Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer

Zhixian Liang, Reilly L. Kidwell, Haijing Deng and Qi Xie
Cancer Biology & Medicine February 2020, 17 (1) 9-19; DOI: https://doi.org/10.20892/j.issn.2095-3941.2019.0347
Zhixian Liang
1School of Life Sciences, Westlake University, Hangzhou 310024, China
2Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Reilly L. Kidwell
3Division of Regenerative Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037, USA
4University of California San Diego, School of Medicine, La Jolla, CA 92037, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Haijing Deng
1School of Life Sciences, Westlake University, Hangzhou 310024, China
2Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qi Xie
1School of Life Sciences, Westlake University, Hangzhou 310024, China
2Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Qi Xie
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Reik W,
    2. Dean W,
    3. Walter J.
    Epigenetic reprogramming in mammalian development. Science. 2001; 293: 1089–93.
    OpenUrlAbstract/FREE Full Text
  2. 2.
    1. Bestor TH,
    2. Edwards JR,
    3. Boulard M.
    Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci. U S A. 2015; 112: 6796–9.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Sen P,
    2. Shah PP,
    3. Nativio R,
    4. Berger SL.
    Epigenetic mechanisms of longevity and aging. Cell. 2016; 166: 822–39.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Mohammad HP,
    2. Barbash O,
    3. Creasy CL.
    Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019; 25: 403–18.
    OpenUrl
  5. 5.↵
    1. Roundtree IA,
    2. Evans ME,
    3. Pan T,
    4. He C.
    Dynamic RNA modifications in gene expression regulation. Cell. 2017; 169: 1187–200.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Meyer KD,
    2. Jaffrey SR.
    The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014; 15: 313–26.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Bonder MJ,
    2. Luijk R,
    3. Zhernakova DV,
    4. Moed M,
    5. Deelen P,
    6. Vermaat M, et al.
    Disease variants alter transcription factor levels and methylation of their binding sites. Nat Genet. 2017; 49: 131–8.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Chen XY,
    2. Zhang J,
    3. Zhu JS.
    The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019; 18: 103.
    OpenUrlPubMed
  9. 9.↵
    1. Yin YM,
    2. Morgunova E,
    3. Jolma A,
    4. Kaasinen E,
    5. Sahu B,
    6. Khund-Sayeed S, et al.
    Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017; 356.
  10. 10.↵
    1. Schubeler D.
    Function and information content of DNA methylation. Nature. 2015; 517: 321–6.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Campbell JL,
    2. Kleckner N.
    E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell. 1990; 62: 967–79.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.
    1. Pukkila PJ,
    2. Peterson J,
    3. Herman G,
    4. Modrich P,
    5. Meselson M.
    Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics. 1983; 104: 571–82.
    OpenUrlAbstract/FREE Full Text
  13. 13.
    1. Roberts D,
    2. Hoopes BC,
    3. McClure WR,
    4. Kleckner N.
    IS10 transposition is regulated by DNA adenine methylation. Cell. 1985; 43: 117–30.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Wallecha A,
    2. Munster V,
    3. Correnti J,
    4. Chan T,
    5. van der Woude M.
    Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J Bacteriol. 2002; 184: 3338–47.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Unger G,
    2. Venner H.
    Remarks on minor bases in spermatic desoxyribonucleic acid. Hoppe Seylers Z Physiol Chem. 1966; 344: 280–3.
    OpenUrlPubMed
  16. 16.
    1. Vanyushin BF,
    2. Tkacheva SG,
    3. Belozersky AN.
    Rare bases in animal DNA. Nature. 1970; 225: 948–9.
    OpenUrlCrossRefPubMed
  17. 17.
    1. Adams RL,
    2. McKay EL,
    3. Craig LM,
    4. Burdon RH.
    Methylation of mosquito, DNA. Biochim Biophys Acta. 1979; 563: 72–81.
    OpenUrlPubMed
  18. 18.↵
    1. Proffitt JH,
    2. Davie JR,
    3. Swinton D,
    4. Hattman S.
    5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol Cell Biol. 1984; 4: 985–8.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Achwal CW,
    2. Iyer CA,
    3. Chandra HS.
    Immunochemical evidence for the presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA. FEBS Lett. 1983; 158: 353–8.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Yuki H,
    2. Kawasaki H,
    3. Imayuki A,
    4. Yajima T.
    Determination of 6-methyladenine in DNA by high-performance liquid chromatography. J Chromatogr. 1979; 168: 489–94.
    OpenUrlPubMed
  21. 21.↵
    1. Chen K,
    2. Luo GZ,
    3. He C.
    High-Resolution mapping of N(6)-methyladenosine in transcriptome and genome using a photo-crosslinking-assisted strategy. Methods Enzymol. 2015; 560: 161–85.
    OpenUrl
  22. 22.↵
    1. Fu Y,
    2. Luo GZ,
    3. Chen K,
    4. Deng X,
    5. Yu M,
    6. Han D, et al.
    N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell. 2015; 161: 879–92.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Greer EL,
    2. Blanco MA,
    3. Gu L,
    4. Sendinc E,
    5. Liu J,
    6. Aristizabal-Corrales D, et al.
    DNA methylation on N6-adenine in C. elegans. Cell. 2015; 161: 868–78.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Zhu S,
    2. Beaulaurier J,
    3. Deikus G,
    4. Wu TP,
    5. Strahl M,
    6. Hao Z, et al.
    Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing. Genome Res. 2018; 28: 1067–78.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Zhang G,
    2. Huang H,
    3. Liu D,
    4. Cheng Y,
    5. Liu X,
    6. Zhang W, et al.
    N6-methyladenine DNA modification in Drosophila. Cell. 2015; 161: 893–906.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Liu J,
    2. Zhu Y,
    3. Luo GZ,
    4. Wang X,
    5. Yue Y,
    6. Wang X, et al.
    Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat Commun. 2016; 7: 13052.
  27. 27.↵
    1. Wang Y,
    2. Li Y,
    3. Toth JI,
    4. Petroski MD,
    5. Zhang Z,
    6. Zhao JC.
    N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 2014; 16: 191–8.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Huang W,
    2. Xiong J,
    3. Yang Y,
    4. Liu S-M,
    5. Yuan B-F,
    6. Feng Y-Q.
    Determination of DNA adenine methylation in genomes of mammals and plants by liquid chromatography/mass spectrometry. RSC Adv. 2015; 5: 64046–54.
    OpenUrl
  29. 29.↵
    1. Xiao CL,
    2. Zhu S,
    3. He M,
    4. Chen D,
    5. Zhang Q,
    6. Chen Y, et al.
    N(6)-methyladenine DNA modification in the human genome. Mol Cell. 2018; 71: 306–18.e7.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Xie Q,
    2. Wu TP,
    3. Gimple RC,
    4. Li Z,
    5. Prager BC,
    6. Wu Q, et al.
    N(6)-methyladenine DNA modification in glioblastoma. Cell. 2018; 175: 1228–43.e20.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Yao B,
    2. Cheng Y,
    3. Wang Z,
    4. Li Y,
    5. Chen L,
    6. Huang L, et al.
    DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun. 2017; 8: 1122.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Fazi F,
    2. Fatica A.
    Interplay between N-6-methyladenosine (m(6)A) and non-coding RNAs in cell development and cancer. Front Cell Dev Biol. 2019; 7: 116.
    OpenUrl
  33. 33.↵
    1. Dominissini D,
    2. Moshitch-Moshkovitz S,
    3. Schwartz S,
    4. Salmon-Divon M,
    5. Ungar L,
    6. Osenberg S, et al.
    Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012; 485: 201–6.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.
    1. Meyer KD,
    2. Saletore Y,
    3. Zumbo P,
    4. Elemento O,
    5. Mason CE,
    6. Jaffrey SR.
    Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 2012; 149: 1635–46.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.↵
    1. Meyer KD,
    2. Jaffrey SR.
    Rethinking m(6)A readers, writers, and erasers. Annu Rev Cell Dev Biol. 2017; 33: 319–42.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Lan Q,
    2. Liu PY,
    3. Haase J,
    4. Bell JL,
    5. Hüttelmaier S,
    6. Liu T.
    The critical role of RNA m6A methylation in cancer. Cancer Res. 2019; 79: 1285–92.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Barbieri I,
    2. Tzelepis K,
    3. Pandolfini L,
    4. Shi J,
    5. Millan-Zambrano G,
    6. Robson SC, et al.
    Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature. 2017; 552: 126–31.
    OpenUrlCrossRefPubMed
  38. 38.↵
    1. Weng H,
    2. Huang H,
    3. Wu H,
    4. Qin X,
    5. Zhao BS,
    6. Dong L, et al.
    METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell. 2018; 22: 191–205.e9.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Cheng M,
    2. Sheng L,
    3. Gao Q,
    4. Xiong Q,
    5. Zhang H,
    6. Wu M, et al.
    The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-kappaB/MYC signaling network. Oncogene. 2019; 38: 3667–80.
    OpenUrl
  40. 40.↵
    1. Li Z,
    2. Weng H,
    3. Su R,
    4. Weng X,
    5. Zuo Z,
    6. Li C, et al.
    FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017; 31: 127–41.
    OpenUrlCrossRefPubMed
  41. 41.
    1. Chang M,
    2. Lv H,
    3. Zhang W,
    4. Ma C,
    5. He X,
    6. Zhao S, et al.
    Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol. 2017; 7.
  42. 42.↵
    1. Paris J,
    2. Morgan M,
    3. Campos J,
    4. Spencer GJ,
    5. Shmakova A,
    6. Ivanova I, et al.
    Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell. 2019; 25: 137–48.e6.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Wang P,
    2. Doxtader KA,
    3. Nam Y.
    Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016; 63: 306–17.
    OpenUrlCrossRef
  44. 44.↵
    1. Wang X,
    2. Feng J,
    3. Xue Y,
    4. Guan Z,
    5. Zhang D,
    6. Liu Z, et al.
    Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016; 534: 575–8.
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. Linder B,
    2. Grozhik AV,
    3. Olarerin-George AO,
    4. Meydan C,
    5. Mason CE,
    6. Jaffrey SR.
    Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015; 12: 767–72.
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. Ping XL,
    2. Sun BF,
    3. Wang L,
    4. Xiao W,
    5. Yang X,
    6. Wang WJ, et al.
    Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014; 24: 177–89.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Patil DP,
    2. Chen CK,
    3. Pickering BF,
    4. Chow A,
    5. Jackson C,
    6. Guttman M, et al.
    m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016; 537: 369–73.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Cheng X,
    2. Li M,
    3. Rao X,
    4. Zhang W,
    5. Li X,
    6. Wang L, et al.
    KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA. Onco Targets Ther. 2019; 12: 3421–8.
    OpenUrl
  49. 49.↵
    1. Pendleton KE,
    2. Chen B,
    3. Liu K,
    4. Hunter OV,
    5. Xie Y,
    6. Tu BP, et al.
    The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017; 169: 824–35.e14.
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. Doxtader KA,
    2. Wang P,
    3. Scarborough AM,
    4. Seo D,
    5. Conrad NK,
    6. Nam Y.
    Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor. Mol Cell. 2018; 71: 1001–11.e4.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Lin X,
    2. Chai G,
    3. Wu Y,
    4. Li J,
    5. Chen F,
    6. Liu J, et al.
    RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of snail. Nat Commun. 2019; 10: 2065.
    OpenUrl
  52. 52.↵
    1. Panneerdoss S,
    2. Eedunuri VK,
    3. Yadav P,
    4. Timilsina S,
    5. Rajamanickam S,
    6. Viswanadhapalli S, et al.
    Cross-talk among writers, readers, and erasers of m(6)A regulates cancer growth and progression. Sci Adv. 2018; 4: eaar8263.
  53. 53.↵
    1. Xiang Y,
    2. Laurent B,
    3. Hsu CH,
    4. Nachtergaele S,
    5. Lu Z,
    6. Sheng W, et al.
    RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017; 543: 573–6.
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. Vu LP,
    2. Pickering BF,
    3. Cheng Y,
    4. Zaccara S,
    5. Nguyen D,
    6. Minuesa G, et al.
    The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017; 23: 1369–76.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Gong D,
    2. Zhang J,
    3. Chen Y,
    4. Xu Y,
    5. Ma J,
    6. Hu G, et al.
    The m(6)A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca(2+) influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway. J Exp Clin Cancer Res. 2019; 38: 233.
    OpenUrl
  56. 56.↵
    1. Li T,
    2. Hu PS,
    3. Zuo Z,
    4. Lin JF,
    5. Li X,
    6. Wu QN, et al.
    METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019; 18: 112.
    OpenUrl
  57. 57.↵
    1. Chen M,
    2. Wei L,
    3. Law CT,
    4. Tsang FH,
    5. Shen J,
    6. Cheng CL, et al.
    RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018; 67: 2254–70.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Yang F,
    2. Jin H,
    3. Que B,
    4. Chao Y,
    5. Zhang H,
    6. Ying X, et al.
    Dynamic m(6)A mRNA methylation reveals the role of METTL3-m(6)A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene. 2019; 38: 4755–72.
    OpenUrl
  59. 59.↵
    1. Han J,
    2. Wang JZ,
    3. Yang X,
    4. Yu H,
    5. Zhou R,
    6. Lu HC, et al.
    METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019; 18: 110.
    OpenUrl
  60. 60.↵
    1. Chen RX,
    2. Chen X,
    3. Xia LP,
    4. Zhang JX,
    5. Pan ZZ,
    6. Ma XD, et al.
    N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019; 10: 4695.
    OpenUrlCrossRef
  61. 61.↵
    1. Wu Y,
    2. Yang X,
    3. Chen Z,
    4. Tian L,
    5. Jiang G,
    6. Chen F, et al.
    m(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer. 2019; 18: 87.
    OpenUrl
  62. 62.↵
    1. Zheng ZQ,
    2. Li ZX,
    3. Zhou GQ,
    4. Lin L,
    5. Zhang LL,
    6. Lv JW, et al.
    Long non-coding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res. 2019; 79: 4612–26.
    OpenUrlCrossRef
  63. 63.↵
    1. He H,
    2. Wu W,
    3. Sun Z,
    4. Chai L.
    MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit m(6)A-caused stabilization of SEC62. Biochem Biophys Res Commun. 2019; 517: 581–7.
    OpenUrl
  64. 64.↵
    1. Liu J,
    2. Eckert MA,
    3. Harada BT,
    4. Liu SM,
    5. Lu Z,
    6. Yu K, et al.
    m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018; 20: 1074–83.
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. Zhou J,
    2. Wang J,
    3. Hong B,
    4. Ma K,
    5. Xie H,
    6. Li L, et al.
    Gene signatures and prognostic values of m6A regulators in clear cell renal cell carcinoma – a retrospective study using TCGA database. Aging (Albany NY). 2019; 11: 1633–47.
    OpenUrl
  66. 66.↵
    1. Cui Q,
    2. Shi H,
    3. Ye P,
    4. Li L,
    5. Qu Q,
    6. Sun G, et al.
    m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017; 18: 2622–34.
    OpenUrl
  67. 67.↵
    1. Visvanathan A,
    2. Patil V,
    3. Arora A,
    4. Hegde AS,
    5. Arivazhagan A,
    6. Santosh V, et al.
    Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 2018; 37: 522–33.
    OpenUrlCrossRefPubMed
  68. 68.↵
    1. Jia G,
    2. Fu Y,
    3. Zhao X,
    4. Dai Q,
    5. Zheng G,
    6. Yang Y, et al.
    N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011; 7: 885–7.
    OpenUrlCrossRefPubMed
  69. 69.↵
    1. Zheng G,
    2. Dahl JA,
    3. Niu Y,
    4. Fedorcsak P,
    5. Huang CM,
    6. Li CJ, et al.
    ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013; 49: 18–29.
    OpenUrlCrossRefPubMedWeb of Science
  70. 70.↵
    1. Deng X,
    2. Su R,
    3. Weng H,
    4. Huang H,
    5. Li Z,
    6. Chen J.
    RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018; 28: 507–17.
    OpenUrlCrossRef
  71. 71.↵
    1. Yang S,
    2. Wei J,
    3. Cui YH,
    4. Park G,
    5. Shah P,
    6. Deng Y, et al.
    m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 2019; 10: 2782.
    OpenUrl
  72. 72.↵
    1. Niu Y,
    2. Lin Z,
    3. Wan A,
    4. Chen H,
    5. Liang H,
    6. Sun L, et al.
    RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 2019; 18: 46.
    OpenUrlCrossRef
  73. 73.↵
    1. Su R,
    2. Dong L,
    3. Li C,
    4. Nachtergaele S,
    5. Wunderlich M,
    6. Qing Y, et al.
    R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell. 2018; 172: 90–105.e23.
    OpenUrlCrossRefPubMed
  74. 74.↵
    1. Zhang S,
    2. Zhao BS,
    3. Zhou A,
    4. Lin K,
    5. Zheng S,
    6. Lu Z, et al.
    m(6)A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017; 31: 591–606.e6.
    OpenUrlCrossRefPubMed
  75. 75.↵
    1. Zhang J,
    2. Guo S,
    3. Piao HY,
    4. Wang Y,
    5. Wu Y,
    6. Meng XY, et al.
    ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem. 2019; 75: 379–89.
    OpenUrl
  76. 76.↵
    1. Zhu H,
    2. Gan X,
    3. Jiang X,
    4. Diao S,
    5. Wu H,
    6. Hu J.
    ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J Exp Clin Cancer Res. 2019; 38: 163.
    OpenUrl
  77. 77.↵
    1. Shen L,
    2. Song CX,
    3. He C,
    4. Zhang Y.
    Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem. 2014; 83: 585–614.
    OpenUrlCrossRefPubMed
  78. 78.↵
    1. Zhu C,
    2. Yi C.
    Switching demethylation activities between AlkB family RNA/DNA demethylases through exchange of active-site residues. Angew Chem Int Ed Engl. 2014; 53: 3659–62.
    OpenUrlCrossRefPubMedWeb of Science
  79. 79.↵
    1. Luo S,
    2. Tong L.
    Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad Sci U S A. 2014; 111: 13834–9.
    OpenUrlAbstract/FREE Full Text
  80. 80.↵
    1. Xiao W,
    2. Adhikari S,
    3. Dahal U,
    4. Chen YS,
    5. Hao YJ,
    6. Sun BF, et al.
    Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016; 61: 507–19.
    OpenUrlCrossRefPubMed
  81. 81.↵
    1. Hsu PJ,
    2. Zhu Y,
    3. Ma H,
    4. Guo Y,
    5. Shi X,
    6. Liu Y, et al.
    Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017; 27: 1115–27.
    OpenUrlCrossRefPubMed
  82. 82.↵
    1. Li A,
    2. Chen YS,
    3. Ping XL,
    4. Yang X,
    5. Xiao W,
    6. Yang Y, et al.
    Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017; 27: 444–7.
    OpenUrlCrossRef
  83. 83.↵
    1. Shi H,
    2. Wang X,
    3. Lu Z,
    4. Zhao BS,
    5. Ma H,
    6. Hsu PJ, et al.
    YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017; 27: 315–28.
    OpenUrl
  84. 84.↵
    1. Meyer KD,
    2. Patil DP,
    3. Zhou J,
    4. Zinoviev A,
    5. Skabkin MA,
    6. Elemento O, et al.
    5′ UTR m(6)A promotes cap-independent translation. Cell. 2015; 163: 999–1010.
    OpenUrlCrossRefPubMed
  85. 85.↵
    1. Huang H,
    2. Weng H,
    3. Sun W,
    4. Qin X,
    5. Shi H,
    6. Wu H, et al.
    Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018; 20: 285–95.
    OpenUrlCrossRefPubMed
  86. 86.↵
    1. Muller S,
    2. Glass M,
    3. Singh AK,
    4. Haase J,
    5. Bley N,
    6. Fuchs T, et al.
    IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 2019; 47: 375–90.
    OpenUrlCrossRefPubMed
  87. 87.↵
    1. Han D,
    2. Liu J,
    3. Chen C,
    4. Dong L,
    5. Liu Y,
    6. Chang R, et al.
    Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019; 566: 270–4.
    OpenUrlPubMed
  88. 88.↵
    The m(6)A-Binding protein YTHDF1 mediates immune evasion. Cancer Discov. 2019; 9: 461.
    OpenUrlAbstract/FREE Full Text
  89. 89.↵
    1. Wu TP,
    2. Wang T,
    3. Seetin MG,
    4. Lai Y,
    5. Zhu S,
    6. Lin K, et al.
    DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature. 2016; 532: 329–33.
    OpenUrlCrossRefPubMed
  90. 90.↵
    1. Kweon SM,
    2. Chen Y,
    3. Moon E,
    4. Kvederaviciute K,
    5. Klimasauskas S,
    6. Feldman DE.
    An adversarial DNA N(6)-methyladenine-sensor network preserves polycomb silencing. Mol Cell. 2019; 74: 1138–47.e6.
    OpenUrl
  91. 91.↵
    1. Li W,
    2. Shi Y,
    3. Zhang T,
    4. Ye J,
    5. Ding J.
    Structural insight into human N6amt1–Trm112 complex functioning as a protein methyltransferase. Cell Discov. 2019; 5: 51.
    OpenUrl
  92. 92.↵
    1. Woodcock CB,
    2. Yu D,
    3. Zhang X,
    4. Cheng X.
    Human HemK2/KMT9/N6AMT1 is an active protein methyltransferase, but does not act on DNA in vitro, in the presence of Trm112. Cell Discov. 2019; 5: 50.
    OpenUrl
  93. 93.↵
    1. Liu X,
    2. Liu L,
    3. Dong Z,
    4. Li J,
    5. Yu Y,
    6. Chen X, et al.
    Expression patterns and prognostic value of m(6)A-related genes in colorectal cancer. Am J Transl Res. 2019; 11: 3972–91.
    OpenUrl
  94. 94.↵
    1. Kwok CT,
    2. Marshall AD,
    3. Rasko JE,
    4. Wong JJ.
    Genetic alterations of m(6)A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol. 2017; 10: 39.
    OpenUrlCrossRef
  95. 95.↵
    1. Chai RC,
    2. Wu F,
    3. Wang QX,
    4. Zhang S,
    5. Zhang KN,
    6. Liu YQ, et al.
    m(6)A RNA methylation regulators contribute to malignant progression and have clinical prognostic impact in gliomas. Aging (Albany NY). 2019; 11: 1204–25.
    OpenUrl
  96. 96.↵
    1. Liu XM,
    2. Zhou J,
    3. Mao Y,
    4. Ji Q,
    5. Qian SB.
    Programmable RNA N(6)-methyladenosine editing by CRISPR-Cas9 conjugates. Nat Chem Biol. 2019; 15: 865–71.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 17 (1)
Cancer Biology & Medicine
Vol. 17, Issue 1
15 Feb 2020
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer
Zhixian Liang, Reilly L. Kidwell, Haijing Deng, Qi Xie
Cancer Biology & Medicine Feb 2020, 17 (1) 9-19; DOI: 10.20892/j.issn.2095-3941.2019.0347

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer
Zhixian Liang, Reilly L. Kidwell, Haijing Deng, Qi Xie
Cancer Biology & Medicine Feb 2020, 17 (1) 9-19; DOI: 10.20892/j.issn.2095-3941.2019.0347
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • The roles of RNA m6A in human cancer
    • The roles of DNA 6mA in human cancer
    • Clinical applications of N6-methyladenosine
    • Conclusions and perspectives
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Neutrophils in cancer: from immune defense to tumor promotion
  • Multi-omics in colorectal cancer liver metastasis: applications and research advances
  • Senescent macrophages in cancer: roles in tumor progression and treatment opportunities
Show more Review

Similar Articles

Keywords

  • N6-methyladenosine
  • RNA methylation
  • DNA methylation
  • cancer
  • therapeutic targets

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire