Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Human endogenous retroviruses and cancer

María Gonzalez-Cao, Paola Iduma, Niki Karachaliou, Mariacarmela Santarpia, Julià Blanco and Rafael Rosell
Cancer Biology & Medicine December 2016, 13 (4) 483-488; DOI: https://doi.org/10.20892/j.issn.2095-3941.2016.0080
María Gonzalez-Cao
1Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Paola Iduma
2AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona 08028, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Niki Karachaliou
1Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mariacarmela Santarpia
3Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, 98122, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julià Blanco
2AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona 08028, Spain
4UVIC-UCC, Catalunya 08500, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rafael Rosell
1Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain
5Cancer Biology & Precision Medicine Program, Catalan Institute of Oncology, Germans Trias I Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, 08916, Spain
6Fundación Molecular Oncology Research, Barcelona 08028, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Yu P.
    The potential role of retroviruses in autoimmunity. Immunol Rev. 2016; 269: 85–99.
    OpenUrlCrossRef
  2. 2.
    1. Stoye JP.
    Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat Rev Microbiol. 2012; 10: 395–406.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Weiss RA.
    The discovery of endogenous retroviruses. Retrovirology. 2006; 3: 67.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Coffin JM,
    2. Hughes SH,
    3. Varmus HE
    1. Coffin JM,
    2. Hughes SH,
    3. Varmus HE.
    The Interactions of Retroviruses and their Hosts. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997.
  5. 5.↵
    1. Martin GS.
    The road to Src. Oncogene. 2004; 23: 7910–7.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Weiss R.
    Spontaneous virus production from "non-virus producing" Rous sarcoma cells. Virology. 1967; 32: 719–23.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Griffiths DJ.
    Endogenous retroviruses in the human genome sequence. Genome Biol. 2001; 2: REVIEWS1017.
  8. 8.↵
    1. Denner J.
    Expression and function of endogenous retroviruses in the placenta. APMIS. 2016; 124: 31–43.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Vargiu L,
    2. Rodriguez-Tomé P,
    3. Sperber GO,
    4. Cadeddu M,
    5. Grandi N,
    6. Blikstad V, et al.
    Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology. 2016; 13: 7.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Volkman HE,
    2. Stetson DB.
    The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol. 2014; 15: 415–22.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Flockerzi A,
    2. Ruggieri A,
    3. Frank O,
    4. Sauter M,
    5. Maldener E,
    6. Kopper B, et al.
    Expression patterns of transcribed human endogenous retrovirus HERV-K(HML-2) loci in human tissues and the need for a HERV Transcriptome Project. BMC Genomics. 2008; 9: 354.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Chuong EB,
    2. Elde NC,
    3. Feschotte C.
    Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016; 351: 1083–7.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Jern P,
    2. Sperber GO,
    3. Ahlsén G,
    4. Blomberg J.
    Sequence variability, gene structure, and expression of full-length human endogenous retrovirus H. J Virol. 2005; 79: 6325–37.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Subramanian RP,
    2. Wildschutte JH,
    3. Russo C,
    4. Coffin JM.
    Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology. 2011; 8: 90.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Villesen P,
    2. Aagaard L,
    3. Wiuf C,
    4. Pedersen FS.
    Identification of endogenous retroviral reading frames in the human genome. Retrovirology. 2004; 1: 32.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Tristem M.
    Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol. 2000; 74: 3715–30.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Bannert N,
    2. Kurth R.
    The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006; 7: 149–73.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Li ZW,
    2. Sheng T,
    3. Wan XH,
    4. Liu TS,
    5. Wu H,
    6. Dong JL.
    Expression of HERV-K correlates with status of MEK-ERK and p16INK4A-CDK4 pathways in melanoma cells. Cancer Invest. 2010; 28: 1031–7.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Krishnamurthy J,
    2. Rabinovich BA,
    3. Mi TJ,
    4. Switzer KC,
    5. Olivares S,
    6. Maiti SN, et al.
    Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma. Clin Cancer Res. 2015; 21: 3241–51.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Schiavetti F,
    2. Thonnard J,
    3. Colau D,
    4. Boon T,
    5. Coulie PG.
    A human endogenous retroviral sequence encoding an antigen recognized on melanoma by cytolytic T lymphocytes. Cancer Res. 2002; 62: 5510–6.
    OpenUrlAbstract/FREE Full Text
  21. 21.
    1. Zhao J,
    2. Rycaj K,
    3. Geng SS,
    4. Li M,
    5. Plummer JB,
    6. Yin BN, et al.
    Expression of human endogenous retrovirus type K envelope protein is a novel candidate prognostic marker for human breast cancer. Genes Cancer. 2011; 2: 914–22.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Rycaj K,
    2. Plummer JB,
    3. Yin BN,
    4. Li M,
    5. Garza J,
    6. Radvanyi L, et al.
    Cytotoxicity of human endogenous retrovirus K-specific T cells toward autologous ovarian cancer cells. Clin Cancer Res. 2015; 21: 471–83.
    OpenUrlAbstract/FREE Full Text
  23. 23.
    1. Boller K,
    2. König H,
    3. Sauter M,
    4. Mueller-Lantzsch N,
    5. Löwer R,
    6. Löwer J, et al.
    Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology. 1993; 196: 349–53.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Cegolon L,
    2. Salata C,
    3. Weiderpass E,
    4. Vineis P,
    5. Palù G,
    6. Mastrangelo G.
    Human endogenous retroviruses and cancer prevention: evidence and prospects. BMC Cancer. 2013; 13: 4.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Cherkasova E,
    2. Scrivani C,
    3. Doh S,
    4. Weisman Q,
    5. Takahashi Y,
    6. Harashima N, et al.
    Detection of an Immunogenic HERV-E Envelope with Selective Expression in Clear Cell Kidney Cancer. Cancer Res. 2016; 76: 2177–85.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Contreras-Galindo R,
    2. Kaplan MH,
    3. Leissner P,
    4. Verjat T,
    5. Ferlenghi I,
    6. Bagnoli F, et al.
    Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol. 2008; 82: 9329–36.
    OpenUrlAbstract/FREE Full Text
  27. 27.
    1. Wang-Johanning F,
    2. Li M,
    3. Esteva FJ,
    4. Hess KR,
    5. Yin BN,
    6. Rycaj K, et al.
    Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer. Int J Cancer. 2014; 134: 587–95.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Wang-Johanning F,
    2. Rycaj K,
    3. Plummer JB,
    4. Li M,
    5. Yin BN,
    6. Frerich K, et al.
    Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J Natl Cancer Inst. 2012; 104: 189–210.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Rhyu DW,
    2. Kang YJ,
    3. Ock MS,
    4. Eo JW,
    5. Choi YH,
    6. Kim WJ, et al.
    Expression of human endogenous retrovirus env genes in the blood of breast cancer patients. Int J Mol Sci. 2014; 15: 9173–83.
    OpenUrl
  30. 30.↵
    1. Wang-Johanning F,
    2. Liu JS,
    3. Rycaj K,
    4. Huang M,
    5. Tsai K,
    6. Rosen DG, et al.
    Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int J Cancer. 2007; 120: 81–90.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.↵
    1. Hahn S,
    2. Ugurel S,
    3. Hanschmann KM,
    4. Strobel H,
    5. Tondera C,
    6. Schadendorf D, et al.
    Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res Hum Retroviruses. 2008; 24: 717–23.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Young GR,
    2. Eksmond U,
    3. Salcedo R,
    4. Alexopoulou L,
    5. Stoye JP,
    6. Kassiotis G.
    Resurrection of endogenous retroviruses in antibody-deficient mice. Nature. 2012; 491: 774–8.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    1. Warming S,
    2. Liu PT,
    3. Suzuki T,
    4. Akagi K,
    5. Lindtner S,
    6. Pavlakis GN, et al.
    Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Kruppel-like zinc finger protein. Blood. 2003; 101: 1934–40.
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. Lin DY,
    2. Huang CC,
    3. Hsieh YT,
    4. Lin HC,
    5. Pao PC,
    6. Tsou JH, et al.
    Analysis of the interaction between Zinc finger protein 179 (Znf179) and promyelocytic leukemia zinc finger (Plzf). J Biomed Sci. 2013; 20: 98.
    OpenUrl
  35. 35.↵
    1. Katoh I,
    2. Mírová A,
    3. Kurata S,
    4. Murakami Y,
    5. Horikawa K,
    6. Nakakuki N, et al.
    Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia. 2011; 13: 1081–92.
    OpenUrlPubMed
  36. 36.
    1. Tomlins SA,
    2. Laxman B,
    3. Dhanasekaran SM,
    4. Helgeson BE,
    5. Cao XH,
    6. Morris DS, et al.
    Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007; 448: 595–9.
    OpenUrlCrossRefPubMedWeb of Science
  37. 37.↵
    1. Kahyo T,
    2. Tao H,
    3. Shinmura K,
    4. Yamada H,
    5. Mori H,
    6. Funai K, et al.
    Identification and association study with lung cancer for novel insertion polymorphisms of human endogenous retrovirus. Carcinogenesis. 2013; 34: 2531–8.
    OpenUrlCrossRefPubMed
  38. 38.↵
    1. Mangeney M,
    2. Heidmann T.
    Tumor cells expressing a retroviral envelope escape immune rejection in vivo. Proc Natl Acad Sci U S A. 1998; 95: 14920–5.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Yu HR,
    2. Huang HC,
    3. Kuo HC,
    4. Sheen JM,
    5. Ou CY,
    6. Hsu TY, et al.
    IFN-α production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell Mol Immunol. 2011; 8: 181–8.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Landau DA,
    2. Carter SL,
    3. Stojanov P,
    4. McKenna A,
    5. Stevenson K,
    6. Lawrence MS, et al.
    Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013; 152: 714–26.
    OpenUrlCrossRefPubMedWeb of Science
  41. 41.↵
    1. Wen WX,
    2. Soo JSS,
    3. Kwan PY,
    4. Hong E,
    5. Khang TF,
    6. Mariapun S, et al.
    Germline APOBEC3B deletion is associated with breast cancer risk in an Asian multi-ethnic cohort and with immune cell presentation. Breast Cancer Res. 2016; 18: 56.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Tran T,
    2. Burt D,
    3. Eapen L,
    4. Keller OR.
    Spontaneous regression of metastatic melanoma after inoculation with tetanus-diphtheria-pertussis vaccine. Curr Oncol. 2013; 20: e270–3.
    OpenUrl
  43. 43.↵
    1. Maurer H,
    2. McIntyre OR,
    3. Rueckert F.
    Spontaneous regression of malignant melanoma. Pathologic and immunologic study in a ten year survivor. Am J Surg. 1974; 127: 397–403.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Mastrangelo G,
    2. Krone B,
    3. Fadda E,
    4. Buja A,
    5. Grange JM,
    6. Rausa G, et al.
    Does yellow fever 17D vaccine protect against melanoma? Vaccine. 2009; 27: 588–91.
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. Krone B,
    2. Kölmel KF,
    3. Henz BM,
    4. Grange JM.
    Protection against melanoma by vaccination with Bacille Calmette-Guérin (BCG) and/or vaccinia: an epidemiology-based hypothesis on the nature of a melanoma risk factor and its immunological control. Eur J Cancer. 2005; 41: 104–17.
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. Kraus B,
    2. Fischer K,
    3. Büchner SM,
    4. Wels WS,
    5. Löwer R,
    6. Sliva K, et al.
    Vaccination directed against the human endogenous retrovirus-K envelope protein inhibits tumor growth in a murine model system. PLoS One. 2013; 8: e72756.
  47. 47.↵
    1. Wang-Johanning F,
    2. Radvanyi L,
    3. Rycaj K,
    4. Plummer JB,
    5. Yan PS,
    6. Sastry KJ, et al.
    Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res. 2008; 68: 5869–77.
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. Zhou FL,
    2. Krishnamurthy J,
    3. Wei YC,
    4. Li M,
    5. Hunt K,
    6. Johanning GL, et al.
    Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology. 2015; 4: e1047582.
  49. 49.↵
    1. Kraus B,
    2. Fischer K,
    3. Sliva K,
    4. Schnierle BS.
    Vaccination directed against the human endogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell growth in a murine model system. Virol J. 2014; 11: 58.
    OpenUrl
  50. 50.↵
    1. Chiappinelli KB,
    2. Strissel PL,
    3. Desrichard A,
    4. Li HL,
    5. Henke C,
    6. Akman B, et al.
    Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015; 162: 974–86.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Karpf AR,
    2. Peterson PW,
    3. Rawlins JT,
    4. Dalley BK,
    5. Yang Q,
    6. Albertsen H, et al.
    Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc Natl Acad Sci U S A. 1999; 96: 14007–12.
    OpenUrlAbstract/FREE Full Text
  52. 52.↵
    1. Sato S,
    2. Li K,
    3. Kameyama T,
    4. Hayashi T,
    5. Ishida Y,
    6. Murakami S, et al.
    The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity. 2015; 42: 123–32.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Feng H,
    2. Liu H,
    3. Kong RQ,
    4. Wang L,
    5. Wang YP,
    6. Hu W, et al.
    Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway. Fish Shellfish Immunol. 2011; 30: 1159–69.
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. Weintraub K.
    Take two: Combining immunotherapy with epigenetic drugs to tackle cancer. Nat Med. 2016; 22: 8–10.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Gameiro SR,
    2. Malamas AS,
    3. Tsang KY,
    4. Ferrone S,
    5. Hodge JW.
    Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget. 2016; 7: 7390–402.
    OpenUrlPubMed
  56. 56.↵
    1. Covre A,
    2. Coral S,
    3. Nicolay H,
    4. Parisi G,
    5. Fazio C,
    6. Colizzi F, et al.
    Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models. Oncoimmunology. 2015; 4: e1019978.
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 13 (4)
Cancer Biology & Medicine
Vol. 13, Issue 4
1 Dec 2016
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Human endogenous retroviruses and cancer
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Human endogenous retroviruses and cancer
María Gonzalez-Cao, Paola Iduma, Niki Karachaliou, Mariacarmela Santarpia, Julià Blanco, Rafael Rosell
Cancer Biology & Medicine Dec 2016, 13 (4) 483-488; DOI: 10.20892/j.issn.2095-3941.2016.0080

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Human endogenous retroviruses and cancer
María Gonzalez-Cao, Paola Iduma, Niki Karachaliou, Mariacarmela Santarpia, Julià Blanco, Rafael Rosell
Cancer Biology & Medicine Dec 2016, 13 (4) 483-488; DOI: 10.20892/j.issn.2095-3941.2016.0080
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • HERVs: structure and function
    • HERV and cancer
    • Conclusions
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Mechanisms underlying prostate cancer sensitivity to reactive oxygen species: overcoming radiotherapy resistance and recent clinical advances
  • Target identification of natural products in cancer with chemical proteomics and artificial intelligence approaches
  • Multi-omics in colorectal cancer liver metastasis: applications and research advances
Show more Review

Similar Articles

Keywords

  • HERVs
  • cancer
  • interferon
  • immunotherapy

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire