Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Research ArticleOriginal Article

Omics-based integrated analysis identified ATRX as a biomarker associated with glioma diagnosis and prognosis

Yingbin Xie, Yanli Tan, Chao Yang, Xuehao Zhang, Can Xu, Xiaoxia Qiao, Jianglong Xu, Shaohui Tian, Chuan Fang and Chunsheng Kang
Cancer Biology & Medicine November 2019, 16 (4) 784-796; DOI: https://doi.org/10.20892/j.issn.2095-3941.2019.0143
Yingbin Xie
1Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, China
2Department of Neurosurgery, Hebei University Medical College, Baoding 071000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yanli Tan
3Department of Pathology, Hebei University Medical College, Baoding 071000, China
4Department of Pathology, Affiliated Hospital of Hebei University, Baoding 071000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chao Yang
5Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xuehao Zhang
2Department of Neurosurgery, Hebei University Medical College, Baoding 071000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Can Xu
2Department of Neurosurgery, Hebei University Medical College, Baoding 071000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoxia Qiao
1Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianglong Xu
1Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shaohui Tian
1Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chuan Fang
1Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected] [email protected]
Chunsheng Kang
5Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
6Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Suzuki H,
    2. Aoki K,
    3. Chiba K,
    4. Sato Y,
    5. Shiozawa Y,
    6. Shiraishi Y, et al.
    Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet. 2015; 47: 458–68.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Castro-Gamero AM,
    2. Pezuk JA,
    3. Brassesco MS,
    4. Tone LG.
    G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biol Med. 2018; 15: 354–74.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Han L,
    2. Liu CY,
    3. Qi HZ,
    4. Zhou JH,
    5. Wen J,
    6. Wu D, et al.
    Systemic delivery of monoclonal antibodies to the central nervous system for brain tumor therapy. Adv Mater. 2019; 31: e1805697.
  4. 4.↵
    1. Cai HQ,
    2. Wang PF,
    3. Zhang HP,
    4. Cheng ZJ,
    5. Li SW,
    6. He J, et al.
    Phosphorylated Hsp27 is mutually exclusive with ATRX loss and the IDH1R132H mutation and may predict better prognosis among glioblastomas without the IDH1 mutation and ATRX loss. J Clin Pathol. 2018; 71: 702–7.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Synhaeve NE,
    2. Van Den Bent MJ,
    3. French PJ,
    4. Dinjens WNM,
    5. Atmodimedjo PN,
    6. Kros JM, et al.
    Clinical evaluation of a dedicated next generation sequencing panel for routine glioma diagnostics. Acta Neuropathol Commun. 2018; 6: 126.
    OpenUrl
  6. 6.↵
    1. Godek KM,
    2. Venere M,
    3. Wu Q,
    4. Mills KD,
    5. Hickey WF,
    6. Rich JN, et al.
    Chromosomal instability affects the tumorigenicity of glioblastoma tumor-initiating cells. Cancer Discov. 2016; 6: 532–45.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Stanislaw C,
    2. Xue Y,
    3. Wilcox WR.
    Genetic evaluation and testing for hereditary forms of cancer in the era of next-generation sequencing. Cancer Biol Med. 2016; 13: 55–67.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Nandakumar P,
    2. Mansouri A,
    3. Das S.
    The role of ATRX in glioma biology. Front Oncol. 2017; 7: 236.
    OpenUrl
  9. 9.↵
    1. Pekmezci M,
    2. Rice T,
    3. Molinaro AM,
    4. Walsh KM,
    5. Decker PA,
    6. Hansen H, et al.
    Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathol. 2017; 133: 1001–16.
    OpenUrlCrossRef
  10. 10.
    1. Van Den Bent MJ,
    2. Weller M,
    3. Wen PY,
    4. Kros JM,
    5. Aldape K,
    6. Chang SS.
    A clinical perspective on the 2016 WHO brain tumor classification and routine molecular diagnostics. Neuro Oncol. 2017; 19: 614–24.
    OpenUrl
  11. 11.↵
    1. Núñez FJ,
    2. Mendez FM,
    3. Kadiyala P,
    4. Alghamri MS,
    5. Savelieff MG,
    6. Garcia-Fabiani MB, et al.
    IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. Sci Transl Med. 2019; 11: eaaq1427.
  12. 12.↵
    1. Danussi C,
    2. Bose P,
    3. Parthasarathy PT,
    4. Silberman PC,
    5. Van Arnam JS,
    6. Vitucci M, et al.
    Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling. Nat Commun. 2018; 9: 1057.
    OpenUrl
  13. 13.↵
    1. Nguyen DT,
    2. Voon HPJ,
    3. Xella B,
    4. Scott C,
    5. Clynes D,
    6. Babbs C, et al.
    The chromatin remodelling factor ATRX suppresses R-loops in transcribed telomeric repeats. EMBO Rep. 2017; 18: 914–28.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Mukherjee J,
    2. Johannessen TC,
    3. Ohba S,
    4. Chow TT,
    5. Jones L,
    6. Pandita A, et al.
    Mutant IDH1 cooperates with ATRX loss to drive the alternative lengthening of telomere phenotype in glioma. Cancer Res. 2018; 78: 2966–77.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Koschmann C,
    2. Lowenstein PR,
    3. Castro MG.
    ATRX mutations and glioblastoma: impaired DNA damage repair, alternative lengthening of telomeres, and genetic instability. Mol Cell Oncol. 2016; 3: e1167158.
  16. 16.↵
    1. Haase S,
    2. Garcia-Fabiani MB,
    3. Carney S,
    4. Altshuler D,
    5. Núñez FJ,
    6. Méndez FM, et al.
    Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets. 2018; 22: 599–613.
    OpenUrl
  17. 17.↵
    1. Cai JQ,
    2. Zhang CB,
    3. Zhang W,
    4. Wang GZ,
    5. Yao K,
    6. Wang ZL, et al.
    ATRX, IDH1-R132H and Ki-67 immunohistochemistry as a classification scheme for astrocytic tumors. Oncoscience. 2016; 3: 258–65.
    OpenUrl
  18. 18.↵
    1. Modrek AS,
    2. Golub D,
    3. Khan T,
    4. Bready D,
    5. Prado J,
    6. Bowman C, et al.
    Low-grade astrocytoma mutations in IDH1, P53, and ATRX cooperate to block differentiation of human neural stem cells via repression of SOX2. Cell Rep. 2017; 21: 1267–80.
    OpenUrl
  19. 19.↵
    1. Reinhardt A,
    2. Stichel D,
    3. Schrimpf D,
    4. Sahm F,
    5. Korshunov A,
    6. Reuss DE, et al.
    Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018; 136: 273–91.
    OpenUrl
  20. 20.
    1. Reis GF,
    2. Pekmezci M,
    3. Hansen HM,
    4. Rice T,
    5. Marshall RE,
    6. Molinaro AM, et al.
    CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J Neuropathol Exp Neurol. 2015; 74: 442–52.
    OpenUrlCrossRefPubMed
  21. 21.
    1. Patil V,
    2. Mahalingam K.
    Comprehensive analysis of reverse phase protein array data reveals characteristic unique proteomic signatures for glioblastoma subtypes. Gene. 2019; 685: 85–95.
    OpenUrl
  22. 22.↵
    1. Borodovsky A,
    2. Meeker AK,
    3. Kirkness EF,
    4. Zhao Q,
    5. Eberhart CG,
    6. Gallia GL, et al.
    A model of a patient-derived IDH1 mutant anaplastic astrocytoma with alternative lengthening of telomeres. J Neurooncol. 2015; 121: 479–87.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Liu JY,
    2. Zhang XB,
    3. Yan XL,
    4. Sun M,
    5. Fan YS,
    6. Huang Y.
    Significance of TERT and ATRX mutations in glioma. Oncol Lett. 2019; 17: 95–102.
    OpenUrl
  24. 24.↵
    1. Cerami E,
    2. Gao JJ,
    3. Dogrusoz U,
    4. Gross BE,
    5. Sumer SO,
    6. Aksoy BA, et al.
    The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012; 2: 401–4.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Gao JJ,
    2. Aksoy BA,
    3. Dogrusoz U,
    4. Dresdner G,
    5. Gross B,
    6. Sumer SO, et al.
    Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6: pl1.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Nguyen DN,
    2. Heaphy CM,
    3. De Wilde RF,
    4. Orr BA,
    5. Odia Y,
    6. Eberhart CG, et al.
    Molecular and morphologic correlates of the alternative lengthening of telomeres phenotype in high-grade astrocytomas. Brain Pathol. 2013; 23: 237–43.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Chaurasia A,
    2. Park SH,
    3. Seo JW,
    4. Park CK.
    Immunohistochemical analysis of ATRX, IDH1 and p53 in glioblastoma and their correlations with patient survival. J Korean Med Sci. 2016; 31: 1208–14.
    OpenUrl
  28. 28.↵
    1. Louis DN,
    2. Perry A,
    3. Burger P,
    4. Ellison DW,
    5. Reifenberger G,
    6. Von Deimling A, et al.
    International society of neuropathology-Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol. 2014; 24: 429–35.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Louis DN,
    2. Perry A,
    3. Reifenberger G,
    4. Von Deimling A,
    5. Figarella-Branger D,
    6. Cavenee WK, et al.
    The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016; 131: 803–20.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Zhou LN,
    2. Wang ZC,
    3. Hu CX,
    4. Zhang CQ,
    5. Kovatcheva-Datchary P,
    6. Yu D, et al.
    Integrated metabolomics and lipidomics analyses reveal metabolic reprogramming in human glioma with IDH1 mutation. J Proteome Res. 2019; 18: 960–9.
    OpenUrl
  31. 31.↵
    1. Ebrahimi A,
    2. Skardelly M,
    3. Bonzheim I,
    4. Ott I,
    5. Muhleisen H,
    6. Eckert F, et al.
    ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta Neuropathol Commun. 2016; 4: 60.
    OpenUrl
  32. 32.↵
    1. Deng L,
    2. Xiong PJ,
    3. Luo YH,
    4. Bu X,
    5. Qian SK,
    6. Zhong WZ, et al.
    Association between IDH1/2 mutations and brain glioma grade. Oncol Lett. 2018; 16: 5405–9.
    OpenUrl
  33. 33.↵
    1. Liu XY,
    2. Gerges N,
    3. Korshunov A,
    4. Sabha N,
    5. Khuong-Quang DA,
    6. Fontebasso AM, et al.
    Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012; 124: 615–25.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Olar A,
    2. Sulman EP.
    Molecular markers in low-grade glioma—toward tumor reclassification. Semin Radiat Oncol. 2015; 25: 155–63.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Eckel-Passow JE,
    2. Lachance DH,
    3. Molinaro AM,
    4. Walsh KM,
    5. Decker PA,
    6. Sicotte H, et al.
    Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015; 372: 2499–508.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Ballester LY,
    2. Fuller GN,
    3. Powell SZ,
    4. Sulman EP,
    5. Patel KP,
    6. Luthra R, et al.
    Retrospective analysis of molecular and immunohistochemical characterization of 381 primary brain tumors. J Neuropathol Exp Neurol. 2017; 76: 179–88.
    OpenUrlCrossRef
  37. 37.↵
    1. Johnson BE,
    2. Mazor T,
    3. Hong CB,
    4. Barnes M,
    5. Aihara K,
    6. McLean CY, et al.
    Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014; 343: 189–93.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Chen R,
    2. Cohen AL,
    3. Colman H.
    Targeted therapeutics in patients with high-grade gliomas: past, present, and future. Curr Treat Options Oncol. 2016; 17: 42.
    OpenUrlCrossRef
  39. 39.↵
    1. Cho SY,
    2. Park C,
    3. Na D,
    4. Han JY,
    5. Lee J,
    6. Park OK, et al.
    High prevalence of TP53 mutations is associated with poor survival and an EMT signature in gliosarcoma patients. Exp Mol Med. 2017; 49: e317.
  40. 40.↵
    1. Clynes D,
    2. Jelinska C,
    3. Xella B,
    4. Ayyub H,
    5. Scott C,
    6. Mitson M, et al.
    Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat Commun. 2015; 6: 7538.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Brennan CW,
    2. Verhaak RGW,
    3. McKenna A,
    4. Campos B,
    5. Noushmehr H,
    6. Salama SR, et al.
    The somatic genomic landscape of glioblastoma. Cell. 2013; 155: 462–77.
    OpenUrlCrossRefPubMedWeb of Science
  42. 42.↵
    1. Bettegowda C,
    2. Agrawal N,
    3. Jiao YC,
    4. Sausen M,
    5. Wood LD,
    6. Hruban RH, et al.
    Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science. 2011; 333: 1453–5.
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. Di Stefano AL,
    2. Enciso-Mora V,
    3. Marie Y,
    4. Desestret V,
    5. Labussière M,
    6. Boisselier B, et al.
    Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro-Oncol. 2013; 15: 542–7.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. McNulty SN,
    2. Cottrell CE,
    3. Vigh-Conrad KA,
    4. Carter JH,
    5. Heusel JW,
    6. Ansstas G, et al.
    Beyond sequence variation: assessment of copy number variation in adult glioblastoma through targeted tumor somatic profiling. Hum Pathol. 2019; 86: 170–81.
    OpenUrl
  45. 45.↵
    1. Han B,
    2. Cai JQ,
    3. Gao WD,
    4. Meng XQ,
    5. Gao F,
    6. Wu PF, et al.
    Loss of ATRX suppresses ATM dependent DNA damage repair by modulating H3K9me3 to enhance temozolomide sensitivity in glioma. Cancer Lett. 2018; 419: 280–90.
    OpenUrl
  46. 46.↵
    1. Valle-García D,
    2. Qadeer ZA,
    3. McHugh DS,
    4. Ghiraldini FG,
    5. Chowdhury AH,
    6. Hasson D, et al.
    ATRX binds to atypical chromatin domains at the 3' exons of zinc finger genes to preserve H3K9me3 enrichment. Epigenetics. 2016; 11: 398–414.
    OpenUrl
  47. 47.↵
    1. Ratnakumar K,
    2. Duarte LF,
    3. LeRoy G,
    4. Hasson D,
    5. Smeets D,
    6. Vardabasso C, et al.
    ATRX-mediated chromatin association of histone variant macroH2A1 regulates α-globin expression. Genes Dev. 2012; 26: 433–8.
    OpenUrlAbstract/FREE Full Text
  48. 48.
    1. Law MJ,
    2. Lower KM,
    3. Voon HPJ,
    4. Hughes JR,
    5. Garrick D,
    6. Viprakasit V, et al.
    ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell. 2010; 143: 367–78.
    OpenUrlCrossRefPubMedWeb of Science
  49. 49.↵
    1. Mitson M,
    2. Kelley LA,
    3. Sternberg MJE,
    4. Higgs DR,
    5. Gibbons RJ.
    Functional significance of mutations in the Snf2 domain of ATRX. Hum Mol Genet. 2011; 20: 2603–10.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Zhang J,
    2. Chen XB.
    p53 tumor suppressor and iron homeostasis. FEBS J. 2019; 286: 620–9.
    OpenUrl
  51. 51.↵
    1. Zhang YH,
    2. Qian YJ,
    3. Zhang J,
    4. Yan WS,
    5. Jung YS,
    6. Chen MY, et al.
    Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev. 2017; 31: 1243–56.
    OpenUrlAbstract/FREE Full Text
  52. 52.↵
    1. Wang HY,
    2. Tang K,
    3. Liang TY,
    4. Zhang WZ,
    5. Li JY,
    6. Wang W, et al.
    The comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomas. J Exp Clin Cancer Res. 2016; 35: 86.
    OpenUrl
  53. 53.↵
    1. Inoue M,
    2. Nakashima R,
    3. Enomoto M,
    4. Koike Y,
    5. Zhao X,
    6. Yip K, et al.
    Plasma redox imbalance caused by albumin oxidation promotes lung-predominant NETosis and pulmonary cancer metastasis. Nat Commun. 2018; 9: 5116.
    OpenUrl
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 16 (4)
Cancer Biology & Medicine
Vol. 16, Issue 4
1 Nov 2019
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Omics-based integrated analysis identified ATRX as a biomarker associated with glioma diagnosis and prognosis
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Omics-based integrated analysis identified ATRX as a biomarker associated with glioma diagnosis and prognosis
Yingbin Xie, Yanli Tan, Chao Yang, Xuehao Zhang, Can Xu, Xiaoxia Qiao, Jianglong Xu, Shaohui Tian, Chuan Fang, Chunsheng Kang
Cancer Biology & Medicine Nov 2019, 16 (4) 784-796; DOI: 10.20892/j.issn.2095-3941.2019.0143

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Omics-based integrated analysis identified ATRX as a biomarker associated with glioma diagnosis and prognosis
Yingbin Xie, Yanli Tan, Chao Yang, Xuehao Zhang, Can Xu, Xiaoxia Qiao, Jianglong Xu, Shaohui Tian, Chuan Fang, Chunsheng Kang
Cancer Biology & Medicine Nov 2019, 16 (4) 784-796; DOI: 10.20892/j.issn.2095-3941.2019.0143
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Conflict of interest statement
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • From complexity to clarity: development of CHM-FIEFP for predicting effective components in Chinese herbal formulas by using big data
  • Clinical management and survival outcomes of patients with different molecular subtypes of diffuse gliomas in China (2011-2017): a multicenter retrospective study from CGGA
  • Google Scholar

More in this TOC Section

  • Cancer-derived exosomal circTMEM56 enhances the efficacy of HCC radiotherapy through the miR-136-5p/STING axis
  • IL-33/ST2 signalling promotes tumor growth by regulating polarization of alternatively activated macrophages
  • Neoepitope BTLAP267L-specific TCR-T cell immunotherapy unlocks precision treatment for hepatocellular carcinoma
Show more Original Article

Similar Articles

Keywords

  • ATRX
  • mutation
  • copy number variation
  • glioma
  • biomarkers

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire