Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Comprehensive insights into the effects and regulatory mechanisms of immune cells expressing programmed death-1/programmed death ligand 1 in solid tumors

Min Liu, Qian Sun, Feng Wei and Xiubao Ren
Cancer Biology & Medicine August 2020, 17 (3) 626-639; DOI: https://doi.org/10.20892/j.issn.2095-3941.2020.0112
Min Liu
1Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qian Sun
1Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Feng Wei
1Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiubao Ren
1Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xiubao Ren
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Gong J,
    2. Chehrazi-Raffle A,
    3. Reddi S,
    4. Salgia R.
    Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018; 6: 8.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Jiang X,
    2. Wang J,
    3. Deng X,
    4. Xiong F,
    5. Ge J,
    6. Xiang B, et al.
    Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019; 18: 10.
    OpenUrlPubMed
  3. 3.↵
    1. Han Y,
    2. Liu D,
    3. Li L.
    PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020; 10: 727–42.
    OpenUrl
  4. 4.↵
    1. Tang J,
    2. Shalabi A,
    3. Hubbard-Lucey VM.
    Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol. 2018; 29: 84–91.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Jia L,
    2. Zhang Q,
    3. Zhang R.
    PD-1/PD-L1 pathway blockade works as an effective and practical therapy for cancer immunotherapy. Cancer Biol Med. 2018; 15: 116–23.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Lin H,
    2. Wei S,
    3. Hurt EM,
    4. Green MD,
    5. Zhao L,
    6. Vatan L, et al.
    Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 2018; 128: 805–15.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Agata Y,
    2. Kawasaki A,
    3. Nishimura H,
    4. Ishida Y,
    5. Tsubata T,
    6. Yagita H, et al.
    Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996; 8: 765–72.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Zou W,
    2. Chen L.
    Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008; 8: 467–77.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Kansy BA,
    2. Concha-Benavente F,
    3. Srivastava RM,
    4. Jie HB,
    5. Shayan G,
    6. Lei Y, et al.
    PD-1 status in CD8(+) T cells associates with survival and anti-PD-1 therapeutic outcomes in head and neck cancer. Cancer Res. 2017; 77: 6353–64.
    OpenUrlAbstract/FREE Full Text
  10. 10.
    1. Garnelo M,
    2. Tan A,
    3. Her Z,
    4. Yeong J,
    5. Lim CJ,
    6. Chen J, et al.
    Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut. 2017; 66: 342–51.
    OpenUrlAbstract/FREE Full Text
  11. 11.
    1. Shen T,
    2. Zhou L,
    3. Shen H,
    4. Shi C,
    5. Jia S,
    6. Ding GP, et al.
    Prognostic value of programmed cell death protein 1 expression on CD8+ T lymphocytes in pancreatic cancer. Sci Rep. 2017; 7: 7848.
    OpenUrl
  12. 12.↵
    1. Kotsakis A,
    2. Kallergi G,
    3. Aggouraki D,
    4. Lyristi Z,
    5. Koinis F,
    6. Lagoudaki E, et al.
    CD8(+) PD-1(+) T-cells and PD-L1(+) circulating tumor cells in chemotherapy-naive non-small cell lung cancer: towards their clinical relevance? Ther Adv Med Oncol. 2019; 11: 1758835919853193.
    OpenUrl
  13. 13.↵
    1. Yeong J,
    2. Lim JCT,
    3. Lee B,
    4. Li H,
    5. Ong CCH,
    6. Thike AA, et al.
    Prognostic value of CD8 + PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. J Immunother Cancer. 2019; 7: 34.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Xiao X,
    2. Lao XM,
    3. Chen MM,
    4. Liu RX,
    5. Wei Y,
    6. Ouyang FZ, et al.
    PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov. 2016; 6: 546–59.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Wu H,
    2. Xia L,
    3. Jia D,
    4. Zou H,
    5. Jin G,
    6. Qian W, et al.
    PD-L1(+) regulatory B cells act as a T cell suppressor in a PD-L1-dependent manner in melanoma patients with bone metastasis. Mol Immunol. 2020; 119: 83–91.
    OpenUrl
  16. 16.↵
    1. Largeot A,
    2. Pagano G,
    3. Gonder S,
    4. Moussay E,
    5. Paggetti J.
    The B-side of cancer immunity: the underrated tune. Cells. 2019; 8: 449.
    OpenUrlPubMed
  17. 17.↵
    1. Liu Y,
    2. Cheng Y,
    3. Xu Y,
    4. Wang Z,
    5. Du X,
    6. Li C, et al.
    Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. Oncogene. 2017; 36: 6143–53.
    OpenUrl
  18. 18.↵
    1. Concha-Benavente F,
    2. Kansy B,
    3. Moskovitz J,
    4. Moy J,
    5. Chandran U,
    6. Ferris RL.
    PD-L1 mediates dysfunction in activated PD-1(+) NK cells in head and neck cancer patients. Cancer Immunol Res. 2018; 6: 1548–60.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Krempski J,
    2. Karyampudi L,
    3. Behrens MD,
    4. Erskine CL,
    5. Hartmann L,
    6. Dong H, et al.
    Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol. 2011; 186: 6905–13.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Gordon SR,
    2. Maute RL,
    3. Dulken BW,
    4. Hutter G,
    5. George BM,
    6. McCracken MN, et al.
    PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017; 545: 495–9.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Kuang DM,
    2. Zhao Q,
    3. Peng C,
    4. Xu J,
    5. Zhang JP,
    6. Wu C, et al.
    Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009; 206: 1327–37.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Herbst RS,
    2. Soria JC,
    3. Kowanetz M,
    4. Fine GD,
    5. Hamid O,
    6. Gordon MS, et al.
    Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014; 515: 563–7.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Hartley GP,
    2. Chow L,
    3. Ammons DT,
    4. Wheat WH,
    5. Dow SW.
    Programmed cell death ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Cancer Immunol Res. 2018; 6: 1260–73.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Wang TT,
    2. Zhao YL,
    3. Peng LS,
    4. Chen N,
    5. Chen W,
    6. Lv YP, et al.
    Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut. 2017; 66: 1900–11.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Lv Y,
    2. Zhao Y,
    3. Wang X,
    4. Chen N,
    5. Mao F,
    6. Teng Y, et al.
    Increased intratumoral mast cells foster immune suppression and gastric cancer progression through TNF-alpha-PD-L1 pathway. J Immunother Cancer. 2019; 7: 54.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Nam S,
    2. Lee A,
    3. Lim J,
    4. Lim JS.
    Analysis of the expression and regulation of PD-1 protein on the surface of myeloid-derived suppressor cells (MDSCs). Biomol Ther (Seoul). 2019; 27: 63–70.
    OpenUrl
  27. 27.↵
    1. Qian X,
    2. Zhang Q,
    3. Shao N,
    4. Shan Z,
    5. Cheang T,
    6. Zhang Z, et al.
    Respiratory hyperoxia reverses immunosuppression by regulating myeloid-derived suppressor cells and PD-L1 expression in a triple-negative breast cancer mouse model. Am J Cancer Res. 2019; 9: 529–45.
    OpenUrl
  28. 28.↵
    1. Kurachi M.
    CD8(+) T cell exhaustion. Semin Immunopathol. 2019; 41: 327–37.
    OpenUrl
  29. 29.↵
    1. Chen L,
    2. Han X.
    Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 2015; 125: 3384–91.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Latchman YE,
    2. Liang SC,
    3. Wu Y,
    4. Chernova T,
    5. Sobel RA,
    6. Klemm M, et al.
    PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci U S A. 2004; 101: 10691–6.
    OpenUrlAbstract/FREE Full Text
  31. 31.↵
    1. Francisco LM,
    2. Salinas VH,
    3. Brown KE,
    4. Vanguri VK,
    5. Freeman GJ,
    6. Kuchroo VK, et al.
    PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009; 206: 3015–29.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Diskin B,
    2. Adam S,
    3. Cassini MF,
    4. Sanchez G,
    5. Liria M,
    6. Aykut B, et al.
    PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat Immunol. 2020; 21: 442–54.
    OpenUrlPubMed
  33. 33.↵
    1. Wang X,
    2. Wang G,
    3. Wang Z,
    4. Liu B,
    5. Han N,
    6. Li J, et al.
    PD-1-expressing B cells suppress CD4(+) and CD8(+) T cells via PD-1/PD-L1-dependent pathway. Mol Immunol. 2019; 109: 20–6.
    OpenUrlCrossRef
  34. 34.↵
    1. Olkhanud PB,
    2. Damdinsuren B,
    3. Bodogai M,
    4. Gress RE,
    5. Sen R,
    6. Wejksza K, et al.
    Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res. 2011; 71: 3505–15.
    OpenUrlAbstract/FREE Full Text
  35. 35.
    1. Zhang Y,
    2. Morgan R,
    3. Chen C,
    4. Cai Y,
    5. Clark E,
    6. Khan WN, et al.
    Mammary-tumor-educated B cells acquire LAP/TGF-beta and PD-L1 expression and suppress anti-tumor immune responses. Int Immunol. 2016; 28: 423–33.
    OpenUrlCrossRefPubMed
  36. 36.
    1. Shen M,
    2. Wang J,
    3. Yu W,
    4. Zhang C,
    5. Liu M,
    6. Wang K, et al.
    A novel MDSC-induced PD-1(-)PD-L1(+) B-cell subset in breast tumor microenvironment possesses immuno-suppressive properties. Oncoimmunology. 2018; 7: e1413520.
  37. 37.↵
    1. Guan H,
    2. Lan Y,
    3. Wan Y,
    4. Wang Q,
    5. Wang C,
    6. Xu L, et al.
    PD-L1 mediated the differentiation of tumor-infiltrating CD19(+) B lymphocytes and T cells in invasive breast cancer. Oncoimmunology. 2016; 5: e1075112.
  38. 38.↵
    1. Lee-Chang C,
    2. Rashidi A,
    3. Miska J,
    4. Zhang P,
    5. Pituch KC,
    6. Hou D, et al.
    Myeloid-derived suppressive cells promote B cell-mediated immunosuppression via transfer of PD-L1 in glioblastoma. Cancer Immunol Res. 2019; 7: 1928–43.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Shalapour S,
    2. Font-Burgada J,
    3. Di Caro G,
    4. Zhong Z,
    5. Sanchez-Lopez E,
    6. Dhar D, et al.
    Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature. 2015; 521: 94–8.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Shalapour S,
    2. Lin XJ,
    3. Bastian IN,
    4. Brain J,
    5. Burt AD,
    6. Aksenov AA, et al.
    Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature. 2017; 551: 340–5.
    OpenUrlCrossRef
  41. 41.↵
    1. Liu R,
    2. Lu Z,
    3. Gu J,
    4. Liu J,
    5. Huang E,
    6. Liu X, et al.
    MicroRNAs 15A and 16-1 activate signaling pathways that mediate chemotaxis of immune regulatory B cells to colorectal tumors. Gastroenterology. 2018; 154: 637–51.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Pesce S,
    2. Greppi M,
    3. Grossi F,
    4. Del Zotto G,
    5. Moretta L,
    6. Sivori S, et al.
    PD/1-PD-Ls Checkpoint: insight on the potential role of NK cells. Front Immunol. 2019; 10: 1242.
    OpenUrlPubMed
  43. 43.↵
    1. Pesce S,
    2. Greppi M,
    3. Tabellini G,
    4. Rampinelli F,
    5. Parolini S,
    6. Olive D, et al.
    Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol. 2017; 139: 335–46.
    OpenUrlPubMed
  44. 44.↵
    1. Benson DM,
    2. Jr. ,
    3. Bakan CE,
    4. Mishra A,
    5. Hofmeister CC,
    6. Efebera Y,
    7. Becknell B, et al.
    The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010; 116: 2286–94.
    OpenUrlAbstract/FREE Full Text
  45. 45.
    1. Vari F,
    2. Arpon D,
    3. Keane C,
    4. Hertzberg MS,
    5. Talaulikar D,
    6. Jain S, et al.
    Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood. 2018; 131: 1809–19.
    OpenUrlAbstract/FREE Full Text
  46. 46.↵
    1. Hsu J,
    2. Hodgins JJ,
    3. Marathe M,
    4. Nicolai CJ,
    5. Bourgeois-Daigneault MC,
    6. Trevino TN, et al.
    Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018; 128: 4654–68.
    OpenUrlCrossRefPubMed
  47. 47.↵
    1. Park SJ,
    2. Namkoong H,
    3. Doh J,
    4. Choi JC,
    5. Yang BG,
    6. Park Y, et al.
    Negative role of inducible PD-1 on survival of activated dendritic cells. J Leukoc Biol. 2014; 95: 621–9.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Lim TS,
    2. Chew V,
    3. Sieow JL,
    4. Goh S,
    5. Yeong JP,
    6. Soon AL, et al.
    PD-1 expression on dendritic cells suppresses CD8(+) T cell function and antitumor immunity. Oncoimmunology. 2016; 5: e1085146.
  49. 49.↵
    1. Karyampudi L,
    2. Lamichhane P,
    3. Krempski J,
    4. Kalli KR,
    5. Behrens MD,
    6. Vargas DM, et al.
    PD-1 blunts the function of ovarian tumor-infiltrating dendritic cells by inactivating NF-kappaB. Cancer Res. 2016; 76: 239–50.
    OpenUrlAbstract/FREE Full Text
  50. 50.↵
    1. Francisco LM,
    2. Sage PT,
    3. Sharpe AH.
    The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010; 236: 219–42.
    OpenUrlCrossRefPubMedWeb of Science
  51. 51.↵
    1. Xu L,
    2. Zhang Y,
    3. Tian K,
    4. Chen X,
    5. Zhang R,
    6. Mu X, et al.
    Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. J Exp Clin Cancer Res. 2018; 37: 261.
    OpenUrl
  52. 52.↵
    1. Hamaidia M,
    2. Gazon H,
    3. Hoyos C,
    4. Hoffmann GB,
    5. Louis R,
    6. Duysinx B, et al.
    Inhibition of EZH2 methyltransferase decreases immunoediting of mesothelioma cells by autologous macrophages through a PD-1-dependent mechanism. JCI Insight. 2019; 4: e128474.
  53. 53.↵
    1. Liu J,
    2. Fan L,
    3. Yu H,
    4. Zhang J,
    5. He Y,
    6. Feng D, et al.
    Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and Up-regulate programmed death ligand 1 expression in macrophages. Hepatology. 2019; 70: 241–58.
    OpenUrlPubMed
  54. 54.↵
    1. Prima V,
    2. Kaliberova LN,
    3. Kaliberov S,
    4. Curiel DT,
    5. Kusmartsev S.
    COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A. 2017; 114: 1117–22.
    OpenUrlAbstract/FREE Full Text
  55. 55.↵
    1. Wen ZF,
    2. Liu H,
    3. Gao R,
    4. Zhou M,
    5. Ma J,
    6. Zhang Y, et al.
    Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J Immunother Cancer. 2018; 6: 151.
    OpenUrlAbstract/FREE Full Text
  56. 56.↵
    1. Lin C,
    2. He H,
    3. Liu H,
    4. Li R,
    5. Chen Y,
    6. Qi Y, et al.
    Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. Gut. 2019; 68: 1764–73.
    OpenUrlAbstract/FREE Full Text
  57. 57.↵
    1. Singhal S,
    2. Stadanlick J,
    3. Annunziata MJ,
    4. Rao AS,
    5. Bhojnagarwala PS,
    6. O’Brien S, et al.
    Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med. 2019; 11; eaat1500.
  58. 58.↵
    1. Rodrigues CP,
    2. Ferreira AC,
    3. Pinho MP,
    4. de Moraes CJ,
    5. Bergami-Santos PC,
    6. Barbuto JA.
    Tolerogenic IDO(+) dendritic cells are induced by PD-1-expressing mast cells. Front Immunol. 2016; 7: 9.
    OpenUrlPubMed
  59. 59.↵
    1. Forsthuber A,
    2. Lipp K,
    3. Andersen L,
    4. Ebersberger S,
    5. Grana C,
    6. Ellmeier W, et al.
    CXCL5 as regulator of neutrophil function in cutaneous melanoma. J Invest Dermatol. 2019; 139: 186–94.
    OpenUrl
  60. 60.↵
    1. Noman MZ,
    2. Desantis G,
    3. Janji B,
    4. Hasmim M,
    5. Karray S,
    6. Dessen P, et al.
    PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014; 211: 781–90.
    OpenUrlAbstract/FREE Full Text
  61. 61.↵
    1. Fleming V,
    2. Hu X,
    3. Weller C,
    4. Weber R,
    5. Groth C,
    6. Riester Z, et al.
    Melanoma extracellular vesicles generate immunosuppressive myeloid cells by upregulating PD-L1 via TLR4 signaling. Cancer Res. 2019; 79: 4715–28.
    OpenUrlAbstract/FREE Full Text
  62. 62.↵
    1. Song S,
    2. Yuan P,
    3. Wu H,
    4. Chen J,
    5. Fu J,
    6. Li P, et al.
    Dendritic cells with an increased PD-L1 by TGF-beta induce T cell anergy for the cytotoxicity of hepatocellular carcinoma cells. Int Immunopharmacol. 2014; 20: 117–23.
    OpenUrlCrossRefPubMed
  63. 63.↵
    1. Bloch O,
    2. Crane CA,
    3. Kaur R,
    4. Safaee M,
    5. Rutkowski MJ,
    6. Parsa AT.
    Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 2013; 19: 3165–75.
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. Roux C,
    2. Jafari SM,
    3. Shinde R,
    4. Duncan G,
    5. Cescon DW,
    6. Silvester J, et al.
    Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proc Natl Acad Sci U S A. 2019; 116: 4326–35.
    OpenUrlAbstract/FREE Full Text
  65. 65.↵
    1. Jing W,
    2. Guo X,
    3. Wang G,
    4. Bi Y,
    5. Han L,
    6. Zhu Q, et al.
    Breast cancer cells promote CD169(+) macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. Int Immunopharmacol. 2019; 78: 106012.
    OpenUrl
  66. 66.↵
    1. Zhang Y,
    2. Lee C,
    3. Geng S,
    4. Li L.
    Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency. JCI Insight. 2019; 4: e122939.
  67. 67.↵
    1. Zhang Y,
    2. Diao N,
    3. Lee CK,
    4. Chu HW,
    5. Bai L,
    6. Li L.
    Neutrophils deficient in innate suppressor IRAK-M enhances anti-tumor immune responses. Mol Ther. 2019; 28: 89–99.
    OpenUrl
  68. 68.↵
    1. Terawaki S,
    2. Chikuma S,
    3. Shibayama S,
    4. Hayashi T,
    5. Yoshida T,
    6. Okazaki T, et al.
    IFN-alpha directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol. 2011; 186: 2772–9.
    OpenUrlAbstract/FREE Full Text
  69. 69.↵
    1. Sun L,
    2. Wang Q,
    3. Chen B,
    4. Zhao Y,
    5. Shen B,
    6. Wang X, et al.
    Human gastric cancer mesenchymal stem cell-derived IL15 contributes to tumor cell epithelial-mesenchymal transition via upregulation tregs ratio and PD-1 expression in CD4(+)T cell. Stem Cells Dev. 2018; 27: 1203–14.
    OpenUrl
  70. 70.↵
    1. Lu P,
    2. Youngblood BA,
    3. Austin JW,
    4. Mohammed AU,
    5. Butler R,
    6. Ahmed R, et al.
    Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med. 2014; 211: 515–27.
    OpenUrlAbstract/FREE Full Text
  71. 71.↵
    1. Mathieu M,
    2. Cotta-Grand N,
    3. Daudelin JF,
    4. Thebault P,
    5. Labrecque N.
    Notch signaling regulates PD-1 expression during CD8(+) T-cell activation. Immunol Cell Biol. 2013; 91: 82–8.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Chang CH,
    2. Curtis JD,
    3. Maggi LB Jr.,
    4. Faubert B,
    5. Villarino AV,
    6. O’Sullivan D, et al.
    Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013; 153: 1239–51.
    OpenUrlCrossRefPubMedWeb of Science
  73. 73.↵
    1. Youngblood B,
    2. Oestreich KJ,
    3. Ha SJ,
    4. Duraiswamy J,
    5. Akondy RS,
    6. West EE, et al.
    Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity. 2011; 35: 400–12.
    OpenUrlCrossRefPubMedWeb of Science
  74. 74.↵
    1. Okada M,
    2. Chikuma S,
    3. Kondo T,
    4. Hibino S,
    5. Machiyama H,
    6. Yokosuka T, et al.
    Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Rep. 2017; 20: 1017–28.
    OpenUrlCrossRefPubMed
  75. 75.↵
    1. Mao Y,
    2. Wang Y,
    3. Dong L,
    4. Zhang Q,
    5. Wang C,
    6. Zhang Y, et al.
    Circulating exosomes from esophageal squamous cell carcinoma mediate the generation of B10 and PD-1(high) Breg cells. Cancer Sci. 2019; 110: 2700–10.
    OpenUrl
  76. 76.↵
    1. Flies DB,
    2. Chen L.
    The new B7s: playing a pivotal role in tumor immunity. J Immunother. 2007; 30: 251–60.
    OpenUrlCrossRefWeb of Science
  77. 77.↵
    1. Freeman GJ,
    2. Long AJ,
    3. Iwai Y,
    4. Bourque K,
    5. Chernova T,
    6. Nishimura H, et al.
    Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000; 192: 1027–34.
    OpenUrlAbstract/FREE Full Text
  78. 78.↵
    1. Keir ME,
    2. Butte MJ,
    3. Freeman GJ,
    4. Sharpe AH.
    PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008; 26: 677–704.
    OpenUrlCrossRefPubMedWeb of Science
  79. 79.↵
    1. Versteven M,
    2. Van den Bergh JMJ,
    3. Marcq E,
    4. Smits ELJ,
    5. Van Tendeloo VFI,
    6. Hobo W, et al.
    Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front Immunol. 2018; 9: 394.
    OpenUrl
  80. 80.↵
    1. Tel J,
    2. Hato SV,
    3. Torensma R,
    4. Buschow SI,
    5. Figdor CG,
    6. Lesterhuis WJ, et al.
    The chemotherapeutic drug oxaliplatin differentially affects blood DC function dependent on environmental cues. Cancer Immunol Immunother. 2012; 61: 1101–11.
    OpenUrlCrossRefPubMed
  81. 81.↵
    1. Hartley G,
    2. Regan D,
    3. Guth A,
    4. Dow S.
    Regulation of PD-L1 expression on murine tumor-associated monocytes and macrophages by locally produced TNF-alpha. Cancer Immunol Immunother. 2017; 66: 523–35.
    OpenUrl
  82. 82.↵
    1. Bally AP,
    2. Lu P,
    3. Tang Y,
    4. Austin JW,
    5. Scharer CD,
    6. Ahmed R, et al.
    NF-kappaB regulates PD-1 expression in macrophages. J Immunol. 2015; 194: 4545–54.
    OpenUrlAbstract/FREE Full Text
  83. 83.↵
    1. Lu C,
    2. Redd PS,
    3. Lee JR,
    4. Savage N,
    5. Liu K.
    The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology. 2016; 5: e1247135.
  84. 84.↵
    1. Ren D,
    2. Hua Y,
    3. Yu B,
    4. Ye X,
    5. He Z,
    6. Li C, et al.
    Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer. 2020; 19: 19.
    OpenUrlPubMed
  85. 85.↵
    1. Seliger B.
    Basis of PD1/PD-L1 therapies. J Clin Med. 2019; 8: 2168.
    OpenUrl
  86. 86.↵
    1. Wu Y,
    2. Chen W,
    3. Xu ZP,
    4. Gu W.
    PD-L1 distribution and perspective for cancer immunotherapy-blockade, knockdown, or inhibition. Front Immunol. 2019; 10: 2022.
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 17 (3)
Cancer Biology & Medicine
Vol. 17, Issue 3
15 Aug 2020
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comprehensive insights into the effects and regulatory mechanisms of immune cells expressing programmed death-1/programmed death ligand 1 in solid tumors
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Comprehensive insights into the effects and regulatory mechanisms of immune cells expressing programmed death-1/programmed death ligand 1 in solid tumors
Min Liu, Qian Sun, Feng Wei, Xiubao Ren
Cancer Biology & Medicine Aug 2020, 17 (3) 626-639; DOI: 10.20892/j.issn.2095-3941.2020.0112

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Comprehensive insights into the effects and regulatory mechanisms of immune cells expressing programmed death-1/programmed death ligand 1 in solid tumors
Min Liu, Qian Sun, Feng Wei, Xiubao Ren
Cancer Biology & Medicine Aug 2020, 17 (3) 626-639; DOI: 10.20892/j.issn.2095-3941.2020.0112
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Immune cells with high expression of PD-1 or PD-L1 help predict tumor progression and prognosis
    • Effects of immune cells with high expression of PD-1 or PD-L1 in tumor immunity
    • Regulation of PD-1 or PD-L1 expression on immune cells in tumor immunity
    • Potential therapeutic strategies of anti-PD-L1/PD-1 therapy
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Repurposing drugs for solid tumor treatment: focus on immune checkpoint inhibitors
  • Metabolic regulation of immune responses to cancer
  • Google Scholar

More in this TOC Section

  • Senescent macrophages in cancer: roles in tumor progression and treatment opportunities
  • Application and future prospects of bispecific antibodies in the treatment of non-small cell lung cancer
  • The treatment of breast cancer in the era of precision medicine
Show more Review

Similar Articles

Keywords

  • Immune cell
  • immunotherapy
  • programmed cell death ligand 1
  • programmed cell death-1
  • solid tumor

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire