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ABSTRACT Ovarian cancer is the second most lethal gynecological cancer worldwide and while most patients respond to initial therapy, they

often  relapse  with  resistant  disease.  Human  epidermal  growth  factor  receptors  (especially  HER1/EGFR  and  HER2/ERBB2)  are

involved  in  disease  progression;  hence,  strategies  to  inhibit  their  action  could  prove  advantageous  in  ovarian  cancer  patients,

especially in patients resistant to first line therapy. Monoclonal antibodies and tyrosine kinase inhibitors are two classes of drugs

that  act  on  these  receptors.  They  have  demonstrated  valuable  antitumor  activity  in  multiple  cancers  and  their  possible  use  in

ovarian  cancer  continues  to  be  studied.  In  this  review,  we  discuss  the  human  epidermal  growth  factor  receptor  family;  review

emerging  clinical  studies  on  monoclonal  antibodies  and  tyrosine  kinase  inhibitors  targeting  these  receptors  in  ovarian  cancer

patients; and propose future research possibilities in this area.
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Introduction

Ovarian  cancer  is  the  eighth  most  lethal  type  of  cancer  in

women  worldwide,  with  over  184,000  fatalities  reported  in

20181. It has a poor prognosis and is usually diagnosed at late

stage,  due  to  lack  of  specific  diagnostic  biomarkers  and

relatively non-specific symptoms. Current diagnostic tests for

ovarian  cancer  include  the  CA-125  blood  test  coupled  with

abdominal/pelvic  ultrasound and computerized tomography

(CT)  scan.  First  line  treatment  of  ovarian  cancer  is  optimal

debulking  of  macroscopic  disease,  generally  followed  by

chemotherapy with carboplatin alone or in combination with

paclitaxel2,3.

The  most  common type  of  ovarian  cancer  is  epithelial

ovarian cancer (EOC), which is divided into 5 main subtypes,

with  differing  histological,  molecular,  and  genetic

characteristics3,4. The most common subtype is high grade

serous  ovarian  cancer  (HGSOC)  which  accounts  for

approximately  70%  of  the  cases,  with  clear  cell  (10%),

endometrioid  (10%),  mucinous  (<  5%),  and  low  grade

serous  cancer  (<  5%)  comprising  the  other  significant

subtypes3,4.  Recent investigations into the pathogenesis of

ovarian  cancer  showed  that  it  primarily  originates  from

different parts of the female reproductive system and involves

cellular  migration to the ovaries.  HGSOC is  identified to

originate from the distal fallopian tube, endometrioid and

clear  cell  cancers  arise  from the endometrium, while  low

grade serous cancer might progress from serous cystadenoma

and serous borderline tumors5.

Multiple drugs have been tested and approved for ovarian

cancer although the response rate for second line therapy is

only  10%–35%  and  different  ovarian  cancer  subtypes

respond  differently  to  drug  treatment.  HGSOC  patients

usually respond well to initial platinum-based therapy, given

their  BRCA and p53 mutations7.  However,  these patients

often present with resistance to initial  therapy after a few

months.

There is increasing interest in the potential use of targeted

inhibitors for the treatment of ovarian cancer. This review

seeks to overview the current clinical and preclinical status of

human epidermal  growth factor  receptor  (HER) targeted

therapy in ovarian cancer, with special emphasis on tyrosine

kinase inhibitors (TKIs).

Human epidermal growth factor
receptors (HERs)

The HER family has been associated with the progression of
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several  cancers  including  breast,  lung  and  colon  cancer8.  In

ovarian  cancer,  amplification,  and/or  high  expression  of

epidermal  growth factor  receptor  (EGFR),  HER2 and HER3

receptors  have  been  implicated  in  the  progression  and

prognosis of the disease9-12.

The HER family of receptors [also known as erythroblastic

leukemia viral oncogene (erbB) family] are present on the

cell surface as monomers, in the absence of ligand activation.

There are four members in this family, EGFR (HER1/erbB1),

HER2  (neu/erbB2),  HER3  (erbB3)  and  HER4  (erbB4)

(Figure 1). With the exception of HER2, ligands bind to their

extracellular domain and form homo- or heterodimers with

other members of the family, preferentially with HER2, since

it  has  the  most  favorable  kinase  activity  and  exists  in  an

activated form13. HER ligands are divided into three groups;

those which bind specifically to EGFR (epidermal growth

factor,  amphiregulin  and  transforming  growth  factor-α),

those  conferring  dual  specificity  to  EGFR  and  HER4

(betacellulin,  heparin-binding EGF,  and epiregulin),  and

those  which  bind  to  HER3  and  HER4  (neuregulins/

heregulins)14.

Upon  receptor  dimerization,  multiple  downstream

pathways  are  activated,  which  regulate  cell  proliferation,

differentiation,  angiogenesis,  survival,  and  cellular

metabolism amongst other functions. Heterodimerization

allows  for  a  myriad of  phosphotyrosine  residues  to  bind,
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Figure 1   Scheme illustrating the downstream signaling of the HER pathway, chiefly the mitogen activated protein kinase (MAPK)/ERK

pathway,  the  phospholipase  Cγ  (PLCγ)  pathway,  the  signal  transducer  and  activation  of  transcription  (STAT)  pathway,  and  the

phosphoinosidyl-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target  of  rapamycin (mTOR) pathway;  where ER=Endoplasmic

Reticulum, Ca2+=Calcium ions
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which  in  turn  increases  the  possibilities  for  signaling

pathways15. These pathways (Figure 1) include the mitogen

activated  protein  kinase  (MAPK)/ERK  pathway,  which

regulates  the growth and development of  cells,  the signal

transducer and activation of transcription (STAT) pathway,

which  governs  cell  proliferation  and  differentiation,  the

phosphoinosidyl-3-kinase  (PI3K)/protein  kinase  B

(AKT)/mammalian target of rapamycin (mTOR) pathway,

which  regulates  cell  survival  and  metabolism,  and  the

phospholipase Cγ (PLCγ) pathway, which controls calcium-

dependent actions13,16,17. In tumorigenesis, mutations within

the components of these pathways can cause cancer cells to

acquire  certain  aptitudes,  including  impartiality  to

proliferation  signals,  circumvention  of  apoptosis,

insensitivity  to  growth  inhibitory  signals,  augmented

replicative potential and the capability to metastasize18.

EGFR (HER1) is a receptor tyrosine kinase comprising an

extracellular ligand-binding domain of 622 residues,  a  23

residue transmembrane domain,  and a large,  522-residue

intracellular domain15. EGFR is normally weakly expressed in

the ovaries, however, several studies have found that EGFR is

highly expressed in ovarian cancer. Immunohistochemical

studies have indicated that 30%–70% of ovarian cancers have

increased EGFR expression19-21. High expression of EGFR is

associated  with  poor,  progression-free  survival  (PFS),

advanced  tumor  grade,  greater  residual  tumor  mass  and

rapid proliferation9,10,12. It has also been suggested that high

EGFR expression  in  the  tumor  stroma is  associated  with

aggressive  clinical  conditions  and  outcome  and  EGFR

upregulation in fibroblasts  is  associated with growth and

migratory abilities of ovarian cancer cells22.

HER2  is  overexpressed  in  approximately  6%–30%  of

ovarian cancer patients10,23  and is initially associated with

DNA amplification and poor prognosis24. Overexpression is

often  detected  in  the  mucinous  (19%)25  and  clear  cell

(14%)26  subtypes.  However,  even  some serous  (3%)  and

endometr io id  ovar ian  cancers  (2%)  have  HER2

overexpression2 7 .  Several  studies  have  associated

overexpression of HER2 with poor prognosis10,28.

HER3 is  expressed as  a  full-length receptor  on the  cell

surface,  in  parallel  with  truncated  intracellular  isoforms.

However,  the activity of  the latter  is  not well  defined29,30.

HER3  lacks  tyrosine  kinase  activity,  hence  it  has  to  be

transphosphorylated by other HER members to promote cell

signaling15.  HER3 is more frequently expressed in ovarian

cancer  (30%–80%)  than  EGFR  and  HER231  and  is  more

common  amongst  borderline  and  early-stage  lesions32.

Among the dimerization possibilities between these proteins,

the most potent signaling complex is generated when HER3

heterodimerizes with HER233.  Increased HER3 expression

has  been  associated  with  poor  clinical  outcome  and  the

average survival time for patients with low HER3 expression

was 3.3 years, in contrast to 1.8 years for patients with high

HER3 expression11. Studies in various cancers have shown

that when HER3 and MET are co-expressed, they are often

associated with either response or resistance to therapy34-36.

Other  studies  have  shown that  high  expression  of  HER3

might  lead  to  HER3-PI3K-Akt  signaling  cascade  in

doxorubicin and cisplatin treated ovarian cancer, which often

results in resistance to therapy37,38.

HER4 is the least understood receptor of the HER family.

It occurs as a spliced isoform, often being processed further

by enzymes into a soluble intracellular domain, which can

disperse to the cell cytoplasm or nucleus39. In breast cancer,

nuclear  localization  of  the  intracellular  domain  in

combination  with  estrogen  expression  predicted  worse

clinical  outcomes  compared  to  membrane  HER4  and

estrogen40. There are conflicting views about the expression

of HER4 in ovarian cancer, with earlier reports suggesting

either decreased or lack of expression of the receptor41, while

more recent studies suggest an increased expression of HER4

in  malignant  tissues  compared  to  normal  tissues31,42,43.

Although the  implication of  HER4 expression in  ovarian

cancer is unclear, two studies found a possible correlation

between HER4 expression and resistance of serous ovarian

cancer to chemotherapy42,44.

Monoclonal antibodies

HER-targeted  monoclonal  antibodies  (mABs),  such  as

trastuzumab  (Herceptin®)  and  pertuzumab  (Perjeta®)  are

recombinant  humanized  mABs,  inhibiting  HER2  extrace-
llularly  with  differing  modes  of  action  (Figure  2).  These

agents  have  shown  favorable  results  in  HER2  positive

cancers,  especially  HER2-positive  breast  cancer,  where  they

are  well  established  as  standard  therapy.  More  recently,

trastuzumab-emtansine  antibody-drug  conjugate  has  been

developed  as  another  option  for  trastuzumab-resistant

disease.  Preclinical in  vitro and in  vivo studies  and  clinical

trials  have  been  focusing  on  the  activity  of  these  mABs  in

ovarian  cancer,  especially  in  selective  subtypes,  particularly

mucinous  cancers,  which  have  HER2  amplification  and

overexpression45,46.

Trastuzumab

Trastuzumab  binds  to  the  juxtamembrane  region  of  the

extracellular  domain  of  HER2,  inhibiting  cleavage  of  the
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extracellular  domain,  obstructing  HER2  homodimerization

as  well  as  inducing  antibody  dependent  cell-mediated

cytotoxicity47,48. Trastuzumab requires HER2 overexpression

for  it  to  be  effective48,49.  The  success  of  trastuzumab  in

clinical trials49-51 has led to its clinical approval in metastatic

breast  cancer  overexpressing  HER2,  as  monotherapy  or  in

combination  with  paclitaxel  depending  on  whether  the

patients previously received chemotherapy regimens for their

metastatic  disease52.  A  phase  II  clinical  trial  of  trastuzumab

involving  41  eligible  ovarian  cancer  patients  with  HER2

overexpression demonstrated an overall response rate (ORR)

of  7.3%,  which  included  one  complete  and  two  partial

responses. The median PFS was two months53.

Pertuzumab

Pertuzumab  acts  by  blocking  the  dimerization  domain  of

HER2,  thus  inhibiting  HER2  heterodimerization48.  Unlike

trastuzumab,  it  does  not  require  HER2  overexpression  to

confer  its  inhibitory  effects54.  Pertuzumab  is  used  to  treat

HER2-positive  metastatic  breast  cancer  patients  who  have

not  been  previously  exposed  to  anti-HER2  therapy  or

chemotherapy for metastatic  disease and is  also used for the

neoadjuvant  treatment  of  HER2-positive  early  stage  breast

cancer55.  In  a  phase  III  clinical  trial  for  breast  cancer

(CLEOPATRA),  the  combination  of  trastuzumab  and

pertuzumab along with docletaxel, showed additional benefit

compared to monotherapy, which has subsequently led to the

approval  of  this  combination  for  HER2-positive  metastatic

breast  cancer56.  A  randomized  phase  II  clinical  trial  with

pertuzumab  showed  better  PFS  (5.3  months)  in  low  HER3

expressed,  platinum-resistant  ovarian  cancer  patients  and

hence it was assessed in a phase III clinical trial (PENELOPE)

in  platinum-resistant  ovarian  cancer  patients  with  low

expression  of  HER357,58.  In  the  PENELOPE  trial,  patients

who received pertuzumab with chemotherapy showed a PFS

of 4.3 months and an ORR of 13.1%, when compared to the

PFS of 2.6 months and ORR of 8.7% in patients who received

placebo  with  chemotherapy58.  In  an in  vivo setting  using

ovarian  cancer  xenograft  mouse  models,  our  group  has

demonstrated  that  the  combination  of  pertuzumab  and

trastuzumab  produces  prolonged  growth  inhibition,  when

compared  to  either  antibody  used  as  a  single  agent59.

Furthermore,  another  preclinical  study  has  suggested  that

trastuzumab  could  also  augment  sensitivity  to  endocrine

therapy in ERα-positive ovarian cancer60.

Trastuzumab-emtansine

Trastuzumab-emtansine  (T-DM1,  Kadcyla®),  is  a  HER2

targeted  mAB  conjugated  to  a  microtubule  inhibitor

(emtansine). T-DM1 acts by binding to HER2, triggering the

endocytosis  of  the  HER2-T-DM1  complex.  Once  in  the

cytoplasm, DM1 is released from the complex, which inhibits
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Figure 2   Site of action of the various TKIs and the relative potency towards the receptor; where +++ is very potent, ++ is potent, + is

mildly potent and – is generally not active.
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microtubule  assembly,  leading  to  cell  death61.  In  a  phase  III

clinical trial for breast cancer, T-DM1 treated cohort showed

a  superior  clinical  outcome  (PFS  9.6  months)  compared  to

patients  who  received  lapatinib  with  capecitabine

(6.4  months)62.  It  was  later  approved  as  monotherapy  for

HER2-positive metastatic breast cancer, which is resistant to

trastuzumab  treatment63.  In  a  recent in  vivo study  by

Menderes  et  al.64,  T-DM1  demonstrated  significant  tumor

growth  inhibition  against  HER2  overexpressing  ovarian

cancer  primary  cell  lines  compared to  either  pertuzumab or

trastuzumab alone or a combination of both. It also reduced

tumor  growth  and  improved  survival  in  xenograft  mod-
els64-66.  This agent was also shown to have similar antibody-

dependent, cell-mediated cytotoxicity as pertuzumab, trastu-
zumab  and  their  combination64.  Another  study  demonst-
rated  their  excellent  inhibitory  activity  against  both

subcutaneous and intraperitoneal growth of the SKOV3 in an

ovarian cancer xenograft model67.

TKIs

TKIs  are  small  drug  molecules  that  inhibit  tyrosine  kinases.

Tyrosine  kinases  include  the  HER  family,  vascular

endothelial  growth factor receptors (VEGF), platelet-derived

growth  factor  receptors  (PDGFR),  and  also  non-receptor

tyrosine kinases BCR-ABL and KIT68,69. Tyrosine kinases are

enzymes  that  catalyze  the  transfer  of  phosphate  from

adenosine triphosphate (ATP) onto target proteins to elicit a

response. There are three types of TKIs. Most small molecule

TKIs are type I, which compete with ATP by binding to ATP

binding  sites  on  the  active  conformation  of  the  receptors,

thereby interfering with the action of tyrosine kinases69. Type

II  TKIs  bind to the inactive  conformation of  a  kinase,  while

type  III  allosteric  inhibitors  bind  to  sites  distant  from  the

active  site70.  To  date,  a  few  TKIs  have  been  evaluated  in

ovarian  cancer  patients  that  are  described  below  (Table  1,

Figure 2). These include the first generation EGFR inhibitors,

gefitinib  and  erlotinib,  which  have  shown  clinical  efficacy

against  mutant  EGFR  lung  cancer.  Since,  a  resistance

mutation  develops  frequently  at  T790M  upon  treatment,

covalent irreversible second generation TKIs were developed.

These consist of afatinib and neratinib that are active against

this  mutation.  Other  HER  inhibitors  were  developed  with

broader  inhibitory  activity  across  multiple  HER  family

members  (pan-inhibitors)  and  these  include  lapatinib  and

canertinib  as  early  developed  inhibitors,  followed  by

neratinib,  sapitinib,  and dacomitinib.  Finally,  multi-targeted

TKIs  that  target  the  HER  family  among  other  targets  (e.g.,

PDGFR, VEGFR, etc.) include vandetanib and leflunomide.

Reversible inhibitors

Gefitinib
Gefitinib (Iressa®, ZD-1839) is a type I quinazoline derivative

TKI,  reversibly  selective  for  EGFR.  Gefitinib  is  marketed for

monotherapy of locally advanced or metastatic NSCLC and is

most  effective  in  cancers  with  mutation  or  increased  EGFR

copy number81.  When evaluated  in  an  ovarian  cancer  phase

II  trial,  gefitinib showed a limited response rate in platinum

pre-treated  ovarian  cancer  patients,  with  only  one  out  of

twenty-seven patients having an ORR of 4%82. However, this

cancer was the one in this cohort harboring a mutation in the

catalytic  region  of  EGFR,  consistent  with  data  for  NSCLC.

Another  phase  II  clinical  trial  combining  gefitinib  with

tamoxifen  in  refractory  or  resistant  ovarian  cancer  patients,

did not demonstrate any advantageous tumor responses with

median  time-to-progression  being  58  days83.  Preclinical

studies  in  ovarian  cancer  demonstrate  that  combining

gefitinib  with  cisplatin,  increases  the  efficacy  of  cisplatin,

mainly due to the inhibition of downstream EGFR signaling

and blocking DNA repair mechanisms84.

Erlotinib
Erlotinib  (Tarceva®,  OSI-774)  is  a  quinazoline  derivative,

which  reversibly  inhibits  EGFR.  It  is  indicated  as  a  first  line

therapy for NSCLC and in combination with gemcitabine for

pancreatic  cancer.  Erlotinib  has  shown enhancement  of  PFS

compared  to  chemotherapy  (13.1  months  vs.  4.6  months,

respectively)  in  chemotherapy-naive  NSCLC  patients,

harboring  EGFR  mutations85.  An in  vivo study  in  ovarian

cancer  expressing  high  EGFR  demonstrated  that  a  combin-
ation  of  erlotinib  with  olaparib,  a  PARP  inhibitor,  had  a

greater  tumor  suppressive  effect  than  monotherapy86.  A

phase  II  study combining erlotinib  with carboplatin  showed

that  this  combination  was  more  effective  in  ovarian  cancer

patients  with  platinum-sensitive  disease  compared  to

platinum-resistant  disease  with  57%  and  7%  objective

response  rates,  respectively.  However,  the  contribution  of

erlotinib  in  this  combination  is  unclear87.  Another  phase  II

study  assessing  the  pathologic  complete  response  (pCR)  of

ovarian  cancer  patients  administered  with  a  combination  of

carboplatin,  paclitaxel,  and  erlotinib,  resulted  in  pCR  of

around  30%,  which  was  not  an  improvement  when

compared  to  previous  results88.  Continuous  infusion  of

topotecan with erlotinib was studied in a phase II trial, where

only  1  out  of  6  patients  showed  a  satisfactory  partial

response89.  An  exploratory  phase  II  clinical  trial  involving

bevacizumab  and  erlotinib  determined  that  high  levels  of

VEGF-A  caused  bevacizumab  resistance,  while  erlotinib  did
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not seem to contribute to the efficacy of the combination90. A

randomized  phase  III  study  evaluated  the  efficacy  of

administering  erlotinib  to  patients  with  ovarian  cancer  after

first line chemotherapy. The median PFS in patients receiving

erlotinib and placebo was 12.7 and 12.4 months, respectively,

concluding that erlotinib does not render pre-treated ovarian

cancer patients with additional benefits91. In extension to this

phase  III  clinical  trial,  a  tissue  biomarker  study  concluded

that increased EGFR gene copy number led to worse overall

survival and PFS92.

Lapatinib
Lapatinib (Tyverb®,  GW-572016) is  an oral  competitive TKI

inhibitor selective for EGFR and HER2. It is recommended in

HER2 overexpressing breast cancer. Preclinical data indicates

that  lapatinib  is  effective  when  HER2  is  overexpressed  and

most likely homodimerized78.  In breast  cancer clinical  trials,

lapatinib  has  shown  better  inhibition  of  tumors  expressing

HER2  instead  of  EGFR78,93.  In  a  phase  I  study  in  ovarian

cancer,  while  assessing  lapatinib  in  combination  with

carboplatin  many  non-dose  limiting  toxicities  were  noticed

and 6 out of 11 patients had PR or stable disease94, while in a

phase  II  trial  (LapTop)  assessing  lapatinib  with  topotecan,

only  20%  of  patients  experienced  benefit.  However,

considerable  hematologic  adverse  effects  were  observed  in

this  trial95,96.  In  another  phase  II  study  in  recurrent  ovarian

cancer,  the  median  PFS  was  1.8  months,  OS  was  10.5

months, and only 2 out of 25 patients had PFS at 6 months,

while  there  was  no  ORR,  which  might  be  due  to  low EGFR

and HER2 expression97.

Sapitinib
Sapitinib  (AZD  8931)  is  a  type  I,  reversible,  equipotent

inhibitor  of  EGFR,  HER2  and  HER3  receptor  signaling,

especially  when  EGFR  is  highly  expressed  and  there  is  no

HER2  overexpression78,98.  In  fact,  sapitinib  has  shown

enhanced  tumor  growth  inhibition  against  EGFR-driven

xenograft  tumors  when  compared  to  lapatinib78.  Preclinical

Table 1   HER-targeted TKIs evaluated in preclinical models of ovarian cancer

TKI Chemical
structure Pharmacology Clinical status IC50: EGFR

(nM)
IC50: HER2
(nM)

IC50: others
(nM) Reference

Afatinib
(BIBW2992)

Potent and irreversible
inhibitor of EGFR/HER2
including erlotinib-resistant
EGFR T790 M71,72

Marketed for EGFR
mutation positive lung
cancer

0.5 14 - 73

Canertinib
(CI-1033)

Irreversible non-selective
EGFR family inhibitor, with an
additional benefit of
blocking mutant EGFRvIII74

Reached phase II;
discontinued lately
by Pfizer

1.8 11 HER4: 27 75

Dacomitinib
(PF00299804)

Irreversible pan-HER
inhibitor, especially EGFR

Phase III clinical trials 6.0 45.7 HER4: 73.7 75

Erlotinib
(OSI-774)

Specific and reversible
inhibitor of EGFR

Marketed for NCSLC and
pancreatic cancer

0.5 512 HER4: 790 75

Gefitinib
(ZD-1839)

Specific and reversible
inhibitor of EGFR

Marketed for NCSLC 3.1 343 HER4: 476 75

Lapatinib
(GW-572016)

Reversible and specific
inhibitor to EGFR and HER276

Marketed for HER2
overexpressing breast
cancer

10.8 9.2 HER3: 13,
HER4: 367

77,78

Neratinib
(HKI-272)

Potent irreversible, pan-HER
(ie, HER 1, 2, and 4) TKI, with
low molecular weight79

Marketed for adjuvant
treatment of HER2
overexpressing breast
cancer

92 59 KDR: 800,
src: 1400

80

Sapitinib
(AZD-8931)

Equipotent inhibitor of EGFR,
HER2 and HER378

Phase II clinical trials 4 3 HER3: 4 78
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studies  suggest  that  sapitinib  favors  HRG-induced

HER2/HER3  heterodimers78.  It  has  also  demonstrated  its

ability  to  inhibit  proliferation  through  pERK  and  pAkt

pathways,  and  induce  apoptosis  through  M30  and  cleaved

caspase-378.  In  xenograft  models  of  inflammatory  breast

cancer,  sapitinib  alone significantly  inhibited tumor growth,

however,  the  combination  of  paclitaxel  and  sapitinib  was

more  effective  than  either  agent  alone98.  Sapitinib  has  been

tested in 8 ovarian cancer patients amongst others, in a phase

I  clinical  trial,  to  assess  the  maximum tolerated dose,  which

was established to be 240 mg twice, daily99.

Irreversible inhibitors

Afatinib
Afatinib  (Gilotrif®,  Giotrif®,  BIBW-2992)  is  a  type  I  anilino-
quinazoline derivative TKI inhibitor, which irreversibly binds

to EGFR, HER2 and HER4100. It is currently approved for the

treatment  of  mutated  EGFR  non-small  cell  lung  cancer

(NSCLC). Afatinib has not been extensively tested in ovarian

cancer  clinical  trials.  A  phase  I  dose  escalation  study,  which

included  four  ovarian  cancer  patients,  showed  promise

clinically as indicated by stable disease101,102. In breast cancer,

afatinib  treatment  was  effective,  however,  it  produced many

unwanted side  effects  in  patients103,104.  In  an ovarian cancer

preclinical  study,  afatinib  reversed  the  ATP  binding  cassette

(ABC)  mediated  multidrug  resistance  to  paclitaxel  and

adriamycin  and  also  increased  the  apoptotic  efficacy  of

paclitaxel  in  ABCB1  overexpressing  tumors105.  In  breast

cancer,  it  was  also  found  that  afatinib  overcomes  HERT798I-

mediated  neratinib  resistance106. In  vivo,  afatinib  with

docetaxel  showed  better  response  in  tumor  size  reduction,

than  either  drug  as  a  single  agent107. In  vitro studies  using

ovarian  cancer  cell  line  models  showed  that  afatinib  is

effective  in  inhibiting  migration  and  proliferation108.  It  was

also  found  to  be  effective  in  inhibiting  basal  and  heregulin-

induced EGFR, HER2, Akt and ERK phosphorylation108.

Canertinib
Canertinib  (CI-1033,  PD-183805)  is  a  4-anilinoquinazoline,

irreversible,  pan-HER  TKI,  which  reached  phase  II  clinical

trials.  However,  it  was  recently  withdrawn109. In  vivo,

canertinib showed potent inhibitory effects in ovarian cancer

cell  lines,  especially  when combined with a  c-MET inhibitor

(PHA665752),  which  further  reduced  phosphorylation  and

total expression of signaling proteins108,110,111. A randomized

phase  II  clinical  trial  in  platinum  resistant  or  refractory

ovarian  cancer  patients  resulted  in  disease  stability  in  about

30%  of  the  patients  and  a  one-year  survival  rate  of  around

37%.  However,  there  were  no  complete  or  partial

responses112. Studies suggest that high levels of HER and low

levels  of  HER  autocrine  ligands  lead  to  canertinib

resistance113.

Neratinib
Neratinib  (Nerlynx®,  HKI-272)  is  an  oral,  irreversible  pan-

HER  inhibitor,  which  has  been  recently  approved  for  the

adjuvant  treatment  of  early  stage  HER2-positive  breast

cancer114,  after a phase III study indicated a 2-year, invasive,

disease-free  survival  rate  of  94%,  when  administered  after

chemotherapy  and  trastuzumab  adjuvant  therapy115.  In  a

phase  II  study  assessing  neratinib  in  advanced  NSCLC,

patients  with  T790M  EGFR  mutation  did  not  respond  to

therapy, however, partial response or disease stabilization was

seen  in  patients  with  G719X  mutated  EGFR116.  Overall,

previously  treated  patients  or  TKI-naïve  patients  did  not

benefit notably from neratinib treatment. One of the reasons

for  this  could  be  low  bioavailability  due  to  dose  reductions

prompted  by  toxicity116.  In  HER2-positive  breast  cancer,

neratinib as a single agent was well  tolerated and has shown

substantial  clinical  activity  in  trastuzumab-naïve  patients,

with  a  16-week  PFS  rate  of  78%  and  median  PFS  of  39.6

weeks  versus  16-week  PFS  rate  of  59%  and  median  PFS  of

22.3  weeks  in  trastuzumab  pre-treated  patients79.  Other

clinical  trials  in  breast  cancer  assessed  neratinib  in

combination  with  temsirolimus,  vinorelbine,  paclitaxel  with

or  without  trastuzumab  and  capecitabine,  all  of  which  were

well tolerated by patients and had anti-tumor properties117-121.

Neratinib  has  demonstrated  pre-clinical  efficacy  in  ovarian

cancer,  especially  in HER2-amplified carcinosarcoma,  where

it  inhibits  proliferation  and  tumor  growth122,  as  well  as

decreases  phosphorylation  of  transcription  factor  S6  and

causes  cell  cycle  arrest  in  the  G0/G1  phase123.  There  is

currently a phase II clinical trial assessing neratinib efficacy in

HER2-positive solid tumors (SUMMIT Trial) with mutations

in  EGFR,  HER2  or  HER3,  including  ovarian  cancer

(NCT01953926).  This  trial  included  four  evaluable  ovarian

cancer  patients  of  whom one  had stable  disease,  while  three

had disease progression124.

Other HER-targeted TKIs investigated in
clinical trials

Dacomitinib (PF00299804), a recently developed irreversible

pan-HER  receptor  inhibitor,  has  demonstrated  interesting

anti-proliferative  activity  against  chemoresistant  ovarian

cancer  cell  lines125.  One  ovarian  cancer  patient  showed
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response  in  a  phase  I  clinical  trial  of  dacomitinib  in

combination  with  anti-IGFIR  antibody  figitumumab126.

Several  multi-targeted  TKIs  with  broad-spectrum  activity

including  the  HER  family  are  undergoing  evaluation.

Vandetanib  (ZD6474)  is  a  drug  that  inhibits  EGFR,  VEGF

receptor  and  Ret  signaling  and  has  been  tested  as

monotherapy  in  an  ovarian  cancer  trial  where,  despite

decreasing  EGFR  phosphorylation,  it  demonstrated  little

efficacy127.  Leflunomide  is  an  inhibitor  of  EGFR,  PDGFR,

and FGFR and in two phase II trials, 1 out of 8 (12.5%) and 1

out of 15 (7%) ovarian cancer patients demonstrated partial

response128,129.

Biomarkers of sensitivity and
resistance to TKIs in ovarian cancer

In  breast  and  lung  cancers,  informative  biomarkers  of

sensitivity to HER TKIs include overexpression of HER2 and

mutation of EGFR. In breast cancer, HER2 overexpression is

an effective  biomarker  of  sensitivity  to  HER2-targeted TKIs,

such  as  lapatinib.  Preclinical  studies  of  T-DM1  in  ovarian

cancers  suggest  that  minimal  expression  of  HER2  was

essential for anti-tumorigenic properties of T-DM1 in model

systems66.  Analysis  of  a  series  of  ovarian  cancer  xenograft

models  demonstrated the curative  potential  of  trastuzumab/

pertuzumab  combination  in  cancers  with  amplification  and

overexpression of  HER2.  Currently  there  is  less  information

available regarding the association of HER2 expression levels

and  TKIs,  in  ovarian  cancer59,60.  Interestingly,  there  is  one

case  report  of  dramatic  remission  of  a  chemotherapy-

resistant  ovarian  cancer  to  trastuzumab,  which  was  HER2-

negative suggesting that, the factors governing responsiveness

in ovarian cancer might differ from those in breast cancer130.

The  mutated  form  of  EGFR  with  deletions  in  exon  19

indicates sensitivity to TKIs such as erlotinib and gefitinib, in

NSCLC131.  However,  the  importance  of  EGFR  mutations  in

ovarian  cancer  is  still  not  well  researched  since  the  occurr-
ence of these mutations is much lower. As mentioned above,

in  a  phase  II  trial  of  gefitinib  in  27  ovarian  cancer  patients,

the  single  patient  showing  response  did  contain  an  EGFR

mutation (2235del15; E746-A750del) in the catalytic domain

consistent  with  this  molecular  feature  being  an  indicator  of

sensitivity82.  This  requires  further  validation  in  future

studies.

The  importance  of  mutations  in  HER2  and  HER3  for

sensitivity  to  pan-HER  inhibitors,  is  under  clinical

investigation  at  present  and  a  basket  trial  (SUMMIT)

investigating neratinib treatment in multiple cancers with

mutations, has been reported124.

As observed with other chemotherapeutic drugs, resistance

to TKIs is inevitable132. Mechanisms of resistance to EGFR-

specific  TKIs  can include abnormalities  in HERs,  such as

HER2  overexpression  and  mutations  like  EGFRvIII  and

HER2L869R106,133  and  secondary  EGFR  mutations  in

T790M134,  L747S,  D761Y,  and  T854A135.  Downstream

signaling  pathways  that  are  frequently  modified  include

mutations  in  KRAS,  BRAF,  PIK3CA,  and  PTEN136-138.

Alternative  pathways  that  can  bypass  control  include

aberrant activation of MET and HGF139,140, modifications in

VEGF  receptors  which  trigger  vascular  permeability,  in

platelet-derived growth factors that regulate angiogenesis and

in interleukin-6 that controls inflammatory processes132-134.

For other TKIs, overexpression of ABC resulting in low drug

concentration in cells due to decreased uptake and increased

efflux of the drug141 also contribute in resistance to therapy.

Future research

Combination therapy

Research  in  various  cancers  show  that  the  combination  of

TKIs  with  chemotherapy,  radiation,  or  mABs  significantly

inhibits tumor growth, without additional toxic effects, since

they have different inhibitory profiles. For instance, lapatinib

is  administered  in  combination  with  either  capecitabine/

trastuzumab/aromatase  inhibitor  in  HER2-positive  breast

cancers.  Synergistic  drug  combinations  can  be  achieved  in

two ways: vertically, which involves similar doses as monoth-
erapy,  and  horizontally,  in  which  the  concentration  of  the

dose  is  decreased  downwards142.  To  date,  in  ovarian  cancer,

there  are  no  established  combination  strategies  involving

TKIs.  In  ovarian  cancer,  only  the  mAB  bevacizumab  is

approved  to  be  used  in  combination  with  paclitaxel  and

carboplatin. In a phase II  ovarian cancer study, the combin-
ation  of  pertuzumab  and  gemcitabine  showed  improved

overall PFS when compared to gemcitabine and placebo57. In

breast  cancer,  the  combination  of  pertuzumab  and

trastuzumab  has  shown  significant  advantages  over

monotherapy.  However,  the  combination  of  these  mABs  in

ovarian  cancer  has  only  been  studied in  vivo,  which  has

shown promising results59, and thus might be worth looking

at  clinically.  Additionally,  the  combination  of  mABs  and

TKIs has not been clinically studied so far, in ovarian cancer.

The  combination  of  HER-targeted  inhibitors  with  Poly

(ADP-ribose)  polymerase  (PARP)  inhibitors  might  prove

useful  in  the  treatment  of  ovarian  cancer,  since,  recent in

vitro studies  combining  a  TKI  with  a  PARPi  showed

synergistic  growth  inhibitory  effects143.  Computational
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biology has developed in recent years and offers the potential

of  precision  medicine.  Molecular  anomalies  can  now  be

detected  when  screening  through  molecular  information,

which  could  identify  individual  patient  appropriate

medication . Hence, more pre-clinical bioinformatics studies

need  be  conducted  to  investigate  the  effects  of  therapy  on  a

molecular basis.

Chemosensitive versus chemoresistant
phenotypes

HGSOC  usually  responds  well  to  initial  ovarian  cancer

therapy,  with  response  rates  as  high  as  85%7.  This  is

frequently due to the fact that HGSOC has BRCA mutations.

First-line  chemotherapy  acts  by  damaging  DNA  strands;

BRCA  acts  to  repair  DNA,  however,  given  that  HGSOC

frequently  lacks  BRCA  function,  DNA  strands  cannot  be

repaired, which consequently leads to the efficacy of primary

chemotherapy  in  HGSOC.  However,  HGSOC  cells  through

further mutation can restore BRCA function, which is one of

the leading causes of resistance to initial chemotherapy144.

It  is  often  acknowledged  that  ABC transporters  play  a

pivotal role in resistance to first line chemotherapy. In fact,

ABCB1, ABCB4, and ABCG2 were significantly up-regulated

in cisplatin and paclitaxel resistant ovarian cancer cells145.

Pertuzumab  in  a  clinical  trial  of  chemoresistant  disease

showed that  the  mAB demonstrated  possible  anti-tumor

activity  when  combined  with  either  gemcitabine  or

paclitaxel57,58,  while  novel  TKIs  that  target  multiple  sites

often demonstrate their ability to reverse ABC-mediated drug

resistance105,146-148. Hence, mABs and TKIs might be more

active  in  chemoresistant  ovarian  cancer  than  in  the

chemosensitive type.

Conclusions

Ovarian cancer is a complex disease, with multiple molecular

profiles.  It  frequently  becomes  resistant  after  initial  therapy

necessitating the development of new strategies.

The use of HER-targeted therapy continues to be assessed

in this disease, since it might have value for selective patients

and pre-clinical data supports the potential of this approach.

Only a limited number of phase II trials have been completed

in ovarian cancer and while response rates are low, there are

frequent good percentages of stable disease. The pan-HER

TKIs may have broader efficacy and utility  than the early

EGFR-targeted TKIs, which are dependent on the presence of

mutations  (are  uncommon  in  ovarian  cancer).  Further

biomarker studies are now required to help identify the most

sensitive ovarian cancers and combination strategies require

further development.
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