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Non-proliferating  cells  efficiently  generate  adenosine  5’-

triphosphate  (ATP)  through  mitochondrial  oxidative

phosphorylation.  By  contrast,  proliferating  cells,  including

cancer  cells,  tend to  rely  on aerobic  glycolysis,  an inefficient

way to generate energy, and this phenomenon is termed “the

Warburg  effect”1,2.  However,  the  advantage  of  the  Warburg

effect provided for proliferating cells has been unclear3. Here

we  propose  that  aerobic  glycolysis  may  maintain  proton

homeostasis to benefit proliferating cells.

A metabolic model of proton
homeostasis

Proton  homeostasis  is  one  of  the  most  important  factors

maintaining  the  microenvironment  to  enable  metabolic

reactions.  Cells  have  several  ways  to  maintain  proton

homeostasis  mainly  mediated  by  transporters  alone  or  in

combination,  including  antiporters,  symporters  and

uniporters4 (Figure  1A and 1B).  Proton transport  is  usually

coupled  with  ions  or  metabolic  groups,  otherwise  it  will

result  in  membrane  potential.  When  coupled  with  ions,

proton  transport  simultaneously  perturbs  the  involved  ion

homeostasis.  In  contrast  to  the  actual  re-distribution  of

protons  in  other  ways,  the  carboxylic  metabolites-associated

protons can be chemically expanded or produced. In view of

the  obvious  advantages,  the  metabolic  pathway  is  naturally

selected  for  cells  to  mainly  maintain  proton  homeostasis

during the evolution.

Cellular nutrients mainly include glucose and carboxylic

metabolites, predominantly amino acids. Amino acids are

centrally  used  to  synthesize  proteins  or  alternatively

metabolized in mitochondria (Figure 1C). Glucose can be

converted either to CO2 and H2O in the mitochondria or to

lactic acid that is excreted out of the cell, or used for the de

novo synthesis of lipid (Figure 1C). In addition, glucoses and

amino acids are also responsible for the synthesis of nucleic

acids. These reactions are associated with redox couples, such

as  NADH/NAD+,  FADH2/FAD  and  NADPH/NADP+,  in

addition  to  the  generation  or  consumption  of  ATP.

Intracellular  redox  couples  have  to  keep  balance  overall,

otherwise the metabolic reactions will break down. NADPH

generated in the pentose phosphate pathway, which provides

riboses for nucleic acid synthesis, needs balancing by fatty

acid synthesis, the major intracellular consumer of NADPH.

If the newly synthesized fatty acids exceed the requirement

for lipid synthesis, they may enter mitochondria to undertake

oxidation.  The cycle of  fatty acid synthesis  and oxidation

actually  converts  NADPH/NADP+  to  NADH/NAD+  and

FADH2/FAD, and the latter redox couples can be balanced by

mitochondrial  ATP  generation.  This  explains  why

proliferating  cancer  cells  have  active  de  novo  fatty  acid

synthesis and sometimes simultaneously undertake fatty acid

oxidation5,6.  Carboxylic  protons  are  converted  to  water

mainly  in  the  metabolism  of  amino  acids  or  produced

majorly in aerobic glycolysis. Proliferating cells have active

anabolism and consume a great many amino acids, thus they

have  to  require  a  compensation  to  maintain  proton

homeostasis. The limited solubility under the physiological

condition  disables  CO2  from  mainly  regulating  proton

homeostasis.  Therefore,  cells  have  no  choice  but  to

inescapably  select  lactic  acid  from aerobic  glycolysis,  the

Warburg effect (Figure 1C). As the production of lactic acid

is  coupled with ATP/ADP cycle (Figure 1C),  cells  usually

reduce  the  activity  of  oxidative  phosphorylation7,8  or

straightforward hydrolyze ATP to favor aerobic glycolysis9.

Notably,  in  the  physiological  condition,  all  carboxylic
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groups  exist  as  the  unprotonated  forms,  thus  cells  could

absorb  or  excrete  protonated  carboxylic  acids  or

unprotonated  carboxylates  directly  by  single  symporters

or  indirectly  by  symporters  associated  with  antiporters

(Figure 1B). In contrast, carboxylic metabolites are always

produced or consumed as the protonated forms, thus the

protonated carboxylic acids are simply the best participators

in the cellular metabolic flux. Here we listed all nine possible

metabolic states based on the order of protonated carboxylic

acids, unprotonated carboxylates or nothing in the metabolic

flux (Figure 2A). We analyzed in theory the intracellular or

extracellular proton homeostasis based on the production or

consumption  of  protons.  If  extracellular  protons  are

absorbed or intracellular protons are consumed by cells, the
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Figure 1     Maintenance of cellular proton homeostasis.  (A) Proton transporters. RCOO-,  carboxylic group; Cl-  represents anion; Na+

represents cation. (B) Combination of proton transporters. (C) Metabolic maintenance of cellular proton homeostasis.  In the in vivo

condition, the extracellular space is comparable to the intracellular volume, thus proton balance of aerobic glycolysis is required for

consumption of amino acids.
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Figure 2   The theoretical model of cellular proton homeostasis. (A) States of cellular metabolic homeostasis based on metabolic flux.

RCOO-,  carboxylates, mainly amino acids; Na+ represents cation; Ana, anabolism. (B) States of cellular proton homeostasis based on

metabolic states in (A). Pe, extracellular protons; Pi, intracellular protons. +1, increased protons; -1, decreased protons; 0, balanced proton

flux. (C) The states of cell proliferation corresponding to (A) and (B). S1, proliferation with the Warburg effect; S3, non-proliferation with the

Warburg effect; S7, proliferation without the Warburg effect; S9, non-proliferation. Sa, super-proliferation with the Warburg effect; Sb, non-

proliferation with overactive glucose consumption, i.e. anaerobic glycolysis; Sc, proliferation without glucose; Sd, dormancy.
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extracellular  proton  concentration  (Pe)  or  intracellular

proton concentration (Pi) will decrease, and –1 is assigned to

this  situation.  On  the  contrary,  +1  is  assigned  to  the

increased protons that  are  excreted from or produced by

cells. 0 is assigned to the balanced proton flux. Among all

states of metabolic homeostasis in a 3X3 matrix, S2, S4, S6

and  S8  cells  are  not  able  to  maintain  their  intracellular

proton  homeostasis  (Figure  2A  and  2B),  thus  they  are

doomedly eliminated during the evolution. S1,  S5 and S9

cells have the balanced proton homeostasis (Figure 2B). S1

represents  proliferating  cells  with  the  Warburg  effect,

including cancer cells,  while S9 cells are corresponding to

non-proliferating  cells  (Figure  2C).  Up  to  date,  no  ion-

coupled transporter responsible for excretion of metabolites

is reported, which makes sure that lactic acid, not lactate, is

carried  out  of  cells  by  monocarboxylate  transporters4  to

support proton homeostasis. This also means that S5 cells

have to secrete carboxylates using symporters in combination

with antiporters (Figure 1B). S5 having fussy metabolic flux

may  denote  proliferating  normal  cells  or  a  set  of  cells

evolving to uncontrolled proliferating cancer cells (from S9

to S1). Interestingly, S3 and S7 cells could not keep alone

their  balanced  extracellular  environment  but  they  do  it

together (Figure 2B). Upon co-survival with S3 cells, S7 cells

can proliferate without the Warburg effect that is actually

provided  by  non-proliferating  S3  cells  (Figure  2C).  The

reverse Warburg effect was recently frequently reported in

cancer-associated fibroblasts10,11.  Therefore, S7 cells could

not survive well alone in vitro. They might represent a subset

group of  in  vivo  cancer  cells  that  are  beyond our current

reach, and they are probably related to the clinical resistance

and  invalidation  of  anticancer  drugs,  most  of  which  are

developed based on the knowledge obtained from the studies

on the cultured cancer cells, S1 cells.

There are totally nine different combinations for proton

homeostasis based on the rule of product. According to the

arrangement  pattern  of  the  S3-S7  diagonal,  the  missed

{–1, –1} and {+1, +1} should be Sc and Sb at the corners of

an  expanded  5X5  matrix,  while  {0,  0}  and  {0,  0}  are

symmetrically  filled  in  the  two  other  corners,  Sa  and  Sc

(Figure  2B).  This  5X5  matrix  displays  interesting

complementary flanks of Sd-Sa (Figure 2B). Considering the

increasing metabolic activities in cells at the Sd-Sa diagonal,

Sa  cells  are  expected to  have  an amplified metabolic  flux

while  Sd  should  represent  dormant  cells  with  the  lowest

metabolic activity (Figure 2C). Sb cells actively produce lactic

acids over their efflux (Figure 2B), and this usually happens

upon anaerobic glycolysis (Figure 2A and 2C). Sc cells are

deficient in proton provision (Figure 2B), meaning that they

are proliferating in the absence of glucose (Figure 2A  and

2C). Cancer cells in vivo have much fewer available glucoses

than normal cells due to their active glucose consumption

and  the  poor  tumor  vasculature,  and  often  suffer  from

temporary  glucose  deficiency8,  thus  Sc  may  represent  a

common situation of cancer cells.

The survival strategies of cancer cells
in the absence of glucose

According  to  the  proton  homeostasis  law,  Sc  cells  at  least

have  three  strategies  to  overwhelm  proton  insufficiency

resulting  from  glucose  deficiency.  Firstly,  for  the  long-term

adaption,  cells  have  to  open  up  the  proton  source  by

genetically  increasing  glucose  uptake,  which  is  achieved

through  over-expressing  glucose  transporters,  especially

GLUT38,  or  by  utilizing  other  substitutive  carbohydrates,

such as fructose, a sugar widely existing in our diet. Secondly,

cells  may  cut  down  the  proton  consumption  by  reducing

anabolic  activity,  because  active  anabolism  in  proliferating

cells needs to consume a large number of protons (Figure 1C).

Hence, in such a condition, cell growth inhibition might help

cancer  cells  survive  upon  glucose  insufficiency.  On  the

contrary,  promotion of  cell  growth could induce in vivo cell

death.  Indeed,  it  has  been  reported  that  activating  cellular

activities  can  kill  some  subsets  of  cancer  cells  by  inducing

massive metabolic stress, such as ROS and ER stress, and this

cell death depended on increased anabolism12,13. However, it

was  already  observed  that  once  cancer  cells  adapted  to  such

treatments,  they  evolved  to  have  highly  active  metabolism

and a  10-fold increase  in GLUT312.  This  means that  Sc  cells

have  been  converted  to  Sa  cells  by  genetically  improving

glucose  availability  (Figure  2A).  Therefore,  inhibition  of

GLUT3 may validate this kind of treatment. Thirdly, Sc cells

may  directly  survive  upon  proton  supplies  in  store  around

them.  Our  previous  report  showed  that  acidic  medium

blocked glucose deprivation-induced cell death in various cell

lines14,15.  This  is  consistent  with  a  fact  that in  vivo tumors

often survive in an acidic environment16, which thus seems to

be  helpful  to  the  survival  of  cancer  cells  against  glucose

deficiency. We also observed that cells grew well in relatively

alkaline conditions in the presence of glucose14,15.  This most

likely  resulted  from  the  compensation  by  stimulated  lactate

production  in  alkaline  conditions.  These  results  further

confirm  that  aerobic  glycolysis  exerts  a  critical  role  in

maintaining proton homeostasis.

Conclusions

Proliferating cells must comply with the proton homeostasis
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law,  which  majorly  relies  on  aerobic  glycolysis.  Once  the

nutritional  condition is  not  ready,  proliferating normal  cells

usually  stop  growing  by  checkpoints  in  different  stages,

whereas  proliferating  cancer  cells  keep  going  due  to  loss  of

checkpoints.  Uncontrolledly  proliferating  cancer  cells  could

evolutionarily  accommodate  any  gene  mutation  that  favors

proton homeostasis. Therefore, dissection of how cancer cells

maintain  proton  homeostasis  to  support  their  proliferation

may expose their common Achilles’  heel.  It  should be noted

that  the  Warburg  effect,  as  the  most  famous  hallmark  of

metabolic  reprogramming,  may  sustain  cell  proliferation  in

many ways in addition to maintaining proton homeostasis.
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