.
    OpenUrlAbstract/FREE Full Text
  68. 68.↵
    1. Li L,
    2. Yang L,
    3. Wang L,
    4. Wang F,
    5. Zhang Z,
    6. Li J, et al.
    Impaired T cell function in malignant pleural effusion is caused by TGF-β derived predominantly from macrophages. Int J Cancer. 2016; 139: 2261–9.
    OpenUrlPubMed
  69. 69.↵
    1. Peng J,
    2. Tsang JY,
    3. Li D,
    4. Niu N,
    5. Ho DH,
    6. Lau KF, et al.
    Inhibition of TGF-β signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Lett. 2013; 331: 239–49.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Curiel TJ,
    2. Coukos G,
    3. Zou L,
    4. Alvarez X,
    5. Cheng P,
    6. Mottram P, et al.
    Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004; 10: 942–9.
    OpenUrlCrossRefPubMedWeb of Science
  71. 71.↵
    1. Lin EY,
    2. Li JF,
    3. Bricard G,
    4. Wang W,
    5. Deng Y,
    6. Sellers R, et al.
    Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol. 2007; 1: 288–302.
    OpenUrlCrossRefPubMed
  72. 72.
    1. Lin EY,
    2. Li JF,
    3. Gnatovskiy L,
    4. Deng Y,
    5. Zhu L,
    6. Grzesik DA, et al.
    Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006; 66: 11238–46.
    OpenUrlAbstract/FREE Full Text
  73. 73.↵
    1. Yeo EJ,
    2. Cassetta L,
    3. Qian BZ,
    4. Lewkowich I,
    5. Li JF,
    6. Stefater JA 3rd., et al.
    Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 2014; 74: 2962–73.
    OpenUrlAbstract/FREE Full Text
  74. 74.↵
    1. Gocheva V,
    2. Wang HW,
    3. Gadea BB,
    4. Shree T,
    5. Hunter KE,
    6. Garfall AL, et al.
    IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010; 24: 241–55.
    OpenUrlAbstract/FREE Full Text
  75. 75.
    1. Vasiljeva O,
    2. Papazoglou A,
    3. Kruger A,
    4. Brodoefel H,
    5. Korovin M,
    6. Deussing J, et al.
    Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006; 66: 5242–50.
    OpenUrlAbstract/FREE Full Text
  76. 76.
    1. Sabeh F,
    2. Ota I,
    3. Holmbeck K,
    4. Birkedal-Hansen H,
    5. Soloway P,
    6. Balbin M, et al.
    Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol. 2004; 167: 769–81.
    OpenUrlAbstract/FREE Full Text
  77. 77.↵
    1. Wolf K,
    2. Wu YI,
    3. Liu Y,
    4. Geiger J,
    5. Tam E,
    6. Overall C, et al.
    Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol. 2007; 9: 893–904.
    OpenUrlCrossRefPubMedWeb of Science
  78. 78.↵
    1. Feng J,
    2. Han J,
    3. Pearce SF,
    4. Silverstein RL,
    5. Gotto AM Jr.,
    6. Hajjar DP, et al.
    Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. J Lipid Res. 2000; 41: 688–96.
    OpenUrlAbstract/FREE Full Text
  79. 79.
    1. Rios FJ,
    2. Koga MM,
    3. Pecenin M,
    4. Ferracini M,
    5. Gidlund M,
    6. Jancar S.
    Oxidized LDL induces alternative macrophage phenotype through activation of CD36 and PAFR. Mediators Inflamm. 2013; 2013: 198193.
  80. 80.↵
    1. Nagy L,
    2. Tontonoz P,
    3. Alvarez JG,
    4. Chen H,
    5. Evans RM.
    Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998; 93: 229–40.
    OpenUrlCrossRefPubMedWeb of Science
  81. 81.↵
    1. Masetti M,
    2. Carriero R,
    3. Portale F,
    4. Marelli G,
    5. Morina N,
    6. Pandini M, et al.
    Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. J Exp Med. 2022; 219: e20210564.
  82. 82.↵
    1. Divakaruni AS,
    2. Hsieh WY,
    3. Minarrieta L,
    4. Duong TN,
    5. Kim KKO,
    6. Desousa BR, et al.
    Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metabolism. 2018; 28: 490–503.e7.
    OpenUrl
  83. 83.↵
    1. Wu H,
    2. Han Y,
    3. Rodriguez Sillke Y,
    4. Deng H,
    5. Siddiqui S,
    6. Treese C, et al.
    Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 2019; 11: e10698.
  84. 84.↵
    1. Oishi Y,
    2. Spann NJ,
    3. Link VM,
    4. Muse ED,
    5. Strid T,
    6. Edillor C, et al.
    SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. Cell Metab. 2017; 25: 412–27.
    OpenUrlCrossRefPubMed
  85. 85.↵
    1. Ramirez CM,
    2. Torrecilla-Parra M,
    3. Pardo-Marques V,
    4. de-Frutos MF,
    5. Perez-Garcia A,
    6. Tabraue C, et al.
    Crosstalk between LXR and caveolin-1 signaling supports cholesterol efflux and anti-inflammatory pathways in macrophages. Front Endocrinol (Lausanne) 2021; 12: 635923.
  86. 86.↵
    1. Goossens P,
    2. Rodriguez-Vita J,
    3. Etzerodt A,
    4. Masse M,
    5. Rastoin O,
    6. Gouirand V, et al.
    Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 2019; 29: 1376–89 e4.
    OpenUrlCrossRefPubMed
  87. 87.↵
    1. James BR,
    2. Tomanek-Chalkley A,
    3. Askeland EJ,
    4. Kucaba T,
    5. Griffith TS,
    6. Norian LA.
    Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. J Immunol. 2012; 189: 1311–21.
    OpenUrlAbstract/FREE Full Text
  88. 88.↵
    1. Weatherill AR,
    2. Lee JY,
    3. Zhao L,
    4. Lemay DG,
    5. Youn HS,
    6. Hwang DH.
    Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J Immunol 2005; 174: 5390–7.
    OpenUrlAbstract/FREE Full Text
  89. 89.↵
    1. Zeyda M,
    2. Saemann MD,
    3. Stuhlmeier KM,
    4. Mascher DG,
    5. Nowotny PN,
    6. Zlabinger GJ, et al.
    Polyunsaturated fatty acids block dendritic cell activation and function independently of NF-kappaB activation. J Biol Chem. 2005; 280: 14293–301.
    OpenUrlAbstract/FREE Full Text
  90. 90.↵
    1. Herber DL,
    2. Cao W,
    3. Nefedova Y,
    4. Novitskiy SV,
    5. Nagaraj S,
    6. Tyurin VA, et al.
    Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 2010; 16: 880–6.
    OpenUrlCrossRefPubMed
  91. 91.↵
    1. Yi H,
    2. Yu X,
    3. Gao P,
    4. Wang Y,
    5. Baek SH,
    6. Chen X, et al.
    Pattern recognition scavenger receptor SRA/CD204 down-regulates toll-like receptor 4 signaling-dependent CD8 T-cell activation. Blood. 2009; 113: 5819–28.
    OpenUrlAbstract/FREE Full Text
  92. 92.↵
    1. Ramakrishnan R,
    2. Tyurin VA,
    3. Veglia F,
    4. Condamine T,
    5. Amoscato A,
    6. Mohammadyani D, et al.
    Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014; 192: 2920–31.
    OpenUrlAbstract/FREE Full Text
  93. 93.↵
    1. Cubillos-Ruiz JR,
    2. Silberman PC,
    3. Rutkowski MR,
    4. Chopra S,
    5. Perales-Puchalt A,
    6. Song M, et al.
    ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell. 2015; 161: 1527–38.
    OpenUrlCrossRefPubMed
  94. 94.↵
    1. Veglia F,
    2. Tyurin VA,
    3. Mohammadyani D,
    4. Blasi M,
    5. Duperret EK,
    6. Donthireddy L, et al.
    Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 2017; 8: 2122.
    OpenUrlCrossRefPubMed
  95. 95.↵
    1. Wculek SK,
    2. Malanchi I.
    Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature. 2015; 528: 413–7.
    OpenUrlCrossRefPubMed
  96. 96.↵
    1. Zhang Y,
    2. Guoqiang L,
    3. Sun M,
    4. Lu X.
    Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med. 2020; 17: 32–43.
    OpenUrlAbstract/FREE Full Text
  97. 97.↵
    1. Li P,
    2. Lu M,
    3. Shi J,
    4. Gong Z,
    5. Hua L,
    6. Li Q, et al.
    Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat Immunol. 2020; 21: 1444–55.
    OpenUrlCrossRefPubMed
  98. 98.↵
    1. Raccosta L,
    2. Fontana R,
    3. Maggioni D,
    4. Lanterna C,
    5. Villablanca EJ,
    6. Paniccia A, et al.
    The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med. 2013; 210: 1711–28.
    OpenUrlAbstract/FREE Full Text
  99. 99.↵
    1. Chuang JC,
    2. Yu CL,
    3. Wang SR.
    Modulation of human lymphocyte proliferation by amino acids. Clin Exp Immunol. 1990; 81: 173–6.
    OpenUrlPubMed
  100. 100.↵
    1. Hope HC,
    2. Salmond RJ.
    The role of non-essential amino acids in T cell function and anti-tumour immunity. Arch Immunol Ther Exp (Warsz). 2021; 69: 29.
    OpenUrl
  101. 101.↵
    1. Han C,
    2. Ge M,
    3. Ho PC,
    4. Zhang L.
    Fueling T-cell antitumor immunity: amino acid metabolism revisited. Cancer Immunol Res. 2021; 9: 1373–82.
    OpenUrlAbstract/FREE Full Text
  102. 102.↵
    1. Sullivan MR,
    2. Danai LV,
    3. Lewis CA,
    4. Chan SH,
    5. Gui DY,
    6. Kunchok T, et al.
    Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife. 2019; 8: e44235.
  103. 103.↵
    1. Grzywa TM,
    2. Sosnowska A,
    3. Matryba P,
    4. Rydzynska Z,
    5. Jasinski M,
    6. Nowis D, et al.
    Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020; 11: 938.
    OpenUrl
  104. 104.↵
    1. Morris SM, Jr..
    Arginine metabolism revisited. J Nutr. 2016; 146: 2579S–86S.
    OpenUrlAbstract/FREE Full Text
  105. 105.
    1. Chantranupong L,
    2. Scaria SM,
    3. Saxton RA,
    4. Gygi MP,
    5. Shen K,
    6. Wyant GA, et al.
    The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell. 2016; 165: 153–64.
    OpenUrlCrossRefPubMed
  106. 106.
    1. Morris CR,
    2. Hamilton-Reeves J,
    3. Martindale RG,
    4. Sarav M,
    5. Ochoa Gautier JB.
    Acquired amino acid deficiencies: a focus on arginine and glutamine. Nutr Clin Pract. 2017; 32: 30s–47s.
    OpenUrl
  107. 107.
    1. Husson A,
    2. Brasse-Lagnel C,
    3. Fairand A,
    4. Renouf S,
    5. Lavoinne A.
    Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem. 2003; 270: 1887–99.
    OpenUrlCrossRefPubMedWeb of Science
  108. 108.
    1. Böger RH.
    The pharmacodynamics of L-arginine. J Nutr. 2007; 137: 1650S–5S.
    OpenUrlAbstract/FREE Full Text
  109. 109.
    1. Lüneburg N,
    2. Xanthakis V,
    3. Schwedhelm E,
    4. Sullivan LM,
    5. Maas R,
    6. Anderssohn M, et al.
    Reference intervals for plasma L-arginine and the L-arginine: asymmetric dimethylarginine ratio in the framingham offspring cohort. J Nutr. 2011; 141: 2186–90.
    OpenUrlAbstract/FREE Full Text
  110. 110.↵
    1. Steggerda SM,
    2. Bennett MK,
    3. Chen J,
    4. Emberley E,
    5. Huang T,
    6. Janes JR, et al.
    Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 2017; 5: 101.
    OpenUrlAbstract/FREE Full Text
  111. 111.
    1. Mussai F,
    2. Wheat R,
    3. Sarrou E,
    4. Booth S,
    5. Stavrou V,
    6. Fultang L, et al.
    Targeting the arginine metabolic brake enhances immunotherapy for leukaemia. Int J Cancer. 2019; 145: 2201–8.
    OpenUrl
  112. 112.
    1. Mussai F,
    2. Egan S,
    3. Higginbotham-Jones J,
    4. Perry T,
    5. Beggs A,
    6. Odintsova E, et al.
    Arginine dependence of acute myeloid leukemia blast proliferation: a novel therapeutic target. Blood. 2015; 125: 2386–96.
    OpenUrlAbstract/FREE Full Text
  113. 113.
    1. Pan M,
    2. Reid MA,
    3. Lowman XH,
    4. Kulkarni RP,
    5. Tran TQ,
    6. Liu X, et al.
    Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol. 2016; 18: 1090–101.
    OpenUrlCrossRef
  114. 114.
    1. Mussai F,
    2. De Santo C,
    3. Abu-Dayyeh I,
    4. Booth S,
    5. Quek L,
    6. McEwen-Smith RM, et al.
    Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood. 2013; 122: 749–58.
    OpenUrlAbstract/FREE Full Text
  115. 115.↵
    1. Liu Y,
    2. Van Ginderachter JA,
    3. Brys L,
    4. De Baetselier P,
    5. Raes G,
    6. Geldhof AB.
    Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol. 2003; 170: 5064–74.
    OpenUrlAbstract/FREE Full Text
  116. 116.
    1. Gray MJ,
    2. Poljakovic M,
    3. Kepka-Lenhart D,
    4. Morris SM.
    Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPβ. Gene. 2005; 353: 98–106.
    OpenUrlCrossRefPubMedWeb of Science
  117. 117.↵
    1. Cobbold SP,
    2. Adams E,
    3. Farquhar CA,
    4. Nolan KF,
    5. Howie D,
    6. Lui KO, et al.
    Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A. 2009; 106: 12055–60.
    OpenUrlAbstract/FREE Full Text
  118. 118.↵
    1. Doedens AL,
    2. Stockmann C,
    3. Rubinstein MP,
    4. Liao D,
    5. Zhang N,
    6. DeNardo DG, et al.
    Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res. 2010; 70: 7465–75.
    OpenUrlAbstract/FREE Full Text
  119. 119.↵
    1. Rodriguez PC,
    2. Zea AH,
    3. DeSalvo J,
    4. Culotta KS,
    5. Zabaleta J,
    6. Quiceno DG, et al.
    L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol. 2003; 171: 1232–9.
    OpenUrlAbstract/FREE Full Text
  120. 120.↵
    1. Rodriguez PC,
    2. Quiceno DG,
    3. Zabaleta J,
    4. Ortiz B,
    5. Zea AH,
    6. Piazuelo MB, et al.
    Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 2004; 64: 5839–49.
    OpenUrlAbstract/FREE Full Text
  121. 121.↵
    1. Rodriguez PC,
    2. Ernstoff MS,
    3. Hernandez C,
    4. Atkins M,
    5. Zabaleta J,
    6. Sierra R, et al.
    Arginase I–producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009; 69: 1553–60.
    OpenUrlAbstract/FREE Full Text
  122. 122.↵
    1. Crump NT,
    2. Hadjinicolaou AV,
    3. Xia M,
    4. Walsby-Tickle J,
    5. Gileadi U,
    6. Chen J-L, et al.
    Chromatin accessibility governs the differential response of cancer and T cells to arginine starvation. Cell Rep. 2021; 35: 109101.
  123. 123.↵
    1. Zea AH,
    2. Rodriguez PC,
    3. Culotta KS,
    4. Hernandez CP,
    5. DeSalvo J,
    6. Ochoa JB, et al.
    L-arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol. 2004; 232: 21–31.
    OpenUrlCrossRefPubMedWeb of Science
  124. 124.↵
    1. Munder M.
    Suppression of T-cell functions by human granulocyte arginase. Blood. 2006; 108: 1627–34.
    OpenUrlAbstract/FREE Full Text
  125. 125.↵
    1. Fletcher M,
    2. Ramirez ME,
    3. Sierra RA,
    4. Raber P,
    5. Thevenot P,
    6. Al-Khami AA, et al.
    L-arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 2015; 75: 275–83.
    OpenUrlAbstract/FREE Full Text
  126. 126.↵
    1. Werner A,
    2. Koschke M,
    3. Leuchtner N,
    4. Luckner-Minden C,
    5. Habermeier A,
    6. Rupp J, et al.
    Reconstitution of T cell proliferation under arginine limitation: activated human T cells take up citrulline via l-type amino acid transporter 1 and use it to regenerate arginine after induction of argininosuccinate synthase expression. Front Immunol. 2017; 8: 864.
    OpenUrl
  127. 127.↵
    1. Werner A,
    2. Amann E,
    3. Schnitzius V,
    4. Habermeier A,
    5. Luckner-Minden C,
    6. Leuchtner N, et al.
    Induced arginine transport via cationic amino acid transporter-1 is necessary for human T-cell proliferation. Eur J Immunol. 2016; 46: 92–103.
    OpenUrlCrossRefPubMed
  128. 128.↵
    1. Geiger R,
    2. Rieckmann JC,
    3. Wolf T,
    4. Basso C,
    5. Feng Y,
    6. Fuhrer T, et al.
    L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016; 167: 829–42.e13.
    OpenUrlCrossRefPubMed
  129. 129.↵
    1. Rodriguez PC,
    2. Quiceno DG,
    3. Ochoa AC.
    L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2007; 109: 1568–73.
    OpenUrlAbstract/FREE Full Text
  130. 130.↵
    1. Baniyash M.
    TCR ζ-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol. 2004; 4: 675–87.
    OpenUrlCrossRefPubMedWeb of Science
  131. 131.↵
    1. Huppa JB,
    2. Davis MM.
    T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol. 2003; 3: 973–83.
    OpenUrlCrossRefPubMedWeb of Science
  132. 132.↵
    1. Eibert SM,
    2. Lee K-H,
    3. Pipkorn R,
    4. Sester U,
    5. Wabnitz GH,
    6. Giese T, et al.
    Cofilin peptide homologs interfere with immunological synapse formation and T cell activation. Proc Natl Acad Sci. 2004; 101: 1957–62.
    OpenUrlAbstract/FREE Full Text
  133. 133.↵
    1. Feldmeyer N,
    2. Wabnitz G,
    3. Leicht S,
    4. Luckner-Minden C,
    5. Schiller M,
    6. Franz T, et al.
    Arginine deficiency leads to impaired cofilin dephosphorylation in activated human T lymphocytes. Int Immunol. 2012; 24: 303–13.
    OpenUrlCrossRefPubMed
  134. 134.↵
    1. Zhang J,
    2. Xu X,
    3. Shi M,
    4. Chen Y,
    5. Yu D,
    6. Zhao C, et al.
    CD13(hi) neutrophil-like myeloid-derived suppressor cells exert immune suppression through arginase 1 expression in pancreatic ductal adenocarcinoma. Oncoimmunology. 2017; 6: e1258504.
  135. 135.↵
    1. Mao F-Y,
    2. Zhao Y-l,
    3. Lv Y-P,
    4. Teng Y-S,
    5. Kong H,
    6. Liu Y-G, et al.
    CD45+CD33lowCD11bdim myeloid-derived suppressor cells suppress CD8+ T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer. Cell Death Dis. 2018; 9: 763.
    OpenUrlPubMed
  136. 136.↵
    1. Vonwirth V,
    2. Bulbul Y,
    3. Werner A,
    4. Echchannaoui H,
    5. Windschmitt J,
    6. Habermeier A, et al.
    Inhibition of arginase 1 liberates potent T cell immunostimulatory activity of human neutrophil granulocytes. Front Immunol. 2020; 11: 617699.
  137. 137.↵
    1. Lamas B,
    2. Vergnaud-Gauduchon J,
    3. Goncalves-Mendes N,
    4. Perche O,
    5. Rossary A,
    6. Vasson MP, et al.
    Altered functions of natural killer cells in response to L-arginine availability. Cell Immunol. 2012; 280: 182–90.
    OpenUrlCrossRefPubMed
  138. 138.↵
    1. Oberlies J,
    2. Watzl C,
    3. Giese T,
    4. Luckner C,
    5. Kropf P,
    6. Muller I, et al.
    Regulation of NK cell function by human granulocyte arginase. J Immunol. 2009; 182: 5259–67.
    OpenUrlAbstract/FREE Full Text
  139. 139.↵
    1. Westhaver LP,
    2. Nersesian S,
    3. Nelson A,
    4. MacLean LK,
    5. Carter EB,
    6. Rowter D, et al.
    Mitochondrial damage-associated molecular patterns trigger arginase-dependent lymphocyte immunoregulation. Cell Rep. 2022; 39: 110847.
  140. 140.↵
    1. Jain A,
    2. Bakhshi S,
    3. Thakkar H,
    4. Gerards M,
    5. Singh A.
    Elevated mitochondrial DNA copy numbers in pediatric acute lymphoblastic leukemia: a potential biomarker for predicting inferior survival. Pediatr Blood Cancer. 2018; 65: e26874.
  141. 141.↵
    1. Meng X,
    2. Schwarzenbach H,
    3. Yang Y,
    4. Müller V,
    5. Li N,
    6. Tian D, et al.
    Circulating mitochondrial DNA is linked to progression and prognosis of epithelial ovarian cancer. Transl Oncol. 2019; 12: 1213–20.
    OpenUrl
  142. 142.
    1. Comai S,
    2. Bertazzo A,
    3. Brughera M,
    4. Crotti S.
    Tryptophan in health and disease. Adv Clin Chem. 2020; 95: 165–218.
    OpenUrlPubMed
  143. 143.↵
    1. Liu X,
    2. Shin N,
    3. Koblish HK,
    4. Yang G,
    5. Wang Q,
    6. Wang K, et al.
    Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010; 115: 3520–30.
    OpenUrlAbstract/FREE Full Text
  144. 144.↵
    1. Munn DH,
    2. Shafizadeh E,
    3. Attwood JT,
    4. Bondarev I,
    5. Pashine A,
    6. Mellor AL.
    Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999; 189: 1363–72.
    OpenUrlAbstract/FREE Full Text
  145. 145.↵
    1. Platten M,
    2. Nollen EAA,
    3. Rohrig UF,
    4. Fallarino F,
    5. Opitz CA.
    Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019; 18: 379–401.
    OpenUrlCrossRefPubMed
  146. 146.↵
    1. Theate I,
    2. van Baren N,
    3. Pilotte L,
    4. Moulin P,
    5. Larrieu P,
    6. Renauld JC, et al.
    Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues. Cancer Immunol Res. 2015; 3: 161–72.
    OpenUrlAbstract/FREE Full Text
  147. 147.↵
    1. Frumento G,
    2. Rotondo R,
    3. Tonetti M,
    4. Damonte G,
    5. Benatti U,
    6. Ferrara GB.
    Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002; 196: 459–68.
    OpenUrlAbstract/FREE Full Text
  148. 148.↵
    1. Peyraud F,
    2. Guegan J-P,
    3. Bodet D,
    4. Cousin S,
    5. Bessede A,
    6. Italiano A.
    Targeting tryptophan catabolism in cancer immunotherapy era: challenges and perspectives. Front Immunol. 2022; 13: 807271.
  149. 149.↵
    1. Puccetti P,
    2. Fallarino F,
    3. Italiano A,
    4. Soubeyran I,
    5. MacGrogan G,
    6. Debled M, et al.
    Accumulation of an endogenous tryptophan-derived metabolite in colorectal and breast cancers. PLoS One. 2015; 10: e0122046.
  150. 150.↵
    1. Fallarino F,
    2. Grohmann U,
    3. You S,
    4. McGrath BC,
    5. Cavener DR,
    6. Vacca C, et al.
    The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006; 176: 6752–61.
    OpenUrlAbstract/FREE Full Text
  151. 151.↵
    1. Fallarino F,
    2. Grohmann U,
    3. Hwang KW,
    4. Orabona C,
    5. Vacca C,
    6. Bianchi R, et al.
    Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003; 4: 1206–12.
    OpenUrlCrossRefPubMedWeb of Science
  152. 152.↵
    1. Costa-Mattioli M,
    2. Walter P.
    The integrated stress response: from mechanism to disease. Science. 2020; 368: eaat5314.
  153. 153.↵
    1. Munn DH,
    2. Sharma MD,
    3. Baban B,
    4. Harding HP,
    5. Zhang Y,
    6. Ron D, et al.
    Gcn2 kinase in t cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005; 22: 633–42.
    OpenUrlCrossRefPubMedWeb of Science
  154. 154.↵
    1. Sonner JK,
    2. Deumelandt K,
    3. Ott M,
    4. Thome CM,
    5. Rauschenbach KJ,
    6. Schulz S, et al.
    The stress kinase GCN2 does not mediate suppression of antitumor T cell responses by tryptophan catabolism in experimental melanomas. Oncoimmunology. 2016; 5: e1240858.
  155. 155.↵
    1. Chen W,
    2. Liang X,
    3. Peterson AJ,
    4. Munn DH,
    5. Blazar BR.
    The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol. 2008; 181: 5396–404.
    OpenUrlAbstract/FREE Full Text
  156. 156.↵
    1. Curti A,
    2. Pandolfi S,
    3. Valzasina B,
    4. Aluigi M,
    5. Isidori A,
    6. Ferri E, et al.
    Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood. 2007; 109: 2871–7.
    OpenUrlAbstract/FREE Full Text
  157. 157.↵
    1. Mezrich JD,
    2. Fechner JH,
    3. Zhang X,
    4. Johnson BP,
    5. Burlingham WJ,
    6. Bradfield CA.
    An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010; 185: 3190–8.
    OpenUrlAbstract/FREE Full Text
  158. 158.↵
    1. Stockinger B,
    2. Di Meglio P,
    3. Gialitakis M,
    4. Duarte JH.
    The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol. 2014; 32: 403–32.
    OpenUrlCrossRefPubMedWeb of Science
  159. 159.↵
    1. Liu Y,
    2. Liang X,
    3. Dong W,
    4. Fang Y,
    5. Lv J,
    6. Zhang T, et al.
    Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell. 2018; 33: 480–94.e7.
    OpenUrlCrossRefPubMed
  160. 160.↵
    1. Amobi-McCloud A,
    2. Muthuswamy R,
    3. Battaglia S,
    4. Yu H,
    5. Liu T,
    6. Wang J, et al.
    IDO1 expression in ovarian cancer induces PD-1 in T cells via aryl hydrocarbon receptor activation. Front Immunol. 2021; 12: 678999.
  161. 161.↵
    1. Novikov O,
    2. Wang Z,
    3. Stanford EA,
    4. Parks AJ,
    5. Ramirez-Cardenas A,
    6. Landesman E, et al.
    An aryl hydrocarbon receptor-mediated amplification loop that enforces cell migration in ER-/PR-/Her2- human breast cancer cells. Mol Pharmacol. 2016; 90: 674–88.
    OpenUrlAbstract/FREE Full Text
  162. 162.↵
    1. DiNatale BC,
    2. Murray IA,
    3. Schroeder JC,
    4. Flaveny CA,
    5. Lahoti TS,
    6. Laurenzana EM, et al.
    Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci. 2010; 115: 89–97.
    OpenUrlCrossRefPubMedWeb of Science
  163. 163.↵
    1. Caforio M,
    2. Sorino C,
    3. Caruana I,
    4. Weber G,
    5. Camera A,
    6. Cifaldi L, et al.
    GD2 redirected CAR T and activated NK-cell-mediated secretion of ifngamma overcomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape. J Immunother Cancer. 2021; 9: e001502.
  164. 164.↵
    1. Della Chiesa M,
    2. Carlomagno S,
    3. Frumento G,
    4. Balsamo M,
    5. Cantoni C,
    6. Conte R, et al.
    The tryptophan catabolite L-kynurenine inhibits the surface expression of NKP46- and NKG2D-activating receptors and regulates NK-cell function. Blood. 2006; 108: 4118–25.
    OpenUrlAbstract/FREE Full Text
  165. 165.↵
    1. Wang D,
    2. Saga Y,
    3. Mizukami H,
    4. Sato N,
    5. Nonaka H,
    6. Fujiwara H, et al.
    Indoleamine-2,3-dioxygenase, an immunosuppressive enzyme that inhibits natural killer cell function, as a useful target for ovarian cancer therapy. Int J Oncol. 2012; 40: 929–34.
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

Cancer Biology & Medicine: 19 (11)
Cancer Biology & Medicine
Vol. 19, Issue 11
15 Nov 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Metabolic regulation of immune responses to cancer
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Metabolic regulation of immune responses to cancer
Jannis Wißfeld, Anke Werner, Xin Yan, Nora ten Bosch, Guoliang Cui
Cancer Biology & Medicine Nov 2022, 19 (11) 1528-1542; DOI: 10.20892/j.issn.2095-3941.2022.0381

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Metabolic regulation of immune responses to cancer
Jannis Wißfeld, Anke Werner, Xin Yan, Nora ten Bosch, Guoliang Cui
Cancer Biology & Medicine Nov 2022, 19 (11) 1528-1542; DOI: 10.20892/j.issn.2095-3941.2022.0381
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Lipid metabolism regulates immune responses to tumors
    • Roles of amino acids in anti-tumor immunity
    • Grant support
    • Conflict of interest statement
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Therapeutic implications of cancer stem cells in prostate cancer
  • Nanomedicine-based combination therapies for overcoming temozolomide resistance in glioblastomas
  • Expert opinion on translational research for advanced glioblastoma treatment
Show more Review

Similar Articles

Keywords

  • Lipids
  • amino acids
  • cancer
  • anti-tumor immunity
  • T cells
  • NK cells
  • metabolism
  • immunometabolism

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2023 Cancer Biology & Medicine

Powered by HighWire