Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Magnetic resonance imaging-guided and targeted theranostics of colorectal cancer

Yanan Li, Jingqi Xin, Yongbing Sun, Tao Han, Hui Zhang and Feifei An
Cancer Biology & Medicine May 2020, 17 (2) 307-327; DOI: https://doi.org/10.20892/j.issn.2095-3941.2020.0072
Yanan Li
1Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jingqi Xin
2Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yongbing Sun
3Division of Pharmaceutics, National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yongbing Sun
  • For correspondence: [email protected] [email protected]
Tao Han
4College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hui Zhang
1Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Feifei An
2Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Feifei An
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Favoriti P,
    2. Carbone G,
    3. Greco M,
    4. Pirozzi F,
    5. Pirozzi RE,
    6. Corcione F.
    Worldwide burden of colorectal cancer: a review. Updates Surg. 2016; 68: 7–11.
    OpenUrl
  2. 2.↵
    1. Miller KD,
    2. Nogueira L,
    3. Mariotto AB,
    4. Rowland JH,
    5. Yabroff KR,
    6. Alfano CM, et al.
    Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019; 69: 363–85.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Arnold M,
    2. Sierra MS,
    3. Laversanne M,
    4. Soerjomataram I,
    5. Jemal A,
    6. Bray F.
    Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017; 66: 683–91.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. De Rosa M,
    2. Pace U,
    3. Rega D,
    4. Costabile V,
    5. Duraturo F,
    6. Izzo P, et al.
    Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep. 2015; 34: 1087–96.
    OpenUrlPubMed
  5. 5.↵
    1. Yang C,
    2. Sriranjan V,
    3. Abou-Setta AM,
    4. Poluha W,
    5. Walker JR,
    6. Singh H.
    Anxiety associated with colonoscopy and flexible sigmoidoscopy: a systematic review. Am J Gastroenterol. 2018; 113: 1810–8.
    OpenUrl
  6. 6.↵
    1. Obaro AE,
    2. Burling DN,
    3. Plumb AA.
    Colon cancer screening with CT colonography: logistics, cost-effectiveness, efficiency and progress. Br J Radiol. 2018; 91: 20180307–17.
    OpenUrlPubMed
  7. 7.↵
    1. Zhang J,
    2. Li C,
    3. Zhang X,
    4. Huo S,
    5. Jin S,
    6. An FF, et al.
    In vivo tumortargeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials. 2015; 42: 103–11.
    OpenUrl
  8. 8.↵
    1. Zhang M,
    2. Li J,
    3. Ma X,
    4. Wang B,
    5. Wu J,
    6. Gao Y, et al.
    The value of magnetic resonance imaging to diagnose pathological complete response of rectal cancer after therapy: a protocol for meta-analysis. Medicine (Baltimore). 2018; 97: e12901–3.
  9. 9.↵
    1. Chen Z,
    2. Wu C,
    3. Zhang Z,
    4. Wu W,
    5. Wang X,
    6. Yu Z.
    Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin Chem Lett. 2018; 29: 1601–8.
    OpenUrl
  10. 10.↵
    1. An FF,
    2. Chan M,
    3. Kommidi H,
    4. Ting R.
    Dual PET and Near-infrared fluorescence imaging probes as tools for imaging in oncology. AJR Am J Roentgenol. 2016; 207: 266–73.
    OpenUrl
  11. 11.↵
    1. Chan K,
    2. Welch S,
    3. Walker-Dilks C,
    4. Raifu A.
    Evidence-based guideline recommendations on the use of positron emission tomography imaging in colorectal cancer. Clin Oncol (R Coll Radiol). 2012; 24: 232–49.
    OpenUrlPubMed
  12. 12.↵
    1. Serra-Aracil X,
    2. Galvez A,
    3. Mora-Lopez L,
    4. Rebasa P,
    5. Serra-Pla S,
    6. Pallisera-Lloveras A, et al.
    Endorectal ultrasound in the identification of rectal tumors for transanal endoscopic surgery: factors influencing its accuracy. Surg Endosc. 2018; 32: 2831–8.
    OpenUrl
  13. 13.↵
    1. Wu D,
    2. Duan X,
    3. Guan Q,
    4. Liu J,
    5. Yang X,
    6. Zhang F, et al.
    Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided cancer therapy. Adv Funct Mater. 2019; 19: 1900095.
    OpenUrl
  14. 14.↵
    1. Emile SH,
    2. Elfeki H,
    3. Shalaby M,
    4. Sakr A,
    5. Sileri P,
    6. Laurberg S, et al.
    Sensitivity and specificity of indocyanine green near-infrared fluorescence imaging in detection of metastatic lymph nodes in colorectal cancer: systematic review and meta-analysis. J Surg Oncol. 2017; 116: 730–40.
    OpenUrl
  15. 15.
    1. Xiao YF,
    2. An FF,
    3. Chen JX,
    4. Yu J,
    5. Tao WW,
    6. Yu Z, et al.
    The nanoassembly of an intrinsically cytotoxic near-infrared dye for multifunctionally synergistic theranostics. Small. 2019; 15: 1903121.
    OpenUrl
  16. 16.↵
    1. An F,
    2. Chen N,
    3. Conlon WJ,
    4. Hachey JS,
    5. Xin J,
    6. Aras O, et al.
    Small ultra-red fluorescent protein nanoparticles as exogenous probes for noninvasive tumor imaging in vivo. Int J Biol Macromol. 2020; 153: 100–6.
    OpenUrl
  17. 17.↵
    1. Kanth P,
    2. Grimmett J,
    3. Champine M,
    4. Burt R,
    5. Samadder NJ.
    Hereditary colorectal polyposis and cancer syndromes: a primer on diagnosis and management. Am J Gastroenterol. 2017; 112: 1509–25.
    OpenUrlCrossRef
  18. 18.↵
    1. Li Y,
    2. Zhang H.
    Fe3O4-based nanotheranostics for magnetic resonance imaging-synergized multifunctional cancer management. Nanomedicine (Lond). 2019; 14: 1493–512.
    OpenUrl
  19. 19.↵
    1. Kannan P,
    2. Kretzschmar WW,
    3. Winter H,
    4. Warren D,
    5. Bates R,
    6. Allen PD, et al.
    Functional parameters derived from magnetic resonance imaging reflect vascular morphology in preclinical tumors and in human liver metastases. Clin Cancer Res. 2018; 24: 4694–704.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Issa IA,
    2. Noureddine M.
    Colorectal cancer screening: an updated review of the available options. World J Gastroenterol. 2017; 23: 5086–96.
    OpenUrlPubMed
  21. 21.↵
    1. Peifer M.
    Developmental biology: colon construction. Nature. 2002; 420: 274–5, 277.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Kosinski C,
    2. Li VS,
    3. Chan AS,
    4. Zhang J,
    5. Ho C,
    6. Tsui WY, et al.
    Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci U S A. 2007; 104: 15418–23.
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. Medema JP,
    2. Vermeulen L.
    Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 2011; 474: 318–26.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Sideris M,
    2. Papagrigoriadis S.
    Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res. 2014; 34: 2061–8.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Fearon ER,
    2. Vogelstein B.
    A genetic model for colorectal tumorigenesis. Cell. 1990; 61: 759–67.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Weisenberger DJ,
    2. Siegmund KD,
    3. Campan M,
    4. Young J,
    5. Long TI,
    6. Faasse MA, et al.
    CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006; 38: 787–93.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. East JE,
    2. Saunders BP,
    3. Jass JR.
    Sporadic and syndromic hyperplastic polyps and serrated adenomas of the colon: classification, molecular genetics, natural history, and clinical management. Gastroenterol Clin North Am. 2008; 37: 25–46.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Sameer AS,
    2. Nissar S,
    3. Fatima K.
    Mismatch repair pathway: molecules, functions, and role in colorectal carcinogenesis. Eur J Cancer Prev. 2014; 23: 246–57.
    OpenUrl
  29. 29.↵
    1. Planutis K,
    2. Planutiene M,
    3. Holcombe RF.
    A novel signaling pathway regulates colon cancer angiogenesis through norrin. Sci Rep. 2014; 4: 5630–4.
    OpenUrlPubMed
  30. 30.↵
    1. Martini M,
    2. De Santis MC,
    3. Braccini L,
    4. Gulluni F,
    5. Hirsch E.
    PI3K/ AKT signaling pathway and cancer: an updated review. Ann Med. 2014; 46: 372–83.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Shao DD,
    2. Xue W,
    3. Krall EB,
    4. Bhutkar A,
    5. Piccioni F,
    6. Wang X, et al.
    KRAS and YAP1 converge to regulate EMT and tumor survival. Cell. 2014; 158: 171–84.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Xia Y,
    2. Shen S,
    3. Verma IM.
    NF-κB, an active player in human cancers. Cancer Immunol Res. 2014; 2: 823–30.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Li H,
    2. Huang K,
    3. Liu X,
    4. Liu J,
    5. Lu X,
    6. Tao K, et al.
    Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3β/NF-κB signaling pathway. Oxid Med Cell Longev. 2014; 2014: 241864–71.
    OpenUrl
  34. 34.↵
    1. De Craene B,
    2. Berx G.
    Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013; 13: 97–110.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.↵
    1. Giannelli G,
    2. Villa E,
    3. Lahn M.
    Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014; 74: 1890–4.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Kekelidze M,
    2. D’Errico L,
    3. Pansini M,
    4. Tyndall A,
    5. Hohmann J.
    Colorectal cancer: current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation. World J Gastroenterol. 2013; 19: 8502–14.
    OpenUrlPubMed
  37. 37.↵
    1. McDougall JA,
    2. Banegas MP,
    3. Wiggins CL,
    4. Chiu VK,
    5. Rajput A,
    6. Kinney AY.
    Rural disparities in treatment-related financial hardship and adherence to surveillance colonoscopy in diverse colorectal cancer survivors. Cancer Epidemiol Biomarkers Prev. 2018; 27: 1275–82.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Graser A,
    2. Stieber P,
    3. Nagel D,
    4. Schafer C,
    5. Horst D,
    6. Becker CR, et al.
    Comparison of CT colonography, colonoscopy, sigmoidoscopy and faecal occult blood tests for the detection of advanced adenoma in an average risk population. Gut. 2009; 58: 241–8.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Atkin W,
    2. Dadswell E,
    3. Wooldrage K,
    4. Kralj-Hans I,
    5. von Wagner C,
    6. Edwards R, et al.
    Computed tomographic colonography vs. colonoscopy for investigation of patients with symptoms suggestive of colorectal cancer (SIGGAR): a multicentre randomised trial. Lancet. 2013; 381: 1194–202.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Blanco-Colino R,
    2. Espin-Basany E.
    Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol. 2018; 22: 15–23.
    OpenUrlPubMed
  41. 41.↵
    1. Witney TH,
    2. Lewis DY.
    Imaging cancer metabolism with positron emission tomography (PET). Methods Mol Biol. 2019; 1928: 29–44. 42.
    OpenUrl
  42. 42.↵
    1. Watanabe A,
    2. Harimoto N,
    3. Araki K,
    4. Yoshizumi T,
    5. Arima K,
    6. Yamashita Y, et al.
    A new strategy based on fluorodeoxyglucosepositron emission tomography for managing liver metastasis from colorectal cancer. J Surg Oncol. 2018; 118: 1088–95.
    OpenUrl
  43. 43.↵
    1. Wang X,
    2. Gao Y,
    3. Li J,
    4. Wu J,
    5. Wang B,
    6. Ma X, et al.
    Diagnostic accuracy of endoscopic ultrasound, computed tomography, magnetic resonance imaging, and endorectal ultrasonography for detecting lymph node involvement in patients with rectal cancer: a protocol for an overview of systematic reviews. Medicine (Baltimore). 2018; 97: e12899–902.
  44. 44.↵
    1. Tsai C,
    2. Hague C,
    3. Xiong W,
    4. Raval M,
    5. Karimuddin A,
    6. Brown C, et al.
    Evaluation of endorectal ultrasound (ERUS) and MRI for prediction of circumferential resection margin (CRM) for rectal cancer. Am J Surg. 2017; 213: 936–42.
    OpenUrl
  45. 45.↵
    Available at: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed October 1, 2016.
  46. 46.↵
    Available at: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf. Accessed October 1, 2016.
  47. 47.↵
    1. Steele SR,
    2. Chang GJ,
    3. Hendren S,
    4. Weiser M,
    5. Irani J,
    6. Buie WD, et al.
    Practice guideline for the surveillance of patients after curative treatment of colon and rectal cancer. Dis Colon Rectum. 2015; 58: 713–25.
    OpenUrlPubMed
  48. 48.↵
    1. Chang GJ,
    2. Kaiser AM,
    3. Mills S,
    4. Rafferty JF,
    5. Buie WD.
    Practice parameters for the management of colon cancer. Dis Colon Rectum. 2012; 55: 831–43.
    OpenUrlPubMed
  49. 49.↵
    1. Wang L,
    2. Chen S,
    3. Zhu Y,
    4. Zhang M,
    5. Tang S,
    6. Li J, et al.
    Triple-modal imaging-guided chemo-photothermal synergistic therapy for breast cancer with magnetically targeted phase-shifted nanoparticles. ACS Appl Mater Interfaces. 2018; 10: 42102–14.
    OpenUrl
  50. 50.↵
    1. Liao J,
    2. Wei X,
    3. Ran B,
    4. Peng J,
    5. Qu Y,
    6. Qian Z.
    Polymer hybrid magnetic nanocapsules encapsulating IR820 and PTX for external magnetic field-guided tumor targeting and multifunctional theranostics. Nanoscale. 2017; 9: 2479–91.
    OpenUrl
  51. 51.↵
    1. Sehgal R,
    2. Coffey JC.
    Historical development of mesenteric anatomy provides a universally applicable anatomic paradigm for complete/ total mesocolic excision. Gastroenterol Rep (Oxf). 2014; 2: 245–50. 52.
    OpenUrlCrossRefPubMed
  52. 52.↵
    1. Valentini V,
    2. Aristei C,
    3. Glimelius B,
    4. Minsky BD,
    5. Beets-Tan R,
    6. Borras JM, et al.
    Multidisciplinary rectal cancer management: 2nd European Rectal Cancer Consensus Conference (EURECA-CC2). Radiother Oncol. 2009; 92: 148–63.
    OpenUrlCrossRefPubMedWeb of Science
  53. 53.↵
    1. Sauer R,
    2. Liersch T,
    3. Merkel S,
    4. Fietkau R,
    5. Hohenberger W,
    6. Hess C, et al.
    Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/ AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012; 30: 1926–33.
    OpenUrlAbstract/FREE Full Text
  54. 54.↵
    1. Haller DG,
    2. Tabernero J,
    3. Maroun J,
    4. de Braud F,
    5. Price T,
    6. Van Cutsem E, et al.
    Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. J Clin Oncol. 2011; 29: 1465–71.
    OpenUrlAbstract/FREE Full Text
  55. 55.↵
    1. Petrelli N,
    2. Herrera L,
    3. Rustum Y,
    4. Burke P,
    5. Creaven P,
    6. Stulc J, et al.
    A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma. J Clin Oncol. 1987; 5: 1559–65.
    OpenUrlAbstract/FREE Full Text
  56. 56.↵
    1. Poon MA,
    2. O’Connell MJ,
    3. Moertel CG,
    4. Wieand HS,
    5. Cullinan SA,
    6. Everson LK, et al.
    Biochemical modulation of fluorouracil: evidence of significant improvement of survival and quality of life in patients with advanced colorectal carcinoma. J Clin Oncol. 1989; 7: 1407–18.
    OpenUrlAbstract
  57. 57.↵
    1. Twelves C,
    2. Wong A,
    3. Nowacki MP,
    4. Abt M,
    5. Burris 3rd H,
    6. Carrato A, et al.
    Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med. 2005; 352: 2696–704.
    OpenUrlCrossRefPubMedWeb of Science
  58. 58.↵
    1. Kelland L.
    The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007; 7: 573–84.
    OpenUrlCrossRefPubMedWeb of Science
  59. 59.↵
    1. Petrioli R,
    2. Pascucci A,
    3. Francini E,
    4. Marsili S,
    5. Sciandivasci A,
    6. Tassi R, et al.
    Neurotoxicity of FOLFOX-4 as adjuvant treatment for patients with colon and gastric cancer: a randomized study of two different schedules of oxaliplatin. Cancer Chemother Pharmacol. 2008; 61: 105–11.
    OpenUrlCrossRefPubMedWeb of Science
  60. 60.↵
    1. Xu Y,
    2. Villalona-Calero MA.
    Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. 2002; 13: 1841–51.
    OpenUrlCrossRefPubMedWeb of Science
  61. 61.↵
    1. Andre T,
    2. Boni C,
    3. Navarro M,
    4. Tabernero J,
    5. Hickish T,
    6. Topham C, et al.
    Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the mosaic trial. J Clin Oncol. 2009; 27: 3109–16.
    OpenUrlAbstract/FREE Full Text
  62. 62.↵
    1. Saltz LB,
    2. Niedzwiecki D,
    3. Hollis D,
    4. Goldberg RM,
    5. Hantel A,
    6. Thomas JP, et al.
    Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J Clin Oncol. 2007; 25: 3456–61.
    OpenUrlAbstract/FREE Full Text
  63. 63.↵
    1. Falcone A,
    2. Masi G,
    3. Allegrini G,
    4. Danesi R,
    5. Pfanner E,
    6. Brunetti IM, et al.
    Biweekly chemotherapy with oxaliplatin, irinotecan, infusional fluorouracil, and leucovorin: a pilot study in patients with metastatic colorectal cancer. J Clin Oncol. 2002; 20: 4006–14.
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. Cassidy J,
    2. Clarke S,
    3. Diaz-Rubio E,
    4. Scheithauer W,
    5. Figer A,
    6. Wong R, et al.
    Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol. 2008; 26: 2006–12.
    OpenUrlAbstract/FREE Full Text
  65. 65.↵
    1. Degirmenci M,
    2. Karaca B,
    3. Gorumlu G,
    4. Durusoy R,
    5. Demir Piskin G,
    6. Bozkurt MT, et al.
    Efficacy and safety of bevacizumab plus capecitabine and irinotecan regimen for metastatic colorectal cancer. Med Oncol. 2010; 27: 585–91.
    OpenUrlPubMed
  66. 66.↵
    1. Li Y,
    2. Dong Q,
    3. Cui Y.
    Synergistic inhibition of MEK and reciprocal feedback networks for targeted intervention in malignancy. Cancer Biol Med. 2019; 16: 415–34.
    OpenUrlAbstract/FREE Full Text
  67. 67.↵
    1. Baselga J.
    The EGFR as a target for anticancer therapy-focus on cetuximab. Eur J Cancer. 2001; 37(Suppl 4): S16–22.
    OpenUrlPubMedWeb of Science
  68. 68.↵
    1. Yang XD,
    2. Jia XC,
    3. Corvalan JR,
    4. Wang P,
    5. Davis CG.
    Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol. 2001; 38: 17–23.
    OpenUrlCrossRefPubMedWeb of Science
  69. 69.↵
    1. Macarulla T,
    2. Sauri T,
    3. Tabernero J.
    Evaluation of aflibercept in the treatment of metastatic colorectal cancer. Expert Opin Biol Ther. 2014; 14: 1493–505.
    OpenUrl
  70. 70.↵
    1. Wilhelm SM,
    2. Dumas J,
    3. Adnane L,
    4. Lynch M,
    5. Carter CA,
    6. Schutz G, et al.
    Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011; 129: 245–55.
    OpenUrlCrossRefPubMedWeb of Science
  71. 71.↵
    1. Lu AH,
    2. Salabas EL,
    3. Schuth F.
    Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007; 46: 1222–44.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Shokrollahi H.
    Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater Sci Eng C Mater Biol Appl. 2013; 33: 2476–87.
    OpenUrl
  73. 73.↵
    1. Wang X,
    2. Zhuang J,
    3. Peng Q,
    4. Li Y.
    A general strategy for nanocrystal synthesis. Nature. 2005; 437: 121–4.
    OpenUrlCrossRefPubMedWeb of Science
  74. 74.↵
    1. Zhang J,
    2. Han B,
    3. Chen J,
    4. Li Z,
    5. Liu Z,
    6. Wu W.
    Synthesis of Ag/BSA composite nanospheres from water-in-oil microemulsion using compressed CO2 as antisolvent. Biotechnol Bioeng. 2005; 89: 274–9.
    OpenUrlPubMed
  75. 75.↵
    1. Sharifi I,
    2. Shokrollahi H,
    3. Amiri S.
    Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater. 2012; 324: 903–15.
    OpenUrl
  76. 76.↵
    1. Kalia S,
    2. Kango S,
    3. Kumar A,
    4. Haldorai Y,
    5. Kumari B,
    6. Kumar R.
    Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci. 2014; 292: 2025–52. 77.
    OpenUrl
  77. 77.↵
    1. Sanchez J,
    2. Cortes-Hernandez DA,
    3. Escobedo-Bocardo JC,
    4. JassoTeran RA,
    5. Zugasti-Cruz A.
    Bioactive magnetic nanoparticles of Fe-Ga synthesized by sol-gel for their potential use in hyperthermia treatment. J Mater Sci Mater Med. 2014; 25: 2237–42.
    OpenUrl
  78. 78.↵
    1. Hemery G,
    2. Keyes AC,
    3. Garaio E,
    4. Rodrigo I,
    5. Garcia JA,
    6. Plazaola F, et al.
    Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorg Chem. 2017; 56: 8232–43.
    OpenUrl
  79. 79.↵
    1. Kim DH,
    2. Park JS,
    3. Kang MS.
    Continuous preparation of waterdispersible magnetite nanoparticles by electrochemical synthesis. J Nanosci Nanotechnol. 2018; 18: 5721–5.
    OpenUrl
  80. 80.↵
    1. Lungu II,
    2. Radulescu M,
    3. Mogosanu GD,
    4. Grumezescu AM.
    pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy. Rom J Morphol Embryol. 2016; 57: 23–32.
    OpenUrl
  81. 81.↵
    1. Medeiros SF,
    2. Lara BR,
    3. Oliveira PFM,
    4. Moraes RM,
    5. Alves GM,
    6. Elaissari A, et al.
    Stimuli-responsive and biocompatible poly(nvinylcaprolactam-co-acrylic acid)-coated iron oxide nanoparticles by nanoprecipitation technique. J Colloid Sci Biotechnol. 2013; 2: 180–94.
    OpenUrl
  82. 82.↵
    1. Miladi K,
    2. Ibraheem D,
    3. Iqbal M,
    4. Sfar S,
    5. Fessi H,
    6. Elaissari A.
    Particles from preformed polymers as carriers for drug delivery. EXCLI J. 2014; 13: 28–57.
    OpenUrl
  83. 83.↵
    1. Sun Y,
    2. Zheng Y,
    3. Li P,
    4. Wang D,
    5. Niu C,
    6. Gong Y, et al.
    Evaluation of superparamagnetic iron oxide-polymer composite microcapsules for magnetic resonance-guided high-intensity focused ultrasound cancer surgery. BMC Cancer. 2014; 14: 800–10.
    OpenUrlCrossRef
  84. 84.↵
    1. Yoon HJ,
    2. Lim TG,
    3. Kim JH,
    4. Cho YM,
    5. Kim YS,
    6. Chung US, et al.
    Fabrication of multifunctional layer-by-layer nanocapsules toward the design of theragnostic nanoplatform. Biomacromolecules. 2014; 15: 1382–9.
    OpenUrl
  85. 85.↵
    1. Erdal E,
    2. Demirbilek M,
    3. Yeh Y,
    4. Akbal O,
    5. Ruff L,
    6. Bozkurt D, et al.
    A comparative study of receptor-targeted magnetosome and HSAcoated iron oxide nanoparticles as MRI contrast-enhancing agent in animal cancer model. Appl Biochem Biotechnol. 2018; 185: 91–113.
    OpenUrl
  86. 86.↵
    1. Du Y,
    2. Qian M,
    3. Li C,
    4. Jiang H,
    5. Yang Y,
    6. Huang R.
    Facile marriage of Gd3+ to polymer-coated carbon nanodots with enhanced biocompatibility for targeted MR/fluorescence imaging of glioma. Int J Pharm. 2018; 552: 84–90.
    OpenUrl
  87. 87.↵
    1. Li Y,
    2. Gu Y,
    3. Yuan W,
    4. Cao T,
    5. Li K,
    6. Yang S, et al.
    Core-shell-shell NaYbF4:Tm@CaF2@NaDyF4 nanocomposites for upconversion/ T2-weighted MRI/computed tomography lymphatic imaging. ACS Appl Mater Interfaces. 2016; 8: 19208–16.
    OpenUrl
  88. 88.↵
    1. Sekine T,
    2. Barbosa FG,
    3. Delso G,
    4. Burger IA,
    5. Stolzmann P,
    6. Ter Voert EE, et al.
    Local resectability assessment of head and neck cancer: positron emission tomography/MRI versus positron emission tomography/CT. Head Neck. 2017; 39: 1550–8.
    OpenUrl
  89. 89.↵
    1. Yiannakou M,
    2. Menikou G,
    3. Yiallouras C,
    4. Ioannides C,
    5. Damianou C.
    MRI guided focused ultrasound robotic system for animal experiments. Int J Med Robot. 2017; 13: e1804–12.
  90. 90.↵
    1. Kircher MF,
    2. de la Zerda A,
    3. Jokerst JV,
    4. Zavaleta CL,
    5. Kempen PJ,
    6. Mittra E, et al.
    A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012; 18: 829–34.
    OpenUrlCrossRefPubMed
  91. 91.↵
    1. Dave RV,
    2. Millican-Slater R,
    3. Dodwell D,
    4. Horgan K,
    5. Sharma N.
    Neoadjuvant chemotherapy with MRI monitoring for breast cancer. Br J Surg. 2017; 104: 1177–87.
    OpenUrl
  92. 92.↵
    1. Mu X,
    2. Zhang F,
    3. Kong C,
    4. Zhang H,
    5. Zhang W,
    6. Ge R, et al.
    EGFR-targeted delivery of DOX-loaded Fe3O4@polydopamine multifunctional nanocomposites for MRI and antitumor chemophotothermal therapy. Int J Nanomed. 2017; 12: 2899–911.
    OpenUrl
  93. 93.↵
    1. Wu B,
    2. Li XQ,
    3. Huang T,
    4. Lu ST,
    5. Wan B,
    6. Liao RF, et al.
    MRI-guided tumor chemo-photodynamic therapy with Gd/Pt bifunctionalized porphyrin. Biomater Sci. 2017; 5: 1746–50.
    OpenUrl
  94. 94.↵
    1. Eichler F,
    2. Duncan C,
    3. Musolino PL,
    4. Orchard PJ,
    5. De Oliveira S,
    6. Thrasher AJ, et al.
    Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med. 2017; 377: 1630–8. 95.
    OpenUrlCrossRefPubMed
  95. 95.↵
    1. Karakas Z,
    2. Yilmaz Y,
    3. Bayramoglu Z,
    4. Karaman S,
    5. Aydogdu S,
    6. Karagenc AO, et al.
    Magnetic resonance imaging during management of patients with transfusion-dependent thalassemia: a single-center experience. Radiol Med. 2018; 123: 572–6.
    OpenUrl
  96. 96.↵
    1. Hervault A,
    2. Thanh NT.
    Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014; 6: 11553–73.
    OpenUrlPubMed
  97. 97.↵
    1. Farzin A,
    2. Fathi M,
    3. Emadi R.
    Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2017; 70: 21–31.
    OpenUrl
  98. 98.↵
    1. Dai M,
    2. Wu C,
    3. Fang HM,
    4. Li L,
    5. Yan JB,
    6. Zeng DL, et al.
    Thermoresponsive magnetic liposomes for hyperthermia-triggered local drug delivery. J Microencapsul. 2017; 34: 408–15.
    OpenUrl
  99. 99.↵
    1. Zamora-Mora V,
    2. Fernandez-Gutierrez M,
    3. Gonzalez-Gomez A,
    4. Sanz B,
    5. Roman JS,
    6. Goya GF, et al.
    Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: from preparation to in vitro studies. Carbohydr Polym. 2017; 157: 361–70.
    OpenUrl
  100. 100.↵
    1. Kijima S,
    2. Sasaki T,
    3. Nagata K,
    4. Utano K,
    5. Lefor AT,
    6. Sugimoto H.
    Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT. World J Gastroenterol. 2014; 20: 16964–75.
    OpenUrlPubMed
  101. 101.↵
    1. An FF,
    2. Yang YL,
    3. Liu J,
    4. Ye J,
    5. Zhang JF,
    6. Zhou MJ, et al.
    A reticuloendothelial system-stealthy dye-albumin nanocomplex as a highly biocompatible and highly luminescent nanoprobe for targeted in vivo tumor imaging. RSC Adv. 2014; 4: 6120–6.
    OpenUrl
  102. 102.↵
    1. Saing S,
    2. Haywood P,
    3. Duncan JK,
    4. Ma N,
    5. Cameron AL,
    6. Goodall S.
    Cost-effective imaging for resectability of liver lesions in colorectal cancer: an economic decision model. ANZ J Surg. 2018; 88: E507–11.
    OpenUrl
  103. 103.↵
    1. Lee DH,
    2. Lee JM.
    Whole-body PET/MRI for colorectal cancer staging: is it the way forward? J Magn Reson Imaging. 2017; 45: 21–35.
    OpenUrl
  104. 104.↵
    1. Brendle C,
    2. Schwenzer NF,
    3. Rempp H,
    4. Schmidt H,
    5. Pfannenberg C,
    6. la Fougere C, et al.
    Assessment of metastatic colorectal cancer with hybrid imaging: comparison of reading performance using different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT in a short case series. Eur J Nucl Med Mol Imaging. 2016; 43: 123–32.
    OpenUrlCrossRefPubMed
  105. 105.↵
    1. Shida D,
    2. Iinuma G,
    3. Komono A,
    4. Ochiai H,
    5. Tsukamoto S,
    6. Miyake M, et al.
    Preoperative T staging using CT colonography with multiplanar reconstruction for very low rectal cancer. BMC Cancer. 2017; 17: 764–70.
    OpenUrl
  106. 106.↵
    1. van der Paardt MP,
    2. Stoker J.
    Current status of magnetic resonance colonography for screening and diagnosis of colorectal cancer. Radiol Clin North Am. 2018; 56: 737–49.
    OpenUrl
  107. 107.↵
    1. Achiam MP,
    2. Logager V,
    3. Lund Rasmussen V,
    4. Okholm C,
    5. Mollerup T,
    6. Thomsen HS, et al.
    Perioperative colonic evaluation in patients with rectal cancer; MR colonography versus standard care. Acad Radiol. 2015; 22: 1522–8.
    OpenUrlCrossRefPubMed
  108. 108.↵
    1. van der Paardt MP,
    2. Boellaard TN,
    3. Zijta FM,
    4. Baak LC,
    5. Depla A,
    6. Dekker E, et al.
    Magnetic resonance colonography with a limited bowel preparation and automated carbon dioxide insufflation in comparison to conventional colonoscopy: patient burden and preferences. Eur J Radiol. 2015; 84: 19–25.
    OpenUrl
  109. 109.↵
    1. Sun S,
    2. Yang C,
    3. Huang Z,
    4. Jiang W,
    5. Liu Y,
    6. Wu H, et al.
    Diagnostic value of magnetic resonance versus computed tomography colonography for colorectal cancer: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2018; 97: e10883–91.
  110. 110.↵
    1. Ileva LV,
    2. Bernardo M,
    3. Young MR,
    4. Riffle LA,
    5. Tatum JL,
    6. Kalen JD, et al.
    In vivo MRI virtual colonography in a mouse model of colon cancer. Nat Protoc. 2014; 9: 2682–92.
    OpenUrl
  111. 111.↵
    1. Sun J,
    2. Zhang S,
    3. Jiang S,
    4. Bai W,
    5. Liu F,
    6. Yuan H, et al.
    Gadoliniumloaded solid lipid nanoparticles as a tumor-absorbable contrast agent for early diagnosis of colorectal tumors using magnetic resonance colonography. J Biomed Nanotechnol. 2016; 12: 1709–23.
    OpenUrl
  112. 112.↵
    1. Feng ST,
    2. Li J,
    3. Luo Y,
    4. Yin T,
    5. Cai H,
    6. Wang Y, et al.
    pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One. 2014; 9: e100732–40.
  113. 113.↵
    1. Boissenot T,
    2. Fattal E,
    3. Bordat A,
    4. Houvenagel S,
    5. Valette J,
    6. Chacun H, et al.
    Paclitaxel-loaded PEGylated nanocapsules of perfluorooctyl bromide as theranostic agents. Eur J Pharm Biopharm. 2016; 108: 136–44.
    OpenUrl
  114. 114.↵
    1. Shakeri-Zadeh A,
    2. Shiran MB,
    3. Khoee S,
    4. Sharifi AM,
    5. Ghaznavi H,
    6. Khoei S.
    A new magnetic nanocapsule containing 5-fluorouracil: in vivo drug release, anti-tumor, and pro-apoptotic effects on CT26 cells allograft model. J Biomater Appl. 2014; 29: 548–56.
    OpenUrlCrossRefPubMed
  115. 115.↵
    1. Voulgari E,
    2. Bakandritsos A,
    3. Galtsidis S,
    4. Zoumpourlis V,
    5. Burke BP,
    6. Clemente GS, et al.
    Synthesis, characterization and in vivo evaluation of a magnetic cisplatin delivery nanosystem based on PMAA-graft-PEG copolymers. J Control Release. 2016; 243: 342–56.
    OpenUrl
  116. 116.↵
    1. Lee PC,
    2. Lin CY,
    3. Peng CL,
    4. Shieh MJ.
    Development of a controlledrelease drug delivery system by encapsulating oxaliplatin into SPIO/MWNT nanoparticles for effective colon cancer therapy and magnetic resonance imaging. Biomater Sci. 2016; 4: 1742–53.
    OpenUrl
  117. 117.↵
    1. Dehvari K,
    2. Chen Y,
    3. Tsai YH,
    4. Tseng SH,
    5. Lin KS.
    Superparamagnetic iron oxide nanorod carriers for paclitaxel delivery in the treatment and imaging of colon cancer in mice. J Biomed Nanotechnol. 2016; 12: 1734–45.
    OpenUrl
  118. 118.↵
    1. Augustin E,
    2. Czubek B,
    3. Nowicka AM,
    4. Kowalczyk A,
    5. Stojek Z,
    6. Mazerska Z.
    Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicol In Vitro. 2016; 33: 45–53.
    OpenUrl
  119. 119.↵
    1. Meng L,
    2. Cheng Y,
    3. Gan S,
    4. Zhang Z,
    5. Tong X,
    6. Xu L, et al.
    Facile deposition of manganese dioxide to albumin-bound paclitaxel nanoparticles for modulation of hypoxic tumor microenvironment to improve chemoradiation therapy. Mol Pharm. 2018; 15: 447–57.
    OpenUrl
  120. 120.↵
    1. White SB,
    2. Kim DH,
    3. Guo Y,
    4. Li W,
    5. Yang Y,
    6. Chen J, et al.
    Biofunctionalized hybrid magnetic gold nanoparticles as catalysts for photothermal ablation of colorectal liver metastases. Radiology. 2017; 285: 809–19.
    OpenUrl
  121. 121.↵
    1. Azhdarzadeh M,
    2. Atyabi F,
    3. Saei AA,
    4. Varnamkhasti BS,
    5. Omidi Y,
    6. Fateh M, et al.
    Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B Biointerfaces. 2016; 143: 224–32.
    OpenUrl
  122. 122.↵
    1. Kirui DK,
    2. Khalidov I,
    3. Wang Y,
    4. Batt CA.
    Targeted near-IR hybrid magnetic nanoparticles for in vivo cancer therapy and imaging. Nanomedicine. 2013; 9: 702–11.
    OpenUrl
  123. 123.↵
    1. Kirui DK,
    2. Rey DA,
    3. Batt CA.
    Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology. 2010; 21: 105105–14.
    OpenUrlCrossRefPubMed
  124. 124.↵
    1. Parchur AK,
    2. Sharma G,
    3. Jagtap JM,
    4. Gogineni VR,
    5. LaViolette PS,
    6. Flister MJ, et al.
    Vascular interventional radiology-guided photothermal therapy of colorectal cancer liver metastasis with theranostic gold nanorods. ACS Nano. 2018; 12: 6597–611.
    OpenUrl
  125. 125.↵
    1. Zhang R,
    2. Cheng K,
    3. Antaris AL,
    4. Ma X,
    5. Yang M,
    6. Ramakrishnan S, et al.
    Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials. 2016; 103: 265–77.
    OpenUrl
  126. 126.↵
    1. Lu YJ,
    2. Lin P-Y,
    3. Huang P-H,
    4. Kuo C-Y,
    5. Shalumon KT,
    6. Chen M-Y, et al.
    Magnetic graphene oxide for dual targeted delivery of doxorubicin and photothermal therapy. Nanomaterials. 2018; 8: 193–212.
    OpenUrl
  127. 127.↵
    1. Liu F,
    2. He X,
    3. Chen H,
    4. Zhang J,
    5. Zhang H,
    6. Wang Z.
    Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat Commun. 2015; 6: 8003–11.
    OpenUrl
  128. 128.↵
    1. Muhleisen L,
    2. Alev M,
    3. Unterweger H,
    4. Subatzus D,
    5. Pottler M,
    6. Friedrich RP, et al.
    Analysis of hypericin-mediated effects and implications for targeted photodynamic therapy. Int J Mol Sci. 2017; 18: E1388–402.
    OpenUrl
  129. 129.↵
    1. Huang W,
    2. Liu Z,
    3. Zhou G,
    4. Ling J,
    5. Tian A,
    6. Sun N.
    Silencing Bag-1 gene via magnetic gold nanoparticle-delivered siRNA plasmid for colorectal cancer therapy in vivo and in vitro. Tumour Biol. 2016; 37: 10365–74.
    OpenUrl
  130. 130.↵
    1. Lee SY,
    2. Yang CY,
    3. Peng CL,
    4. Wei MF,
    5. Chen KC,
    6. Yao CJ, et al.
    A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials. 2016; 86: 92–105.
    OpenUrl
  131. 131.↵
    1. Zimmermann U,
    2. Pilwat G.
    [Organ specific application of drugs by means of cellular capsule systems (author’s transl)]. Z Naturforsch C Biosci. 1976; 31: 732–6.
    OpenUrl
  132. 132.↵
    1. Lubbe AS,
    2. Bergemann C,
    3. Huhnt W,
    4. Fricke T,
    5. Riess H,
    6. Brock JW, et al.
    Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res. 1996; 56: 4694–701.
    OpenUrlAbstract/FREE Full Text
  133. 133.↵
    1. Goodwin SC,
    2. Bittner CA,
    3. Peterson CL,
    4. Wong G.
    Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci. 2001; 60: 177–83.
    OpenUrlCrossRefPubMedWeb of Science
  134. 134.↵
    1. Wang X,
    2. Wang C,
    3. Cheng L,
    4. Lee ST,
    5. Liu Z.
    Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc. 2012; 134: 7414–22.
    OpenUrlPubMed
  135. 135.↵
    1. Kunzli BM,
    2. Abitabile P,
    3. Maurer CA.
    Radiofrequency ablation of liver tumors: actual limitations and potential solutions in the future. World J Hepatol. 2011; 3: 8–14.
    OpenUrlPubMed
  136. 136.↵
    1. Gao L,
    2. Fei J,
    3. Zhao J,
    4. Li H,
    5. Cui Y,
    6. Li J.
    Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/ photodynamic cancer therapy in vitro. ACS Nano. 2012; 6: 8030–40.
    OpenUrlPubMed
  137. 137.↵
    1. Yang X.
    Science to practice: enhancing photothermal ablation of colorectal liver metastases with targeted hybrid nanoparticles. Radiology. 2017; 285: 699–701.
    OpenUrl
  138. 138.↵
    1. Chou SS,
    2. Kaehr B,
    3. Kim J,
    4. Foley BM,
    5. De M,
    6. Hopkins PE, et al.
    Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem Int Ed. 2013; 52: 4160–4.
    OpenUrl
  139. 139.↵
    1. Dolmans DE,
    2. Fukumura D,
    3. Jain RK.
    Photodynamic therapy for cancer. Nat Rev Cancer. 2003; 3: 380–7.
    OpenUrlCrossRefPubMedWeb of Science
  140. 140.↵
    1. Ni D,
    2. Ferreira CA,
    3. Barnhart TE,
    4. Quach V,
    5. Yu B,
    6. Jiang D, et al.
    Magnetic targeting of nanotheranostics enhances cerenkov radiation-induced photodynamic therapy. J Am Chem Soc. 2018; 140: 14971–9.
    OpenUrl
  141. 141.↵
    1. Lee SJ,
    2. Lee HJ,
    3. Moon MJ,
    4. Vu-Quang H,
    5. Lee HJ,
    6. Muthiah M, et al.
    Superparamagnetic iron oxide nanoparticles-loaded polymersomemediated gene delivery guided by enhanced magnetic resonance signal. J Nanosci Nanotechnol. 2011; 11: 7057–60.
    OpenUrlPubMed
  142. 142.↵
    1. Kuo CY,
    2. Liu TY,
    3. Chan TY,
    4. Tsai SC,
    5. Hardiansyah A,
    6. Huang LY, et al.
    Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids Surf B Biointerfaces. 2016; 140: 567–73.
    OpenUrl
  143. 143.↵
    1. Xiao Y,
    2. An FF,
    3. Chen J,
    4. Xiong S,
    5. Zhang X.
    The impact of light irradiation timing on the efficacy of nanoformula-based photo/ chemo combination therapy. J Mater Chem B. 2018; 6: 3692–702.
    OpenUrl
  144. 144.↵
    1. Li Y,
    2. Dong Q,
    3. Mei T,
    4. Zheng M,
    5. Kumar RR,
    6. Yu B, et al.
    Nanosized modification strategies for improving the antitumor efficacy of MEK inhibitors. Curr Drug Targets. 2020; 21: 228–51.
    OpenUrl
  145. 145.↵
    1. Schurink NW,
    2. Lambregts DMJ,
    3. Beets-Tan RGH.
    Diffusionweighted imaging in rectal cancer: Current applications and future perspectives. Br J Radiol. 2019; 92: 20180655–71.
    OpenUrl
  146. 146.↵
    1. Barral M,
    2. Eveno C,
    3. Hoeffel C,
    4. Boudiaf M,
    5. Bazeries P,
    6. Foucher R, et al.
    Diffusion-weighted magnetic resonance imaging in colorectal cancer. J Visc Surg. 2016; 153: 361–9.
    OpenUrl
  147. 147.↵
    1. Acharya S,
    2. Fischer-Valuck BW,
    3. Kashani R,
    4. Parikh P,
    5. Yang D,
    6. Zhao T, et al.
    Online magnetic resonance image guided adaptive radiation therapy: First clinical applications. Int J Radiat Oncol Biol Phys. 2016; 94: 394–403.
    OpenUrl
  148. 148.↵
    1. White IM,
    2. Scurr E,
    3. Wetscherek A,
    4. Brown G,
    5. Sohaib A,
    6. Nill S, et al.
    Realizing the potential of magnetic resonance image guided radiotherapy in gynaecological and rectal cancer. Br J Radiol. 2019; 92: 20180670–87.
    OpenUrl
  149. 149.↵
    1. Syu WJ,
    2. Huang CC,
    3. Hsiao JK,
    4. Lee YC,
    5. Huang YT,
    6. Venkatesan P, et al.
    Co-precipitation synthesis of near-infrared iron oxide nanocrystals on magnetically targeted imaging and photothermal cancer therapy via photoablative protein denature. Nanotheranostics. 2019; 3: 236–54.
    OpenUrl
  150. 150.↵
    1. Yeoh E,
    2. Miles K.
    Simultaneous positron emission tomography and magnetic resonance imaging for the detection and characterisation of liver lesions in patients with colorectal cancer: A pictorial review. J Med Imaging Radiat Oncol. 2019; 63: 624–9.
    OpenUrl
  151. 151.↵
    1. Bitar A,
    2. Kaewsaneha C,
    3. Eissa MM,
    4. Jamshaid T,
    5. Elaissari A.
    Ferrofluids: from preparation to biomedical applications. J Colloid Sci Biotechnol. 2014; 3: 3–18.
    OpenUrl
  152. 152.↵
    1. Nel A,
    2. Xia T,
    3. Madler L,
    4. Li N.
    Toxic potential of materials at the nanolevel. Science. 2006; 311: 622–7.
    OpenUrlAbstract/FREE Full Text
  153. 153.↵
    1. Nandwana V,
    2. Ryoo SR,
    3. Kanthala S,
    4. De M,
    5. Chou SS,
    6. Prasad PV, et al.
    Engineered theranostic magnetic nanostructures: role of composition and surface coating on magnetic resonance imaging contrast and thermal activation. ACS Appl Mater Interfaces. 2016; 8: 6953–61.
    OpenUrl
  154. 154.↵
    1. Johnston PG.
    Identification of clinically relevant molecular subtypes in colorectal cancer: the dawning of a new era. Oncologist. 2014; 19: 568–73.
    OpenUrlAbstract/FREE Full Text
  155. 155.↵
    1. Arami H,
    2. Khandhar A,
    3. Liggitt D,
    4. Krishnan KM.
    In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015; 44: 8576–607.
    OpenUrl
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 17 (2)
Cancer Biology & Medicine
Vol. 17, Issue 2
15 May 2020
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Magnetic resonance imaging-guided and targeted theranostics of colorectal cancer
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Magnetic resonance imaging-guided and targeted theranostics of colorectal cancer
Yanan Li, Jingqi Xin, Yongbing Sun, Tao Han, Hui Zhang, Feifei An
Cancer Biology & Medicine May 2020, 17 (2) 307-327; DOI: 10.20892/j.issn.2095-3941.2020.0072

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Magnetic resonance imaging-guided and targeted theranostics of colorectal cancer
Yanan Li, Jingqi Xin, Yongbing Sun, Tao Han, Hui Zhang, Feifei An
Cancer Biology & Medicine May 2020, 17 (2) 307-327; DOI: 10.20892/j.issn.2095-3941.2020.0072
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Concluding remarks and future perspectives
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Senescent macrophages in cancer: roles in tumor progression and treatment opportunities
  • Application and future prospects of bispecific antibodies in the treatment of non-small cell lung cancer
  • The treatment of breast cancer in the era of precision medicine
Show more Review

Similar Articles

Keywords

  • carcinogenesis
  • Colorectal cancer
  • magnetic resonance imaging
  • multimodal diagnosis
  • targeted theranostics

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire