Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Research ArticleOriginal Article

Heat shock protein 47 promotes tumor survival and therapy resistance by modulating AKT signaling via PHLPP1 in colorectal cancer

Yijye Chern, Peter Zhang, Hyelim Ju and Isabella T. Tai
Cancer Biology & Medicine May 2020, 17 (2) 343-356; DOI: https://doi.org/10.20892/j.issn.2095-3941.2019.0261
Yijye Chern
1Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver V6T 1Z4, Canada
2Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver V5Z 4S6, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Zhang
1Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver V6T 1Z4, Canada
2Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver V5Z 4S6, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hyelim Ju
1Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver V6T 1Z4, Canada
2Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver V5Z 4S6, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Isabella T. Tai
1Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver V6T 1Z4, Canada
2Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver V5Z 4S6, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Isabella T. Tai
  • For correspondence: itai{at}bcgsc.ca
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Siegel RL,
    2. Miller KD,
    3. Fedewa SA,
    4. Ahnen DJ,
    5. Meester RGS,
    6. Barzi A, et al.
    Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017; 67: 177–93.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Van Cutsem E,
    2. Cervantes A,
    3. Nordlinger B,
    4. Arnold D.
    Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014; 25(Suppl 3): iii1–9.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Philp AJ,
    2. Campbell IG,
    3. Leet C,
    4. Vincan E,
    5. Rockman SP,
    6. Whitehead RH, et al.
    The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res. 2001; 61: 7426–9.
    OpenUrlAbstract/FREE Full Text
  4. 4.
    1. Khaleghpour K,
    2. Li Y,
    3. Banville D,
    4. Yu Z,
    5. Shen SH.
    Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis. 2004; 25: 241–8.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Zhang J,
    2. Roberts TM,
    3. Shivdasani RA.
    Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology. 2011; 141: 50–61.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Alessi DR,
    2. James SR,
    3. Downes CP,
    4. Holmes AB,
    5. Gaffney PR,
    6. Reese CB, et al.
    Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Current Biol. 1997; 7: 261–9.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Sarbassov DD,
    2. Guertin DA,
    3. Ali SM,
    4. Sabatini DM.
    Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005; 307: 1098–101.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Andjelkovic M,
    2. Jakubowicz T,
    3. Cron P,
    4. Ming XF,
    5. Han JW,
    6. Hemmings BA.
    Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A. 1996; 93: 5699–704.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Gao T,
    2. Furnari F,
    3. Newton AC.
    PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005; 18: 13–24.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Brognard J,
    2. Sierecki E,
    3. Gao T,
    4. Newton AC.
    PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell. 2007; 25: 917–31.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Stambolic V,
    2. Suzuki A,
    3. de la Pompa JL,
    4. Brothers GM,
    5. Mirtsos C,
    6. Sasaki T, et al.
    Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998; 95: 29–39.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Ooi A,
    2. Takehana T,
    3. Li X,
    4. Suzuki S,
    5. Kunitomo K,
    6. Iino H, et al.
    Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Modern Pathol. 2004; 17: 895–904.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Wood LD,
    2. Parsons DW,
    3. Jones S,
    4. Lin J,
    5. Sjoblom T,
    6. Leary RJ, et al.
    The genomic landscapes of human breast and colorectal cancers. Science. 2007; 318: 1108–13.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Samuels Y,
    2. Wang Z,
    3. Bardelli A,
    4. Silliman N,
    5. Ptak J,
    6. Szabo S, et al.
    High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004; 304: 554.
    OpenUrlFREE Full Text
  15. 15.↵
    1. Nakamura Y,
    2. Yogosawa S,
    3. Izutani Y,
    4. Watanabe H,
    5. Otsuji E,
    6. Sakai T.
    A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer. 2009; 8: 100.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Wen YA,
    2. Stevens PD,
    3. Gasser ML,
    4. Andrei R,
    5. Gao T.
    Downregulation of PHLPP expression contributes to hypoxia-induced resistance to chemotherapy in colon cancer cells. Mol Cell Biol. 2013; 33: 4594–605.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Sauk JJ,
    2. Nikitakis N,
    3. Siavash H.
    Hsp47 a novel collagen binding serpin chaperone, autoantigen and therapeutic target. Frontiers Biosci. 2005; 10: 107–18.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Poschmann G,
    2. Sitek B,
    3. Sipos B,
    4. Ulrich A,
    5. Wiese S,
    6. Stephan C, et al.
    Identification of proteomic differences between squamous cell carcinoma of the lung and bronchial epithelium. Mol Cellular Proteomics. 2009; 8: 1105–16.
    OpenUrl
  19. 19.
    1. Thierolf M,
    2. Hagmann ML,
    3. Pfeffer M,
    4. Berntenis N,
    5. Wild N,
    6. Roessler M, et al.
    Towards a comprehensive proteome of normal and malignant human colon tissue by 2-D-LC-ESI-MS and 2-DE proteomics and identification of S100A12 as potential cancer biomarker. Proteomics Clin Appl. 2008; 2: 11–22.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Iacobuzio-Donahue CA,
    2. Maitra A,
    3. Shen-Ong GL,
    4. van Heek T,
    5. Ashfaq R,
    6. Meyer R, et al.
    Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol. 2002; 160: 1239–49.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    1. Lee HW,
    2. Kwon J,
    3. Kang MC,
    4. Noh MK,
    5. Koh JS,
    6. Kim JH, et al.
    Overexpression of HSP47 in esophageal squamous cell carcinoma: clinical implications and functional analysis. Dis Esophagus. 2016; 29: 848–55.
    OpenUrl
  22. 22.↵
    1. Yamamoto N,
    2. Kinoshita T,
    3. Nohata N,
    4. Yoshino H,
    5. Itesako T,
    6. Fujimura L, et al.
    Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int J Oncol. 2013; 43: 1855–63.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Zhu J,
    2. Xiong G,
    3. Fu H,
    4. Evers BM,
    5. Zhou BP,
    6. Xu R.
    Chaperone HSP47 drives malignant growth and invasion by modulating an ECM gene network. Cancer Res. 2015; 75: 1580–91.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Yang Q,
    2. Liu S,
    3. Tian Y,
    4. Hasan C,
    5. Kersey D,
    6. Salwen HR, et al.
    Methylation-associated silencing of the heat shock protein 47 gene in human neuroblastoma. Cancer Res. 2004; 64: 4531–8.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Zlobec I,
    2. Steele R,
    3. Terracciano L,
    4. Jass JR,
    5. Lugli A.
    Selecting immunohistochemical cut-off scores for novel biomarkers of progression and survival in colorectal cancer. J Clin Pathol. 2007; 60: 1112–6.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Zhu ZH,
    2. Sun BY,
    3. Ma Y,
    4. Shao JY,
    5. Long H,
    6. Zhang X, et al.
    Three immunomarker support vector machines-based prognostic classifiers for stage IB non-small-cell lung cancer. J Clin Oncol. 2009; 27: 1091–9.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Kobayashi T,
    2. Uchiyama M.
    Effect of HSP47 expression levels on heterotrimer formation among type IV collagen alpha3, alpha4 and alpha5 chains. Biomedical Res (Tokyo, Japan). 2010; 31: 371–7.
    OpenUrl
  28. 28.↵
    1. Chern YJ,
    2. Wong JCT,
    3. Cheng GSW,
    4. Yu A,
    5. Yin Y,
    6. Schaeffer DF, et al.
    The interaction between SPARC and GRP78 interferes with ER stress signaling and potentiates apoptosis via PERK/eIF2alpha and IRE1alpha/XBP-1 in colorectal cancer. Cell Death Dis. 2019; 10: 504.
    OpenUrl
  29. 29.↵
    1. Parsana P,
    2. Riester M,
    3. Huttenhower C,
    4. Waldron L.
    CuratedCRCData: Clinically annotated data for the colorectal cancer transcriptome. 2013.
  30. 30.↵
    1. Berglund L,
    2. Bjorling E,
    3. Oksvold P,
    4. Fagerberg L,
    5. Asplund A,
    6. Szigyarto CA, et al.
    A genecentric human protein atlas for expression profiles based on antibodies. Mol Cell Proteomics. 2008; 7: 2019–27.
    OpenUrlAbstract/FREE Full Text
  31. 31.↵
    1. Rahman M,
    2. Chan AP,
    3. Tang M,
    4. Tai IT.
    A peptide of SPARC interferes with the interaction between Caspase8 and Bcl2 to resensitize chemoresistant tumors and enhance their regression in vivo. PLoS One. 2011; 6: e26390.
  32. 32.↵
    1. Hafsi S,
    2. Pezzino FM,
    3. Candido S,
    4. Ligresti G,
    5. Spandidos DA,
    6. Soua Z, et al.
    Gene alterations in the PI3K/PTEN/AKT pathway as a mechanism of drug-resistance (Review). Int J Oncol. 2012; 40: 639–44.
    OpenUrlCrossRefPubMed
  33. 33.
    1. Brown KK,
    2. Toker A.
    The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000 Prime Rep. 2015; 7: 13.
    OpenUrl
  34. 34.
    1. Morkel M,
    2. Riemer P,
    3. Blaker H,
    4. Sers C.
    Similar but different: Distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget. 2015; 6: 20785–800.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Danielsen SA,
    2. Eide PW,
    3. Nesbakken A,
    4. Guren T,
    5. Leithe E,
    6. Lothe RA.
    Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 2015; 1855: 104–21.
    OpenUrlPubMed
  36. 36.↵
    1. Copp J,
    2. Manning G,
    3. Hunter T.
    TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 2009; 69: 1821–7.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Hirai H,
    2. Sootome H,
    3. Nakatsuru Y,
    4. Miyama K,
    5. Taguchi S,
    6. Tsujioka K, et al.
    MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010; 9: 1956–67.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Burris HA 3rd.,
    Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol. 2013; 71: 829–42.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Davies BR,
    2. Greenwood H,
    3. Dudley P,
    4. Crafter C,
    5. Yu DH,
    6. Zhang J, et al.
    Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Cancer Ther. 2012; 11: 873–87.
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. Toren P,
    2. Kim S,
    3. Cordonnier T,
    4. Crafter C,
    5. Davies BR,
    6. Fazli L, et al.
    Combination AZD5363 with enzalutamide significantly delays enzalutamide-resistant prostate cancer in preclinical models. Eur Urol. 2015; 67: 986–90.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Sun SY,
    2. Rosenberg LM,
    3. Wang X,
    4. Zhou Z,
    5. Yue P,
    6. Fu H, et al.
    Activation of Akt and eiF4E survival pathways by rapamycinmediated mammalian target of rapamycin inhibition. Cancer Res. 2005; 65: 7052–8.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. O’Reilly KE,
    2. Rojo F,
    3. She QB,
    4. Solit D,
    5. Mills GB,
    6. Smith D, et al.
    mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006; 66: 1500–8.
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. Tabernero J,
    2. Rojo F,
    3. Calvo E,
    4. Burris H,
    5. Judson I,
    6. Hazell K, et al.
    Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008; 26: 1603–10.
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. Rodon J,
    2. Dienstmann R,
    3. Serra V,
    4. Tabernero J.
    Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013; 10: 143–53.
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. Zinda MJ,
    2. Johnson MA,
    3. Paul JD,
    4. Horn C,
    5. Konicek BW,
    6. Lu ZH, et al.
    Akt-1, -2, and -3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon. Clin Cancer Res. 2001; 7: 2475–9.
    OpenUrlAbstract/FREE Full Text
  46. 46.↵
    1. Rychahou PG,
    2. Kang J,
    3. Gulhati P,
    4. Doan HQ,
    5. Chen LA,
    6. Xiao SY, et al.
    Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci U S A. 2008; 105: 20315–20.
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. Ericson K,
    2. Gan C,
    3. Cheong I,
    4. Rago C,
    5. Samuels Y,
    6. Velculescu VE, et al.
    Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci U S A. 2010; 107: 2598–603.
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. Iwashita T,
    2. Kadota J,
    3. Naito S,
    4. Kaida H,
    5. Ishimatsu Y,
    6. Miyazaki M, et al.
    Involvement of collagen-binding heat shock protein 47 and procollagen type I synthesis in idiopathic pulmonary fibrosis: contribution of type II pneumocytes to fibrosis. Human Pathol. 2000; 31: 1498–505.
    OpenUrlCrossRefPubMedWeb of Science
  49. 49.↵
    1. Kakugawa T,
    2. Mukae H,
    3. Hayashi T,
    4. Ishii H,
    5. Nakayama S,
    6. Sakamoto N, et al.
    Expression of HSP47 in usual interstitial pneumonia and nonspecific interstitial pneumonia. Respiratory Res. 2005; 6: 57.
    OpenUrl
  50. 50.↵
    1. Hagiwara S,
    2. Iwasaka H,
    3. Matsumoto S,
    4. Noguchi T.
    Antisense oligonucleotide inhibition of heat shock protein (HSP) 47 improves bleomycin-induced pulmonary fibrosis in rats. Respiratory Res. 2007; 8: 37.
    OpenUrl
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 17 (2)
Cancer Biology & Medicine
Vol. 17, Issue 2
15 May 2020
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Heat shock protein 47 promotes tumor survival and therapy resistance by modulating AKT signaling via PHLPP1 in colorectal cancer
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Heat shock protein 47 promotes tumor survival and therapy resistance by modulating AKT signaling via PHLPP1 in colorectal cancer
Yijye Chern, Peter Zhang, Hyelim Ju, Isabella T. Tai
Cancer Biology & Medicine May 2020, 17 (2) 343-356; DOI: 10.20892/j.issn.2095-3941.2019.0261

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Heat shock protein 47 promotes tumor survival and therapy resistance by modulating AKT signaling via PHLPP1 in colorectal cancer
Yijye Chern, Peter Zhang, Hyelim Ju, Isabella T. Tai
Cancer Biology & Medicine May 2020, 17 (2) 343-356; DOI: 10.20892/j.issn.2095-3941.2019.0261
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and methods
    • Results
    • Discussion
    • Conclusions
    • Supporting Information
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • A novel biguanide-derivative promotes NEDD4-mediated FGFR1 ubiquitination through BMI1 to overcome osimertinib resistance in NSCLC
  • Integrated pretreatment stratification system for pancreatic cancer: combining anatomical resectability and tumor biological parameters
  • Chidamide suppresses macrophage-mediated immune evasion and tumor progression in small cell lung cancer by targeting the STAT4/CCL2 signaling pathway
Show more Original Article

Similar Articles

Keywords

  • HSP47
  • AKT
  • PHLPP1
  • colorectal cancer
  • resistanc

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire