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ABSTRACT Liver fibrosis is an important pathological precondition for hepatocellular carcinoma. The degree of hepatic fibrosis is positively

correlated with liver cancer. Liver fibrosis is a series of pathological and physiological process related to liver cell necrosis and

degeneration after chronic liver injury, which finally leads to extracellular matrix and collagen deposition. The early detection and

precise staging of fibrosis and cirrhosis are very important for early diagnosis and timely initiation of appropriate therapeutic

regimens. The risk of severe liver fibrosis finally progressing to liver carcinoma is >50%. It is known that biopsy is the gold

standard for the diagnosis and staging of liver fibrosis. However, this method has some limitations, such as the potential for pain,

sampling variability, and low patient acceptance. Furthermore, the necessity of obtaining a tissue diagnosis of liver fibrosis still

remains controversial. An increasing number of reliable non-invasive approaches are now available that are widely applied in

clinical practice, mostly in cases of viral hepatitis, resulting in a significantly decreased need for liver biopsy. In fact, the non-

invasive detection and evaluation of liver cirrhosis now has good accuracy due to current serum markers, ultrasound imaging, and

magnetic resonance imaging quantification techniques. A prominent advantage of the non-invasive detection and assessment of

liver fibrosis  is  that  liver  fibrosis  can be monitored repeatedly and easily  in the same patient.  Serum biomarkers  have the

advantages of high applicability (>95%) and good reproducibility. However, their results can be influenced by different patient

conditions because none of these markers are liver-specific. The most promising techniques appear to be transient elastography

and magnetic resonance elastography because they provide reliable results for the detection of fibrosis in the advanced stages, and

future developments promise to increase the reliability and accuracy of the staging of hepatic fibrosis. This article aims to describe

the recent progress in the development of non-invasive assessment methods for the staging of liver fibrosis,  with a special

emphasize on computer-aided quantitative and deep learning methods.
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Introduction

Approximately  55%–60%  of  hepatocellular  carcinoma

(HCC)  cases  worldwide1 are  caused  by  chronic  hepatitis  B

virus  (HBV)  infection.  The  infection  progresses  to  fibrosis,

cirrhosis,  and  hepatocellular  carcinoma in  these  patients.  In

HBV-related  cirrhosis,  the  5-year  cumulative  HCC  risk  is

15%  in  high  endemic  areas  and  10%  in  the  West2.  Liver

fibrosis  is  the  early  stage  of  cirrhosis  and  its  degree  is

important  for  predicting  the  occurrence  and  recurrence  of

liver  cancer3.  In  a  retrospective  study  of  1,079  patients  with

chronic  HBV  infection,  multivariate  analyses  showed  that

fibrosis  level  but  not  antiviral  regimen  was  independently

associated  with  the  risk  of  HCC  (P <  0.05)4.  Fibrosis  is  a

dynamic  process  and many studies  have  suggested that  liver

fibrosis  is  actually  reversible  when  the  underlying  condition

is treated5,6.  In the early stages of fibrosis, it may be possible

to  achieve  a  total  curative  effect.  Therefore,  the  early

diagnosis  and  prevention  of  liver  fibrosis  is  of  great

importance in the clinical setting.

From the surgeons' perspective, the patient's liver function

is directly related to the feasibility of the surgical plan. Thus,

it is of great clinical value to determine whether there will be

a  serious  risk  of  liver  failure  after  surgery.  Accurate

assessment  of  liver  fibrosis  can predict  the  patient's  liver

function, which is useful for planning liver surgery. However,

there is controversy regarding the use of tissue detection for

the  assessment  of  liver  fibrosis  in  clinical  practice.  Liver

biopsy is still the gold standard for staging fibrosis using the

Metavir score7  or New Inuyama classification8  to assign a
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score ranging from F0 (no fibrosis) to F4 (cirrhosis).  The

Metavir scoring system is commonly used in Europe. The

fibrosis score is based on a five-point scale (F0, no fibrosis;

F1, portal fibrosis without septa; F2, few septa; F3, numerous

septa without cirrhosis; F4, cirrhosis) (Table 1).

Liver  biopsy  is  currently  the  gold  standard  for  the

assessment of liver fibrosis in clinical practice. Histological

evaluation is important for identifying the underlying liver

disease, assessing the necro-inflammatory grade, and staging

the  patient's  fibrosis.  However,  this  method  has  many

disadvantages because it is invasive, with relatively high costs

and  the  potential  for  sampling  errors9.  Histological

examination is subject to intra- and inter-observer variation

and  does  not  always  predict  disease  progression.

Furthermore,  liver  biopsy  cannot  be  repeated  easily10.

Therefore,  many non-invasive  methods,  including serum

markers, ultrasound (US)-based transient elastography (TE),

and magnetic resonance (MR)-based approaches, have been

evaluated and shown to have promise in the diagnosis and

staging of liver fibrosis11,12.

Imaging methods for the diagnosis of liver fibrosis include

color  US,  computed tomography (CT),  and MR imaging

(MRI).  US  is  a  widespread,  low-cost,  user-friendly,  and

accurate  technique.  However,  it  lacks  specificity  due  to

limitations related to the patient or operator and is mostly

applied according to the patient's preference and follow-up

requirements13. MRI represents the latest technology in this

field as it allows the diagnosis and characterization of fibrosis

and  the  overall  assessment  of  chronic  liver  disease.  In

addition,  MRI  is  more  research-oriented  due  to  its

multiparametric  potential,  which allows not  only various

fibro-steatosic  alterations  to  be  distinguished  but  also

metabolic  assessment.  Thus,  MRI promotes research into

etiology and medicine. However, there are some limitations

of  MRI.  For  example,  high-quality  imaging  equipment

resources and professional expertise are relatively rare14.

All  non-invasive  radiologic  modalities  are  capable  of

distinguishing cirrhosis from less serious types of fibrosis.

However, it  is still  difficult to precisely stage fibrosis.  The

most  promising  techniques  at  present  are  TE  and  MR

elastography because  they provide  reliable  results  for  the

detection of severe fibrosis, and future developments promise

to  increase  the  reliability  and  accuracy  of  liver  fibrosis

staging11.

Considering these factors, this review aimed to discuss the

recent progress in non-invasive detection of liver fibrosis.

Serum markers

Quantification  of  fibrosis  biomarkers  in  serum  represents  a

“biological”  approach,  which  is  in  contrast  to  the  “physical”

approach  based  on  the  measurement  of  liver  stiffness  using

elastography-based  technologies.  Detection  and

quantification  of  serum  biomarkers  has  advantages  of  high

applicability  (>95%)  and  good  reproducibility.  Serum

markers also have some disadvantages because none of them

is liver specific. The results can be influenced by the patient's

condition. For example, there is a risk of false positive results

with  the  FibroTest  in  patients  with  Gilbert's  syndrome  or

with  aspartate  aminotransferase  to  platelet  ratio  index

(APRI) in patients with acute hepatitis. TE can be performed

at  the  bedside  or  in  an  outpatient  clinic  with  high

performance for detecting cirrhosis. This method is very user

friendly.  However,  its  applicability  (80%)  is  not  as  high  as

that  of  serum  biomarkers,  especially  in  the  case  of  ascites,

obesity,  and  an  inexperienced  operator.  Serum  biomarkers

also  have  the  risk  of  false  positive  results  in  case  of  alanine

aminotransferase (ALT) flares15.

The serum parameters for the diagnosis of liver fibrosis

include hyaluronic acid (HA)16, procollagen II N-terminal

propeptide (PIINP)17, type-IV collagen18,19, laminin, and so

on.20,21. Table 2 summarized several serum markers for the

diagnosis of liver fibrosis. Leroy et al.22 found that combining

two serum markers reflecting both fibrogenesis (PIIINP) and

fibrolysis (matrix metalloproteinase-1) is a potentially useful

tool  for  assessing  liver  fibrosis.  Recently,  newly-detected

serum  markers  related  to  liver  fibrosis  are  promising  to

improve  the  diagnosis  of  liver  fibrosis.  Jazwinski  et  al.23

found  that  CK-18  levels  were  much  higher  in  chronic

hepatitis  C (CHC) patients  than in controls.  The fibrosis

stage was associated with increased CK-18 levels. Parfieniuk-

Kowerda et al.24 found that elevated serum M30-CK18 level

was  an  indicator  of  severe  apoptosis  of  hepatocytes  and

corralated  with  active  hepatic  inflammation and fibrosis.

Thus,  it  may  serve  as  a  non-invasive  marker  of  disease

activity.

Table 1   The Metavir score system and fibrosis stage

Metavir score system Fibrosis stage

F0 No fibrosis can be detected

F1 Fibrosis exists with expansion of
portal zones

F2 Fibrosis exists with expansion of most
portal zones, and occasional bridging

F3 Fibrosis exists with expansion of most
portal zones, marked bridging, and
occasional modules

F4 Presence of cirrhosis
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However, single parameters are not sufficient to accurately

reflect the degree of liver fibrosis. Thus, combining multiple

serum markers  is  becoming a  focus  of  interest  (Table  3).

Many non-invasive models (AST/ALT ratio, APRI, fibrosis-

cirrhosis  index,  fibrosis  index,  fibrosis-4  score,  fibrosis

quotient,  King,  and  von  Willebrand  factor  antigen/

thrombocyte ratio) for predicting fibrosis were compared

with liver biopsy. Many new scores for predicting fibrosis

stages with better accuracy have been developed25 (Table 3).

Most of the non-invasive methods were initially developed

and  validated  in  patients  with  CHC,  and  most  of  the

published  studies  were  performed  in  the  context  CHC.

However, non-invasive models have been established for the

assessment of liver fibrosis in patients with chronic hepatitis

B (CHB)15.

Radiological techniques

US, CT, and MRI have traditionally been used to explore the

liver31. They are able to detect biological changes in the liver

parenchyma  when  there  is  significant  fibrosis  (bridging

fibrosis  and  cirrhosis)  and  signs  of  portal  hypertension.

Common  imaging  methods  are  US,  spiral  CT,  and  MRI

[including  diffusion-weighted  imaging  (DWI),  diffusion

tensor  imaging,  etc.].  These  methods  can  detect  advanced

portal  hypertension  with  advanced  liver  fibrosis  with  high

sensitivity  and  specificity.  Another  commonly  used

diagnostic method is TE.

US technology

Color Doppler US
Color Doppler US utilizes the changes in hepatic blood flow

during fibrosis to check for fibrosis. The main indicators for

detection  are  hepatic  artery  flow  rate,  portal  vein  flow  rate,

and the ratio of the two. Some studies have pointed out32 that

color  Doppler  US  has  high  accuracy  for  the  diagnosis  of

cirrhosis > stage F2. However, Doppler US examination still

has  poor  stability  and  is  strongly  influenced  by  equipment

performance,  operator  skill,  and  the  patient's  physical

condition.

Contrast-enhanced US
Contrast-enhanced US is commonly used for the diagnosis of

liver  tumors.  Because  the  hepatic  blood  flow  and  the

appearance of  microbubble  acoustical  contrast  agent  change

with  liver  fibrosis,  information  related  to  hepatic  perfusion

can  be  obtained  through  the  variations  in  microbubbles,

including  the  portal  vein  arrival  time,  hepatic  vein  arrival

time,  and  hepatic  artery  arrival  time.  The  interval  between

Table 2   The serum markers for diagnosis of liver fibrosis

Serum parameter Correlation to liver fibrosis Significance

HA16 Positive correlation Accurately reflect the fibrosis and damage to the liver cells. Serum
HA is slightly elevated with acute hepatitis, and significantly
elevated with chronic active hepatitis, and extremely elevated with
liver cirrhosis.

PIINP17 Positive correlation, but not specific Is suitable for early diagnosis of liver fibrosis.

Type IV collagen18,19 Positive correlation Usually diagnose early liver fibrosis and chronic liver disease

Laminin20,21 Positive correlation with fibrosis activity
and portal pressure

Reflect degree of liver fibrosis. Elevated laminin (LN) content is also
related to tumor invasion and metastasis.

Table 3   Non-invasive diagnostic model for liver fibrosis

Model Formula

AAR26,27 AST(IU/L) / AST(IU/L)

APRI28 AST(IU/L) / PLT(109/l)

GPRI GGT(IU/L) / PLT(109/l)

S index 1,000 × GGT (IU/L) / [PLT(109/l) × ALB2(g/L)]

APRI29 AST(IU/L) / ULN(IU/L) / PLT(109/l)

FIB-4 score [Age (years) × AST(IU/L)] / PLT (109/l) × ALT1/2

(IU/L)

Fibro-Q [10× AST(IU/L) × age (years) × INR] /
PLT (109/l) × ALT (IU/L)

API
(Age plus PLT)

Age (years): >70=5, 61–70=4, 51–60=3,
41–50=2, 31–40=1, ≤30=0 PLT (109/l): <125=5,
125–149=4, 150–174=3, 175–199=2,
200–224=1, ≥225=0

VITRO von Willebrand factor antigen (vWF-
Ag)/thrombocyte ratio

APRG30 ALP/PLT/RDW-SD/globulin

ALB:  albumin;  AST:  aspartate  aminotransferase;  ALT:  alanine
transaminase; INR, international normalized ratio; GGT: gamma-
glutamyl transferase; PLT: platelet; ULN: upper limit of normal;
FibroQ: fibrosis quotient.
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hepatic  artery  arrival  time  and  hepatic  vein  arrival  time

indirectly  reflects  the  degree  of  liver  fibrosis.  It  has  been

suggested  that  portal  vein  arrival  time  and  the  interval

between  hepatic  artery  arrival  time  and  hepatic  vein  arrival

time  are  significantly  reduced  in  patients  with  significant

fibrosis  and  are  negatively  correlated  with  the  degree  of

fibrosis33,34.  However,  due  to  the  need  to  inject  contrast

medium, which may be associated with safety hazards such as

allergic  reactions,  the  diagnostic  value  of  contrast-enhanced

US requires further evaluation.

US elastography
US  elastography  was  first  proposed  by  Ophir  et  al.35.  The

main imaging principles include the following: 1, application

of  arterial  or  static  stimulation  to  the  tissue;  2,  the  tissue

produces  displacement,  strain,  and  other  changes;  3,  US

imaging  indirectly  or  directly  reflects  the  hardness  of  the

tissue.

US  elastography  has  been  recommended  for  the  non-

invasive  staging  of  liver  fibrosis  by  the  clinical  practice

guidelines of the European Association for the Study of the

Liver and the Asian-Pacific Association for the Study of the

Liver36.  US  elastography  encompasses  mainly  TE,  point

quantification shear wave elastography (pSWE), and two-

dimensional SWE37.

TE is a US-based technique that has been applied in the

clinical diagnosis of liver fibrosis and has been shown to have

advantages  in  many original  studies.  However,  it  has  the

disadvantage of involving no direct image guidance. A 3.5-

MHz “M” probe, a 2.5-MHz “XL” probe (for obese patients),

or a 5.0-MHz probe (for children) is  placed in the region

dullest  to percussion, typically in the 9th–11th  intercostals

space, and a portion of liver about 6 cm deep is assessed. This

has numerous advantages, such as a well-defined technique,

shallow  learning  curve,  and  repeatability,  although  the

technique  is  not  presently  recommended  for  spleen

measurements. Conversely, the method requires a dedicated

machine, the probe must be recalibrated every 6–12 months

depending on the probe, assessment may not be possible in

the case of ascites and obesity (obesity can be resolved using

an  extra-large  probe),  no  grayscale  image  of  the  liver  is

obtained (A-mode images are available), and performance is

lower  than  acoustic  radiation  force  impulse  (ARFI)

techniques36-39.  Tsochatzis et al.40  reported in their meta-

analysis  that  the hierarchical  summary receiver operating

characteristic (HSROC) model has been performed in CHC

and CHB patients. The results showed that the sensitivity of

TE for diagnosing liver fibrosis stage F ≥ 2, F ≥ 3, and F = 4

was 0.79,  0.82,  and 0.83 and the summary specificity  was

0.78, 0.86, and 0.89, respectively. Elastography is defined by

good  sensitivity  and  specificity  for  cirrhosis  and  lower

sensitive  and  specificity  for  lesser  degrees  of  fibrosis.

However, the technique should be carefully applied because

it is difficult to validate the cut-off values for the different

stages  of  fibrosis.  Steadman  et  al.41  also  assessed  the

diagnostic accuracy of elastography using an HSROC model

in  patients  with  various  characteristics.  The  results  of

subgroup analyses  in  patients  with CHB showed that  the

sensitivity of elastography was 0.77, 0.83, and 0.67 and the

specificity  was 0.72,  0.81,  and 0.87 for predicting fibrosis

stages  F  ≥  2,  F  ≥  3,  and  F  =  4,  respectively.  The  authors

suggested that TE is more accurate in patients with moderate

fibrosis  or  cirrhosis  and  that  TE is  less  effective  and  less

expensive than liver biopsy.

US elastography has  shown promise  as  a  non-invasive,

inexpensive,  and  portable  technique.  Particularly,  SWE-

derived estimates of shear wave speed and hepatic Young’s

modulus measured in kilopascal (kPa) have been shown to be

associated with liver fibrosis stage42. Recently, a meta-analysis

of  SWE studies  summarized 12 reports  and generated 12

different cut-off values for sensitivity and specificity43. Earlier

SWE  studies  have  proposed  various  cut-off  values  to

distinguish the staging of fibrosis, such as early fibrosis, no

fibrosis,  advanced fibrosis,  and cirrhosis44.  Dhyani et al.45

validated the previously established US SWE cut-off values

(≥  F2  fibrosis)  in  a  cohort  of  patients  with  chronic  liver

disease. In this previous cross-sectional study, 338 patients

undergoing liver biopsy underwent SWE using an Aixplorer

US machine (SuperSonic Imagine, Aix-en-Provence, France).

Median  SWE  values  were  calculated  from  sets  of  10

elastograms.  A  single-blinded  pathologist  referred  to

METAVIR  fibrosis  staging  as  the  gold  standard.  On

pathological  examination,  212  of  277  enrolled  patients

(76.5%) had F0–F1 fibrosis and 65 (23.5%) had ≥ F2 fibrosis.

Applying  the  SuperSonic  Aixplorer  system  (SuperSonic

Imagine), the authors validated the test performance of a cut-

off value of 7.29 kPa on liver SWE and distinguished higher

stages of liver fibrosis (METAVIR stages F2–F4) from lower

stages of fibrosis (METAVIR stages F0–F1) in patients with

chronic liver disease.

In  pSWE,  shear  waves  in  the  liver  in  a  small  region of

interest  (ROI)  (approximately  1  cm3)  are  generated  by

applying an ARFI pulse. Monitoring the displacement of liver

tissue  caused  by  the  shear  waves  is  achieved  by  B-mode

imaging. pSWE can be an independent procedure or an add-

on during liver US or direct visualization of liver insonation,

with the possibility of quantitatively lower variability than 2D

SWE. pSWE can also be used to assess the spleen. However,
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this method has been reported less in the literature than TE

because it has been used for a shorter period of time37.

In 2D SWE, multiple measurements with ARFI technology

are performed in a large field of view. This can be performed

either as a single image or in real time. Within this large field

of view, an ROI can be placed to obtain measurements from

the  chosen  location37.  The  procedure  can  be  an  add-on

during liver US, direct visualization of the liver region being

insolated, or color display of a larger field of view. However,

it also has less published material than TE as it has not been

used for a long time37.

Elastography  techniques  can  be  used  to  distinguish

patients  with  no  or  minimal  fibrosis  (METAVIR  stages

F0/F1) and those with severe fibrosis or cirrhosis (METAVIR

stages F3/F4)37.

MRI

DW-MRI
MRI has been applied for the detection and quantification of

hepatic  fibrosis  using  DW  sequences.  Several  encouraging

studies  have  shown  this  method  to  be  promising  for  the

detection  of  liver  fiborosis46.  At  present,  DWI  is  a  routine

procedure  in  the  liver  MRI  protocol.  In  the  context  of

chronic  liver  disease,  important  studies  have  evaluated  the

capability  of  DWI  to  quantify  the  extent  of  hepatic

fibrosis48,49.

Based  on  the  sensitivity  of  MRI  to  motion,  diffusion

imaging consists of a spin-echo sequence, in which the main

180°  focalization  pulse  is  preceded  and  followed  by  two

additional  gradient  pulses.  A  proton  response  to  these

gradient pulses is strongly related to their movements and

follows a Brownian motion. The first gradient field is applied

before 180° refocusing of the RF pulse, leading to the phase

shift of protons. For static molecules, the second gradient

pulse compensates for the phase shift produced by the first.

As such, no additional shift  is  generated from movement.

The refocusing introduced by the second gradient is visible

on MRI DWIs as high signal intensity.

As the main parameter for quantifying proton diffusion

motion in tissues, apparent diffusion coefficient (ADC) is

estimated using images acquired with two different b-values.

ADC  is  calculated  by  the  following  formula:  ADC  =  Ln

(S0/S1) [b1–b2], where S0 is the signal intensity with b = 0,

S1 is the signal intensity after the application of a given b

gradient, and b is the strength of the applied gradient50. On

DWIs,  tissues containing molecules with a high degree of

movement and diffusion are represented as dark areas of low

signal intensity, whereas tissues in which protons are unable

to move freely have high signal intensity. Fibrosis can also

decrease the width of the interstitial spaces. Fibrotic tissues

generally develop as a consequence of chronic inflammation,

with  narrowing  of  the  interstitial  spaces  and  consequent

reductions in proton motion51.

DWI of  the  liver  is  influenced  by  motions  induced  by

breathing  and  cardiac  pulsations  and  lower  T2  signal52.

Accordingly,  a  different  technique has  been developed to

improve  the  quality  of  DWIs  and  the  precision  of  ADC

measurement.  Taouli  et  al.46  evaluated  their  preliminary

experience of using DW-MRI to quantify the degree of liver

fibrosis.  They  performed  DW-MRI  with  the  single-shot

echo-planar technique with b values of 50, 300, 500, 700, and

1,000 s/mm2 in 23 patients with chronic hepatitis and seven

healthy volunteers. ADC was measured in four locations in

the liver. Liver biopsy results (n = 19) were retrospectively

reviewed by two independent hepatopathologists who came

to a consensus regarding the criteria used to determine the

different  stages  of  liver  fibrosis  and  the  grade  of  liver

inflammation.  They found that hepatica was a significant

predictor of ≥ stage 2 and ≥ stage 3 fibrosis, with areas under

the curve of 0.896 and 0.896, sensitivity of 83.3% and 88.9%,

and specificity of 83.3% and 80.0%, respectively. The study

demonstrated that DW-MRI is good for predicting moderate

and advanced liver fibrosis. Bonekamp et al.53 evaluated the

diagnostic  accuracy  of  DWI  for  hepatic  fibrosis  by

retrospectively  comparing DWIs from clinically-acquired

MRI scans with histological methods. Liver biopsy specimens

were staged as F0–F4 in accordance with the Metavir score.

Liver  ADC values  were  inversely  correlated  with  fibrosis

stage: P  = –0.54 (P  < 0.0001). The authors found that the

differences  in  ADC values  according to  METAVIR stages

F0 vs. F1–4, F0–1 vs. F > 1, F0–2 vs. F3–4, and F0–3 vs. F4

were all significant. Liver ADC can be used to predict liver

fibrosis with acceptable diagnostic accuracy.

Intravoxel incoherent motion (IVIM) DWI
IVIM reflects the random microscopic motion that occurs in

voxels on MR images of water molecules (either extracellular

or  intracellular)  and  the  microcirculation  of  blood54.

Notably,  as  a  DWI-based  imaging  technique,  IVIM analyzes

the  signal  decay  of  multiple  b  values  to  simultaneously

evaluate  the  perfusion-related  diffusivity  (demonstrated  by

parameters  D*,  f)  and  pure  molecular  diffusivity

(demonstrated  by  the  parameter  D)55.  Le  Bihan  et  al.56

proposed the  IVIM model  in  1986.  They believed that  there

are  two  kinds  of  microscopic  movement  within  living

animals:  the  diffusion  of  water  molecules  and  blood

perfusion.  IVIM  calculates  the  corresponding  parameters
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iusing  a  nonlinear  regression  function

,  that  includes  a  pure

diffusion  coefficient,  pseudo-diffusion  coefficient,  and

perfusion fraction54,57.

According to the theory of IVIM, diffusion and perfusion

are influenced by several tissue characteristics, including the

presence of restrictive barriers within the tissue, the viscosity

of the fluid in which the spins are diffusing, and the velocity

and fractional volume of perfusing spins58.  IVIM imaging

was limited to neuroradiologic applications at first because

the abdominal organs can be influenced by respiratory and

other motion artifacts.

IVIM  MRI  has  been  used  for  the  evaluation  of  the

abdominal organs, including the liver. These analyses make

use of  respiratory gating and parallel  imaging to improve

signal intensity59-61. Yamada et al.59 first assessed the use of

IVIM MRI for the abdominal organs. However, they used

only a limited number of b values (30, 300, 900, and 1,100

s/mm2)  and  did  not  calculate  pseudo-diffusion  values.

Grech-Sollars et al.62 demonstrated that the IVIM parameter

PF had a high intra-scanner coefficient of variation (CoV) of

8.4% and inter-scanner CoV of 24.8%.

Luciani  et  al.55  retrospectively  evaluated  a  respiratory-

triggered DW-MRI sequence that was combined with parallel

acquisition. The technique allowed the calculation of pure

molecular-based (D) and perfusion-related (D*, f) diffusion

parameters based on the IVIM theory. The authors found

that Dfast was significantly decreased in patients with liver

fibrosis  compared to that  in patients  with a  healthy liver.

However, there was no significant difference between Dslow

and PF measurements in the healthy liver (n = 25) and liver

fibrosis (n = 12) groups.

Guiu  et  al.61  compared  pure  molecular  diffusion  (D),

perfusion-related diffusion (D*), and perfusion fraction (f)

determined from DW-MRI based on the IVIM theory and

reported that Dslow and Dfast were significantly lower in

steatotic compared with non-steatotic livers. However, PF

was  significantly  higher  in  steatotic  compared with  non-

steatotic  livers.  Therefore,  steatosis  can  affect  diffusion

parameters obtained with IVIM.

In another study, Patel et al.63 reported their preliminary

experience  with  the  use  of  IVIM DW-MRI  and  dynamic

contrast-enhanced (DCE)-MRI alone and in combination for

the diagnosis  of  liver cirrhosis.  The authors prospectively

assessed 30 participants (16 with non-cirrhotic livers, 14 with

cirrhosis) with IVIM DW-MRI (n = 27) and DCE-MRI (n =

20). The diagnostic performance for cirrhosis was evaluated

for each modality alone and in combination using logistic

regression  and  receiver  operating  characteristic  analyses.

IVIM  and  DCE-MR  parameters  were  compared  using  a

generalized set of estimation equations.  Finally,  the study

revealed that the values of Dslow, PF, and Dfast in cirrhotic

livers were lower than those in non-cirrhotic livers. However,

no further grading was performed within the liver cirrhosis

patients as only three had histopathology data available for

analysis.

In a rat model of diethylnitrosamine-induced liver fibrosis,

Zhang  et  al.64  compared  ADC  and  perfusion  fraction

measured  by  IVIM  MRI  among  rodents  with  different

degrees of fibrosis. Both diffusion and perfusion contributed

to  ADC.  ADC  and  f  values  decreased  significantly  with

increasing  fibrosis  level  (correlation coefficient  for  ADC:

rho = –0.781,  P  <  0.001;  for  f:  rho  = –0.720,  P  =  0.001).

However, D was poorly correlated with fibrosis level (rho =

–0.502,  P  =  0.040).  It  has  been  reported  that  PF  values

decrease significantly with increasing fibrosis level. However,

Dslow was poorly correlated with fibrosis level.

In a carbon tetrachloride-induced rat liver fibrosis model,

Chow et al.65 characterized longitudinal changes in molecular

water  diffusion,  blood  microcirculation,  and  their

contributions to the apparent diffusion changes using IVIM

analysis in an experimental mouse model of liver fibrosis.

The authors reported that as liver fibrosis progressed, Dslow

and Dfast  decreased.  Both molecular  water  diffusion and

blood  microcirculation  contribute  to  alteration  of  the

apparent diffusion changes in liver fibrosis. Reduction in D

(true) and D (pseudo) values resulted from diffusion and

perfusion changes, respectively, during the progression of

liver  fibrosis.  IVIM analysis  may  serve  as  a  valuable  and

robust tool for the detection and characterization of liver

fibrosis in its early stages, allowing monitoring of progression

in a non-invasive manner.

To date, the actual values of PF and Dfast are still unclear,

and the best clinical settings for IVIM imaging are still under

debate. Li et al.54 reviewed the mean values and variability of

Dslow, PF, and Dfast of the liver in the published papers and

analyzed how the data acquisition set-up may influence these

values. This previous paper showed that IVIM technique is

still not capable of detecting liver fibrosis in the early stage

and diagnosing the extent liver fibrosis.  Furthermore, the

method is far from capable of differentiating liver tumors.

MR spectroscopy
MR spectroscopy is a non-invasive technique that facillitates

the  easy  study  of  cellular  metabolism.  MR  spectroscopy  is

widely  used  by  biochemists  for  the in  vitro investigation  of

physiological  processes.  Recently,  radiologists  have  used this
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method  for  the in  vivo detection  of  abnormalities66.

Phosphorus-31  (31P)  MR  spectroscopy  has  been  used  to

study  liver  metabolism in  vivo67-69.  In  contrast  to  31P-MR

spectroscopy,  hydrogen-1-MR  spectroscopy  is  accurate  and

suitable  for  the in  vivo quantification  of  liver  fat

deposition70,71.  Hydrogen-1  MR  spectroscopy  is  not  useful

for the complete evaluation of hepatic fibrosis but can be an

alternative  to  liver  biopsy for  the  evaluation of  steatosis  and

necroinflammatory activity in liver disease72.

Magnetic resonance elastography (MRE)
MRE  is  used  to  measure  the  mechanical  characteristics  of

tissues (such as stiffness, elasticity, and viscosity) by acquiring

images  of  the  propagation  of  a  shear  wave  created  by  an

external  source  of  motion73.  MRE  is  based  on  spin-echo,

echo-planar  imaging,  and  gradient-recalled  echo.  By

detecting the displacement of particles generated by external

forces  in  human  tissues74,  it  takes  advantage  of  propagating

mechanical  shear  waves  (20–200  Hz)  to  detect  the

mechanical  properties  of  tissues75.  Such  waves  propagate

more quickly in stiffer tissue and more slowly in softer tissue,

and  the  wavelength  becomes  shorter  as  the  tissue  stiffness

decreases.  Low-frequency  mechanical  shear  waves  are

generated  with  a  special  acoustic  driver  system  and

propagated  throughout  the  body.  MRE  is  a  technique  with

three  steps:  first,  mechanical  waves  are  generated  in  the

tissue; second, images of the waves are obtained with a special

MRI sequence; finally, the wave information is processed and

elastograms  are  generated.  During  this  process,  images  are

generated and used to quantitatively depict tissue stiffness76.

In prior studies, MRE could not be directly compared to

liver  biopsy  because  biopsy  was  used  as  a  reference

standard14,77-80.  However,  Morisaka et  al.81  compared the

diagnostic accuracy of liver fibrosis staging between MRE-

based methods and liver biopsy using pathological results

from resected liver specimens as reference standards,  and

found that  MRE can be  an alternative  to  liver  biopsy  for

fibrosis staging.

MRE has been standardized and yields repeatable results

across  sites82,83.  MRE  also  has  the  advantage  of  being

technically feasible in larger patients or those with ascites14.

MRE is associated with several biological confounders, such

as  concomitant  liver  steatosis,  inflammation,  cholestasis,

hepatic venous congestion, postprandial state, and right heart

failure84. MRE may be affected by moderate-to-severe iron

deposition in the liver, which leads to a low signal-to-noise

ratio and sometimes inconclusive measurements.

Currently, the use of MRE for the staging of liver fibrosis

still requires further use in more clinical patients and clinical

trials.

Perfusion imaging
Perfusion  imaging  measures  quantitative  or  semi-

quantitative  perfusion parameters  of  the liver  using contrast

agents.  Gadolinium-based  contrast  agents  are  the  most

frequently  used.  Signal  enhancement  in  the  liver  tissue  and

vessels  (abdominal  aorta  or  hepatic  artery  and  portal  vein)

following  the  injection  of  one  of  these  contrast  agents  is

measured at different time points85. Perfusion imaging can be

performed on any imaging modality (MRI, US, and CT) and

shows  potential  for  prognostic  significance.  Thus,  perfusion

constants  could  be  used  to  predict  treatment  outcomes  in

fibrosis  patients.  However,  perfusion  imaging  has  some

limitations.  It  is  more  invasive  than  other  MRI-based  liver

fibrosis  quantification techniques  as  it  requires  the  injection

of  a  contrast  agent.  It  also  requires  full  patient  cooperation

and  several  breath  holds  to  achieve  good  results,  especially

for  the  proper  timing  of  image  acquisition  to  record  the

arterial and portal venous peaks73.

Application of computer-aided
quantitative techniques in the active
staging of liver fibrosis

Computer-aided  quantitative  technology  has  developed  in

recent years. These methods make use of the fact that image

texture analysis is a very common diagnostic method for liver

fibrosis. For this reason, many scholars focus on the analysis

of  the  image  texture  features  of  different  fibrosis  stage31.  By

using a series of mathematical  equations to generate a range

of parameters associated with image texture, texture analysis

characterizes  the  spatial  variation  of  gray  levels  throughout

an image86.

CT

CT texture analysis  quantifies  the heterogeneity of  a  ROI by

analyzing  the  distribution  and/or  relationship  of  pixel  or

voxel gray levels in the image87.

Kayaalti et al.88 selected a 32 × 32-pixel ROI on CT and

obtained a comprehensive set of texture features using a gray

level co-occurrence matrix (GLCM), Laws' method, discrete

wavelet transform (DWT), and Gabor filters.  The authors

used sequential  floating forward selection and exhaustive

search methods in different combinations for the selection of

the most discriminating features. Finally, the selected texture

features were classified using two methods: support vector

machines (SVM) and k-nearest neighbors (k-NN). The mean
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classification accuracy in the pairwise group comparisons was

approximately 95% for both classification methods using

only  five  features.  However,  when  this  approach  was

performed  for  classifying  the  liver  fibrosis  stage  of

participants in the test set into seven possible stages, both

SVM and k-NN methods had relatively  low classification

accuracy. Pairwise group classification results showed that

DWT, Gabor, GLCM, and Laws' texture features were more

successful  than the others.  As the features extracted from

these methods were used in the feature fusion process, fusing

features from these better performing families will further

improve the classification performance.

Lubner et al.89 applied quantitative texture analysis of the

liver performed using abdominal multidetector (MD) CT

scans to evaluate CT texture analysis (CTTA) for the staging

of liver fibrosis. The study included 289 people. By using the

filtration-histogram statistic-based technique, they correlated

CTTA parameters with fibrosis stage (F0–F4), with biopsy

performed  within  1  year  for  all  cases  with  intermediate

fibrosis  (F1–F3)  using  commercially  available  software

(TexRAD). Mean gray-level intensity increased with fibrosis

stage, resulting in a receiver operating characteristics (ROC)

area under the curve (AUC) of 0.78 at medium filtration for

fibrosis F0 vs. fibrosis F1–4, with sensitivity and specificity of

74%  and  74%,  respectively.  For  cirrhosis  (equal  to  F4),

kurtosis and skewness showed AUCs of 0.86 and 0.87. Thus,

it  is  believed that  CTTA may be helpful  for  detecting the

presence of hepatic fibrosis and discriminating between the

stages of fibrosis, especially at advanced levels. Daginawala

et al.90  assessed the ability of texture analyses of contrast-

enhanced CT images for distinguishing between liver fibrosis

of  different  extents  in  patients  with  chronic  liver  disease

using histopathology as a standard. This cohort contained 83

patients who underwent contrast-enhanced 64-MDCT and

had undergone a  liver  biopsy within 6  months  of  the  CT

scan.  The  authors  assembled  three  analysis  groups  and

compared Ishak scales of 0–2 with 3–6, 0–3 with 4–6, and 0–4

with 5–6. Finally, a total of 19 different texture features with

seven  histogram  features,  one  grey  level  co-occurrence

matrix, six gray level run lengths, one Laws feature, and four

gray  level  gradient  matrices  demonstrated  significant

differences for discriminating between fibrosis  groupings.

The highest AUCs had fair performance for distinguishing

between distinct fibrosis groups. These findings suggest that

texture-based analysis of contrast-enhanced CT images offers

a potential approach to the non-invasive evaluation of liver

fibrosis.

US and MR

Some  groups  have  applied  texture  analysis  to  US  or  MRI91.

Texture  analysis  of  MR  images  included  the  analysis  of  T2-

weighted MR, arterial phase, venous phase, and DW images.

House et al.86 studied the ability of texture analysis based

on  MRI  images  to  stage  hepatic  fibrosis  by  enrolling  49

patients with different extents of liver disease and biopsy-

confirmed fibrosis.  For  texture  analysis,  all  patients  were

scanned  with  a  T2-weighted,  high-resolution,  spin  echo

sequence, and Heraldic texture features were applied. The

best  mean  ROC AUC achieved  for  separating  mild  from

severe  fibrosis  was  0.81.  The  authors  found  that  the

combination of MRI measures,  including selected texture

features from T2-weighted images, was useful for excluding

fibrosis  in  patients  with liver  disease.  However,  they also

found that  texture  analysis  from MRI only  had a  modest

effect when applied to the classification of patients in the

mild and intermediate stages of fibrosis.

Using 11.7 Tesla (T) MRI, Anderson et al.92 evaluated the

effects of hepatic fibrosis on ADC and T2 values of imaging

for in vitro murine liver specimens. The degrees of fibrosis

were  assessed  by  a  pathologist  and digital  image  analysis

system. Scatter  plot  graphs were generated by comparing

ADC  and  T2  according  to  the  extent  of  fibrosis  and

correlation coefficients were calculated. A strong correlation

was found between the degree of hepatic fibrosis and ADC,

with  a  greater  severity  of  fibrosis  associated  with  lower

hepatic  ADC  values.  A  moderate  correlation  was  seen

between hepatic fibrosis and T2 values, with higher degrees

of  fibrosis  associated  with  lower  T2  values.  It  has  been

reported that inverse relationships exist between the degree

of fibrosis and both ADC and T2 values, suggesting that MRI

quantification of liver fibrosis is promising.

Gao  et  al.13  used  a  gray-level  gradient  co-occurrence

matrix for the texture analysis of US liver images first before

using  a  grey  level  co-occurrence  matrix.  The  authors

obtained 22 features  using these two methods.  The seven

most prominent features were selected for classification using

a back propagation neural network. Fibrosis was divided into

five stages (F0–F4), with classification accuracy for the stages

F0–F4 of 100%, 90%, 70%, 90%, and 100%, respectively.

Han et al.93 extracted liver textures based on the densely-

sampled  DAISY  descriptor  and  then  used  principal

component analysis  for  feature dimensionality  reduction.

Then, a Fisher Vector encoding method was used to encode

the local features of DAISY. The eigenvector of each liver
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image  was  then  obtained.  Staging  of  liver  fibrosis  was

performed based on a SVM classification model. However,

the classification system included "normal, " "liver fibrosis, "

and "cirrhosis, " and the normal and abnormal cirrhosis and

non-cirrhosis accuracy was 89.1% and 91.64%.

In the above method, pre-processing and selection of ROIs

are usually required prior to feature extraction. A large ROI is

usually best for the extraction of liver fibrosis features. ROI

selection follows these principles: 1) avoid vascular and rib

artifacts; 2) choose a more homogeneous liver parenchyma;

3) select the appropriate ROI size. At present, the methods

for extracting image texture features of liver fibrosis mainly

include statistical methods of gray histograms and gray level

co-occurrence matrices, Markov random field models, fractal

models,  time-frequency  domain  transform  of  Fourier

transform, Gabor transform, and wavelet transform analysis.

Texture features based on a gray level co-occurrence matrix

are the most commonly used and most effective features for

the quantitative staging of liver fibrosis.

Application of deep learning

Deep learning has gained attention as an artificial intelligence

strategy.  It  allows  the  production  of  a  model  composed  of

many  processing  layers  for  the  study  of  multiple  levels  of

abstraction  in  data  representation94.  Current  approaches

based on traditional machine learning have some limitations:

(1)  the  features  used  for  classification  are  usually  based  on

human subjective  experience and (2)  a  very limited number

of  features  are  extracted.  The  use  of  deep  convolution

networks  has  led  to  breakthroughs  in  the  processing  of

image,  video,  voice,  and  audio,  while  regular  networks  tend

to be used for text and voice94.

Miotto et al.95 proposed a new unsupervised deep feature

learning  approach  that  allows  a  general-purpose  patient

representation to be produced from electronic health record

(EHR) data. This method aims to promote clinical predictive

modeling. The authors used a three-layer stack noise auto

encoder to obtain stratified rule polymerization of EHR data

in approximately 700,000 patients from the Mount Sinai data

warehouse. The method was tested in 76,214 patients from

different  clinical  areas  and time periods.  The  test  cohort

included patients with 78 different diseases. The results were

significantly  better  than  those  obtained  using  the

representation implementation based on the original EHR

data  and  the  alternative  feature  learning  strategy.  The

predictive  performance was superior  for  serious diabetes,

schizophrenia, and various cancers. These findings suggest

that deep learning applied to EHR data can provide patient

representations  that  improve  clinical  predictions.  This

approach  can  facilitate  the  extraction  of  the  general

characteristics of patients from EHR data to make clinical

predictive modeling more convenient. ConvNets is designed

to deal with multiple array data and is composed of a two-

dimensional array of pixel intensity containing three color

channels of color images94.

Nguyen et al.96 used a deep convolutional neural network

(DCNN) to construct Deep record (Deepr), which aims to

improve clinical diagnostic accuracy. The authors showed

that Deepr, which is a new end-to-end deep learning system,

can  learn  to  extract  features  from  medical  records  and

automatically predict future risks. Deepr converts medical

records to a series of discrete elements separated from the

transfer encoding time intervals and the hospital. Above the

sequence, it is a convolutional neural network that attempts

to  detect  predictive  local  clinical  motifs  to  facilitate  risk

stratification.  Deepr  allows  transparent  inspection  and

visualization  of  its  internal  workings.  Compared  with

traditional  technologies,  Deepr  detects  more  meaningful

clinical  patterns and reveals the potential  structure of the

disease and intervention space.

A new paradigm of computer-aided medical treatment is

emerging with the development of deep learning technology.

The application of deep learning methods in the staging of

liver fibrosis will gather more attention in the near future.97

Meng et al.98 put forward a new classification method of

liver fibrosis based on transfer learning, which uses VGGNet

and  a  deep  classifier  called  a  fully  connected  network

(FCNet).  Based  on  this  framework,  the  deep  function

combined with FCNet can provide appropriate information.

A more accurate prediction model can be constructed using

this method than with alternative approaches. Liver fibrosis is

divided into three stages: normal, fibrosis, and early cirrhosis.

However, this method cannot distinguish the F1–F3 stages of

liver fibrosis. Yasaka et al.97 investigated the performance of

the  DCNN  model  for  staging  l iver  f ibrosis  using

hepatobiliary phase MRI with gadoxetic acid enhancement.

This previous retrospective study assigned patients for whom

input data [hepatobiliary phase MRIs, static magnetic field of

the imaging unit, and hepatitis B and C virus testing results if

available (either positive or negative)] and reference standard

data (liver fibrosis stage evaluated from biopsy or surgical

specimens  obtained  within  6  months  of  the  MR

examinations) were available to the training (534 patients)

and test (100 patients) groups. For the training group, MRIs
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with three different section levels were augmented 90-fold

(rotated, parallel-shifted, brightness-changed, and contrast-

changed images were generated; a total of 144,180 images).

Supervised training was performed using the DCNN model

to minimize the difference between the output data [fibrosis

score obtained through deep learning (FDL score)] and the

staging of hepatic fibrosis. The use of the DCNN model was

evaluated  in  the  test  group with  ROC analyses.  The  FDL

score was mutually related with fibrosis stage (Spearman's

rank correlation coefficient: 0.63; P < 0.001). Fibrosis stages

F4, F3, and F2 were diagnosed with ROC AUCs of 0.84, 0.84,

and  0.85.  The  DCNN  model  exhibited  high  diagnostic

efficiency for the staging of hepatic fibrosis.

Perspective

Traditional  imaging  analysis  is  often  dependent  on  human

cognition,  limited  to  one  or  two-dimensional  lesion  size

analysis,  or  involves  the  assessment  of  subjective  and

qualitative features, such as mild non-uniformity, large areas

of necrosis, and so on. With the progress of image acquisition

and  analysis  methods,  a  large  number  of  objective  and

quantitative  image  feature  descriptors  can  be  extracted,

which  are  expected  to  represent  effective  non-invasive

diagnostic biomarkers. Image-omics is an emerging research

direction  to  solve  the  above  problems.  This  method  uses  a

large number of automatic data feature extraction algorithms

to  transform  the  image  data  into  a  multi-dimensional,

extractable feature space.

US images are created due to different absorption levels of

sound  propagation,  while  sonar  digital  simulation  uses

computational theory to transform image results into digital

results.  The advantage of  sonar over US is  that  sonar can

facilitate  digital  simulation  models  and  predict  the

development  of  diseases.  Data  from  sonar  can  be

transformed into a mathematical model. These mathematical

models  can  assess  the  status  quo  in  a  similar  manner  to

elastic  US  and  predict  the  speed  and  extent  of  disease

development relative to the status quo, which is not possible

using elastic US.

The image feature space, including information related to

density, morphology, and texture based on nuclear magnetic

imaging and sonar with autonomous feature mining based

on convolutional  neural  networks,  should be established.

Artificial  intelligence  analysis  tools  will  then  be  used  to

identify features that are strongly associated with liver fibrosis

and improve the accuracy of the non-invasive assessment of

liver fibrosis. Clinical detection features such as serological

diagnosis to the image-based feature space should also be

added  to  further  improve  the  accuracy  of  liver  fibrosis

assessment.

Conclusions

A patient's liver function is directly related to the feasibility of

the patient's surgical plan and whether there will be a serious

risk  of  liver  failure  after  the  operation,  making  this

information  very  clinically  useful.  Accurate  assessment  of

liver fibrosis can predict the patient's liver function, which is

important  when  planning  liver  surgery.  The  assessment  of

fibrosis  is  not  only  important  for  diagnosis  but  also

increasingly  significant  for  management  decisions  and

follow-up. Non-invasive detection of liver fibrosis allows the

dynamic  evaluation  and  assessment  of  liver  fibrosis  and

function  during  surgery  and  internal  treatment  using

medication.  In  the  future,  artificial  intelligence  and  deep

learning methods capable of  integrating serum markers,  US,

and MRI findings will be the focus of research.
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