Erratum to Genetic and molecular changes in ovarian cancer ========================================================== * Robert L Hollis * Charlie Gourley In the published article1, some errors appeared on page 238, **Figure 1**, and reference list. The editors and the authors apologize for the errors and for any confusion theymay have caused. On page238, the sentence of "affecting 20% and 17.5% of cases" should be changed to "and that inactivation of these genesoccurs in 17.5% and 20% of cases". The correct **Figure 1** should be as following. ![1](http://www.cancerbiomed.org/https://www.cancerbiomed.org/content/cbm/14/2/196/F1.medium.gif) [1](http://www.cancerbiomed.org/content/14/2/196/F1) 1 Common molecular events identified in HGS OC, including genetic and epigenetic defects in HRR pathway components (right). The correct reference list should be as following. 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015; 65: 5–29. 2. Ledermann JA, Raja FA, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013; 24 Suppl 6: vi24–32. 3. Chan JK, Urban R, Cheung MK, Osann K, Husain A, Teng NN, et al. Ovarian cancer in younger vs older women: a population-based analysis. Br J Cancer. 2006; 95: 1314–20. 4. Ries LAG. Ovarian cancer: Survival and treatment differences by age. Cancer. 1993; 71: 524–9. 5. Chan JK, Tian CQ, Monk BJ, Herzog T, Kapp DS, Bell J, et al. Prognostic factors for high-risk early-stage epithelial ovarian cancer: a gynecologic oncology group study. Cancer. 2008; 112: 2202–10. 6. du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I, Pfisterer J. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the arbeitsgemeinschaft gynaekologische onkologie studiengruppe ovarialkarzinom (AGO-OVAR) and the groupe d'investigateurs nationaux pour les etudes des cancers de l'ovaire (GINECO). Cancer. 2009; 115: 1234–44. 7. Prat J. Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch. 2012; 460: 237–49. 8. Kindelberger DW, Lee Y, Miron A, Hirsch MS, Feltmate C, Medeiros F, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol. 2007; 31: 161–9. 9. Marquez RT, Baggerly KA, Patterson AP, Liu JS, Broaddus R, Frumovitz M, et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin Cancer Res. 2005; 11: 6116–26. 10. Lee Y, Miron A, Drapkin R, Nucci MR, Medeiros F, Saleemuddin A, et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol. 2007; 211: 26–35. 11. Kurman RJ, Shih IM. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010; 34: 433–43. 12. Piek JMJ, van Diest PJ, Zweemer RP, Jansen JW, Poort-Keesom RJJ, Menko FH, et al. Dysplastic changes in prophylactically removed fallopian tubes of women predisposed to developing ovarian cancer. J Pathol. 2001; 195: 451–6. 13. Falconer H, Yin L, Grönberg H, Altman D. Ovarian cancer risk after salpingectomy: a nationwide population-based study. J Natl Cancer Inst. 2015; 107: dju410. 14. Kuhn E, Kurman RJ, Vang R, Sehdev AS, Han GM, Soslow R, et al. *TP53* mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma-evidence supporting the clonal relationship of the two lesions. J Pathol. 2012; 226: 421–6. 15. Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in *Brca; tp53; pten* models. Cancer Cell. 2013; 24: 751–65. 16. Somigliana E, Vigano P, Parazzini F, Stoppelli S, Giambattista E, Vercellini P. Association between endometriosis and cancer: a comprehensive review and a critical analysis of clinical and epidemiological evidence. Gynecol Oncol. 2006; 101: 331–41. 17. Vang R, Shih IM, Kurman RJ. Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat Pathol. 2009; 16: 267–82. 18. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474: 609–15. 19. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008; 14: 5198–208. 20. Zorn KK, Bonome T, Gangi L, Chandramouli GVR, Awtrey CS, Gardner GJ, et al. Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res. 2005; 11: 6422–30. 21. Vaughan S, Coward JI, Bast RC Jr, Berchuck A, Berek JS, Brenton JD, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011; 11: 719–25. 22. Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer. 2000; 88: 2584–9. 23. Schmeler KM, Sun CC, Bodurka DC, Deavers MT, Malpica A, Coleman RL, et al. Neoadjuvant chemotherapy for low-grade serous carcinoma of the ovary or peritoneum. Gynecol Oncol. 2008; 108: 510–4. 24. Hess V, A'Hern R, Nasiri N, King DM, Blake PR, Barton DP, et al. Mucinous epithelial ovarian cancer: a separate entity requiring specific treatment. J Clin Oncol. 2004; 22: 1040–4. 25. Gershenson DM, Sun CC, Lu KH, Coleman RL, Sood AK, Malpica A, et al. Clinical behavior of stage II-IV low-grade serous carcinoma of the ovary. Obstet Gynecol. 2006; 108: 361–8. 26. Gilks CB, Ionescu DN, Kalloger SE, Köbel M, Irving J, Clarke B, et al. Tumor cell type can be reproducibly diagnosed and is of independent prognostic significance in patients with maximally debulked ovarian carcinoma. Hum Pathol. 2008; 39: 1239–51. 27. Aysal A, Karnezis A, Medhi I, Grenert JP, Zaloudek CJ, Rabban JT. Ovarian endometrioid adenocarcinoma: incidence and clinical significance of the morphologic and immunohistochemical markers of mismatch repair protein defects and tumor microsatellite instability. Am J Surg Pathol. 2012; 36: 163–72. 28. Storey DJ, Rush R, Stewart M, Rye T, Al-Nafussi A, Williams AR, et al. Endometrioid epithelial ovarian cancer: 20 years of prospectively collected data from a single center. Cancer. 2008; 112: 2211–20. 29. Takano M, Kikuchi Y, Yaegashi N, Kuzuya K, Ueki M, Tsuda H, et al. Clear cell carcinoma of the ovary: a retrospective multicentre experience of 254 patients with complete surgical staging. Br J Cancer. 2006; 94: 1369–74. 30. Miyamoto M, Takano M, Goto T, Kato M, Sasaki N, Tsuda H, et al. Clear cell histology as a poor prognostic factor for advanced epithelial ovarian cancer: a single institutional case series through central pathologic review. J Gynecol Oncol. 2013; 24: 37–43. 31. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004; 351: 2519–29. 32. King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in brca1 and*BRCA2*. Science. 2003; 302: 643–6. 33. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011; 108: 18032–7. 34. Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum JR, et al. Germline mutations in *RAD51D* confer susceptibility to ovarian cancer. Nat Genet. 2011; 43: 879–82. 35. Casadei S, Norquist BM, Walsh T, Stray S, Mandell JB, Lee MK, et al. Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res. 2011; 71: 2222–9. 36. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, et al. Germline mutations in breast and ovarian cancer pedigrees establish *RAD51C* as a human cancer susceptibility gene. Nat Genet. 2010; 42: 410–4. 37. Watson P, Riley B. The tumor spectrum in the lynch syndrome. Familial Cancer. 2005; 4: 245–8. 38. Robinson KL, Liu T, Vandrovcova JA, Halvarsson B, Clendenning M, Frebourg T, et al. Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst. 2007; 99: 291–9. 39. Lynch HT, Casey MJ, Snyder CL, Bewtra C, Lynch JF, Butts M, et al. Hereditary ovarian carcinoma: heterogeneity, molecular genetics, pathology, and management. Mol Oncol. 2009; 3: 97–137. 40. Seidman JD, Yemelyanova A, Cosin JA, Smith A, Kurman RJ. Survival rates for international federation of gynecology and obstetrics stage III ovarian carcinoma by cell type: a study of 262 unselected patients with uniform pathologic review. Int J Gynecol Cancer. 2012; 22: 367–71. 41. Salani R, Kurman RJ, Giuntoli R, Gardner G, Bristow R, Wang TL, et al. Assessment of *TP53* mutation using purified tissue samples of ovarian serous carcinomas reveals a higher mutation rate than previously reported and does not correlate with drug resistance. Int J Gynecol Cancer. 2008; 18: 487–91. 42. Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, et al. Driver mutations in *TP53* are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010; 221: 49–56. 43. Yemelyanova A, Vang R, Kshirsagar M, Lu D, Marks MA, Shih IM, et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for *TP53* mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol. 2011; 24: 1248–53. 44. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou SB, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013; 339: 1546–58. 45. Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015; 521: 489–94. 46. Bolton KL, Chenevix-Trench G, Goh C, Sadetzki S, Ramus SJ, Karlan BY, et al. Association between *BRCA1* and *BRCA2* mutations and survival in women with invasive epithelial ovarian cancer. JAMA. 2012; 307: 382–90. 47. Pal T, Permuth-Wey J, Betts JA, Krischer JP, Fiorica J, Arango H, et al. *BRCA1* and *BRCA2* mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005; 104: 2807–16. 48. Kanchi KL, Johnson KJ, Lu C, McLellan MD, Leiserson MD, Wendl MC, et al. Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun. 2014; 5: 3156. 49. Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A. 2011; 108: 3406–11. 50. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by *BRCA* status in a randomised phase 2 trial. Lancet Oncol. 2014; 15: 852–61. 51. Scott CL, Swisher EM, Kaufmann SH. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol. 2015; 33: 1397–406. 52. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict Platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014; 20: 764–75. 53. Gorodnova TV, Sokolenko AP, Ivantsov AO, Iyevleva AG, Suspitsin EN, Aleksakhina SN, et al. High response rates to neoadjuvant platinum-based therapy in ovarian cancer patients carrying germ-line *BRCA* mutation. Cancer Lett. 2015; 369: 363–7. 54. Gourley C, Michie CO, Roxburgh P, Yap TA, Harden S, Paul J, et al. Increased incidence of visceral metastases in Scottish patients with *BRCA1/2*-defective ovarian cancer: an extension of the ovarian *BRCA* ness phenotype. J Clin Oncol. 2010; 28: 2505–11. 55. Piek JMJ, Torrenga B, Hermsen B, Verheijen RHM, Zweemer RP, Gille JJP, et al. Histopathological characteristics of *BRCA1*-and *BRCA2*-associated intraperitoneal cancer: A clinic-based study. Familial Cancer. 2003; 2: 73–8. 56. Gilks CB, Prat J. Ovarian carcinoma pathology and genetics: recent advances. Hum Pathol. 2009; 40: 1213–23. 57. Candido-Dos-Reis FJ, Song H, Goode EL, Cunningham JM, Fridley BL, Larson MC, et al. Germline mutation in brca1 or brca2 and ten-year survival for women diagnosed with epithelial ovarian cancer. Clin Cancer Res. 2015; 21: 652–7. 58. Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Karlan BY. *BRCA1* promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res. 2000; 60: 5329–33. 59. Chiang JW, Karlan BY, Cass L, Baldwin RL. *BRCA1* promoter methylation predicts adverse ovarian cancer prognosis. Gynecol Oncol. 2006; 101: 403–10. 60. Wang ZC, Birkbak NJ, Culhane AC, Drapkin R, Fatima A, Tian RY, et al. Profiles of genomic instability in high-grade serous ovarian cancer predict treatment outcome. Clin Cancer Res. 2012; 18: 5806–15. 61. Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, et al. *EMSY* links the *BRCA2* pathway to sporadic breast and ovarian cancer. Cell. 2003; 115: 523–35. 62. Bast RC, Mills GB. Personalizing therapy for ovarian cancer: *BRCA* ness and beyond. J Clin Oncol. 2010; 28: 3545–8. 63. Etemadmoghadam D, Weir BA, Au-Yeung G, Alsop K, Mitchell G, George J, et al. Synthetic lethality between ccne1 amplification and loss of *BRCA1*. Proc Natl Acad Sci U S A. 2013; 110: 19489–94. 64. Etemadmoghadam D, Defazio A, Beroukhim R, Mermel C, George J, Getz G, et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res. 2009; 15: 1417–27. 65. Bentink S, Haibe-Kains B, Risch T, Fan JB, Hirsch MS, Holton K, et al. Angiogenic mRNA and microRNA gene expression signature predicts a novel subtype of serous ovarian cancer. PLoS One. 2012; 7: e30269. 66. Konecny GE, Wang C, Hamidi H, Winterhoff B, Kalli KR, Dering J, et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J Natl Cancer Inst. 2014; 106: dju249. 67. Sfakianos GP, Iversen ES, Whitaker RA, Schildkraut JL, Murphy SK, Marks JR, et al. Validation of ovarian cancer gene expression signatures for survival and subtype in formalin fixed paraffin embedded tissues. Gynecol Oncol. 2013; 129: 159–64. 68. Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, et al. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res. 2008; 68: 5478–86. 69. Mok SC, Bonome T, Vathipadiekal V, Bell A, Johnson ME, Wong KK, et al. A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2. Cancer Cell. 2009; 16: 521–32. 70. Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, Fujiwara H, et al. High-Risk ovarian cancer based on 126-Gene expression signature is uniquely characterized by downregulation of antigen presentation pathway. Clin Cancer Res. 2012; 18: 1374–85. 71. Yoshihara K, Tajima A, Yahata T, Kodama S, Fujiwara H, Suzuki M, et al. Gene expression profile for predicting survival in Advanced-Stage serous ovarian cancer across two Independent datasets. PLoS One. 2010; 5: e9615. 72. Waldron L, Haibe-Kains B, Culhane AC, Riester M, Ding J, Wang XV, et al. Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. J Natl Cancer Inst. 2014; 106: dju049. 73. Riester M, Wei W, Waldron L, Culhane AC, Trippa L, Oliva E, et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst. 2014; 106: dju048. 74. Crockford A, Jamal-Hanjani M, Hicks J, Swanton C. Implications of intratumour heterogeneity for treatment stratification. J Pathol. 2014; 232: 264–73. 75. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and Consequences of genetic heterogeneity in cancer evolution. Nature. 2013; 501: 338–45. 76. Bashashati A, Ha G, Tone A, Ding JR, Prentice LM, Roth A, et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol. 2013; 231: 21–34. 77. Cooke SL, Ng CKY, Melnyk N, Garcia MJ, Hardcastle T, Temple J, et al. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene. 2010; 29: 4905–13. 78. Schwarz RF, Ng CKY, Cooke SL, Newman S, Temple J, Piskorz AM, et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 2015; 12: e1001789. 79. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, et al. Secondary somatic mutations restoring *BRCA1/2* predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol. 2011; 29: 3008–15. 80. Stronach EA, Chen M, Maginn EN, Agarwal R, Mills GB, Wasan H, et al. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired Platinum resistance. Neoplasia. 2011; 13: 1069–80. 81. Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther. 2006; 112: 457–73. 82. Lhommé C, Joly F, Walker JL, Lissoni AA, Nicoletto MO, Manikhas GM, et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol. 2008; 26: 2674–82. 83. Vecchione A, Belletti B, Lovat F, Volinia S, Chiappetta G, Giglio S, et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci U S A. 2013; 110: 9845–50. 84. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007; 67: 8699–707. 85. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2008; 105: 7004–9. 86. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA , Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003; 348: 203–13. 87. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005; 102: 18538–43. 88. Strickland KC, Howitt BE, Shukla S, Rodig S, Ritterhouse LL, Liu JF, et al. Association and prognostic significance of *BRCA1/2*-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016; 7: 13587–98. 89. Shih IM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004; 164: 1511–8. 90. Kurman RJ, Shih IM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer-Shifting the paradigm. Hum Pathol. 2011; 42: 918–31. 91. de la Cuesta RS, Eichhorn JH, Rice LW, Fuller AF Jr, Nikrui N, Goff BA. Histologic transformation of benign endometriosis to early epithelial ovarian cancer. Gynecol Oncol. 1996; 60: 238–44. 92. Liu JS, Albarracin CT, Chang KH, Thompson-Lanza JA, Zheng WX, Gershenson DM, et al. Microsatellite instability and expression of hMLH1 and hMSH2 proteins in ovarian endometrioid cancer. Mod Pathol. 2004; 17: 75–80. 93. Pal T, Permuth-Wey J, Kumar A, Sellers TA. Systematic review and meta-analysis of ovarian cancers: estimation of Microsatellite-High frequency and characterization of mismatch repair deficient tumor histology. Clin Cancer Res. 2008; 14: 6847–54. 94. Chui MH, Ryan P, Radigan J, Ferguson SE, Pollett A, Aronson M, et al. The histomorphology of lynch syndrome-associated ovarian carcinomas: toward a subtype-specific screening strategy. Am J Surg Pathol. 2014; 38: 1173–81. 95. Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, Taylor JM, et al. Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res. 2002; 62: 4722–9. 96. Mcconechy MK, Ding JR, Senz J, Yang WN, Melnyk N, Tone AA, et al. Ovarian and endometrial endometrioid carcinomas have distinct*CTNNB1* and *PTEN* mutation profiles. Mod Pathol. 2014; 27: 128–34. 97. Matsumoto T, Yamazaki M, Takahashi H, Kajita S, Suzuki E, Tsuruta T, et al. Distinct *β*-*Catenin* and *PIK3CA* mutation profiles in endometriosis-associated ovarian endometrioid and clear cell carcinomas. Am J Clin Pathol. 2015; 144: 452–63. 98. Obata K, Morland SJ, Watson RH, Hitchcock A, Chenevix-Trench G, Thomas EJ, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998; 58: 2095–7. 99. Wiegand KC, Shah SP, Al-Agha OM, Zhao YJ, Tse K, Zeng T, et al. *ARID1A* mutations in Endometriosis-Associated ovarian carcinomas. N Engl J Med. 2010; 363: 1532–43. 100.Guan B, Wang TL, Shih IM. *ARID1A*, a factor that promotes formation of SWI/SNF-Mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 2011; 71: 6718–27. 101.Shih IM, Panuganti PK, Kuo KT, Mao TL, Kuhn E, Jones S, et al. Somatic mutations of *PPP2R1A* in ovarian and uterine carcinomas. Am J Pathol. 2011; 178: 1442–7. 102.Cho KR, Shih IM. Ovarian cancer. Annu Rev Pathol. 2009; 4: 287–313. 103.Jones S, Wang TL, Shih IM, Mao TL, Nakayama K, Roden R, et al. Frequent mutations of chromatin remodeling gene *ARID1A* in ovarian clear cell carcinoma. Science. 2010; 330: 228–31. 104.Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T, et al. Loss of heterozygosity on 10q23. 3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: Possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res. 2000; 60: 7052–6. 105.Campbell IG, Russell SE, Choong DYH, Montgomery KG, Ciavarella ML, Hooi CSF, et al. Mutation of the *PIK3CA* gene in ovarian and breast cancer. Cancer Res. 2004; 64: 7678–81. 106.Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, et al. Frequent activating mutations of *PIK3CA* in ovarian clear cell carcinoma. Am J Pathol. 2009; 174: 1597–601. 107.Kuo KT, Mao TL, Chen X, Feng YJ, Nakayama K, Wang Y, et al. DNA copy numbers profiles in Affinity-Purified ovarian clear cell carcinoma. Clin Cancer Res. 2010; 16: 1997–2008. 108.Zaino RJ, Brady MF, Lele SM, Michael H, Greer B, Bookman MA. Advanced stage mucinous adenocarcinoma of the ovary is both rare and highly lethal: a gynecologic oncology group study. Cancer. 2011; 117: 554–62. 109.Anglesio MS, Kommoss S, Tolcher MC, Clarke B, Galletta L, Porter H, et al. Molecular characterization of mucinous ovarian tumours supports a stratified treatment approach with HER2 targeting in 19% of carcinomas. J Pathol. 2013; 229: 111–20. 110.Brown J, Frumovitz M. Mucinous tumors of the ovary: current thoughts on diagnosis and management. Curr Oncol Rep. 2014; 16: 389. 111.Bamias A, Psaltopoulou T, Sotiropoulou M, Haidopoulos D, Lianos E, Bournakis E, et al. Mucinous but not clear cell histology is associated with inferior survival in patients with advanced stage ovarian carcinoma treated with platinum-paclitaxel chemotherapy. Cancer. 2010; 116: 1462–8. 112.Gemignani ML, Schlaerth AC, Bogomolniy F, Barakat RR, Lin O, Soslow R, et al. Role of *KRAS* and *BRAF* gene mutations in mucinous ovarian carcinoma. Gynecol Oncol. 2003; 90: 378–81. 113.Singer G, Stöhr R, Cope L, Dehari R, Hartmann AA, Cao DF, et al. Patterns of p53 mutations separate ovarian serous borderline tumors and low-and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis -A mutational analysis with immunohistochemical correlation. Am J Surg Pathol. 2005; 29: 218–24. 114.Sieben NLG, Macropoulos P, Roemen GMJM, Kolkman-Uljee SM, Jan Fleuren G, Houmadi R, et al. In ovarian neoplasms, *BRAF*, but not *KRAS*, mutations are restricted to low-grade serous tumours. J Pathol. 2004; 202: 336–40. 115.Singer G, Oldt R III, Cohen Y, Wang BG, Sidransky D, Kurman RJ, et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 2003; 95: 484–6. 116.Wong KK, Tsang YTM, Deavers MT, Mok SC, Zu ZF, Sun C, et al. BRAF mutation is rare in advanced-stage low-grade ovarian serous carcinomas. Am J Pathol. 2010; 177: 1611–7. 117.Tsang YT, Deavers MT, Sun CC, Kwan SY, Kuo E, Malpica A, et al. KRAS (but not *BRAF*) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma. J Pathol. 2013; 231: 449–56. 118.Farley J, Brady WE, Vathipadiekal V, Lankes HA, Coleman R, Morgan MA, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study. Lancet Oncol. 2013; 14: 134–40. 119.Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005; 353: 1659–72. * Received March 20, 2017. * Accepted March 25, 2017. * Copyright: © 2017, Cancer Biology & Medicine [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/) This is an open access article distributed under the terms of the [Creative Commons Attribution License (CC BY) 4.0](https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. ## References 1. 1. Hollis RL, Gourley C. Genetic and molecular changes in ovarian cancer. Cancer Biol Med. 2016; 13: 236–247. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiY2JtIjtzOjU6InJlc2lkIjtzOjg6IjEzLzIvMjM2IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTQvMi8xOTYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9)