Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Changing paradigm of cancer therapy: precision medicine by next-generation sequencing

Yuan Xue and William R. Wilcox
Cancer Biology & Medicine March 2016, 13 (1) 12-18; DOI: https://doi.org/10.28092/j.issn.2095-3941.2016.0003
Yuan Xue
1Fulgent Diagnostics, Temple City, CA 91780, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
William R. Wilcox
2Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Mendoza MC.
    HIM and the path to personalized medicine. J AHIMA. 2010; 81: 38–42; quiz 43.
    OpenUrlPubMed
  2. 2.↵
    1. Metzker ML.
    Sequencing technologies - the next generation. Nat Rev Genet. 2010; 11: 31–46.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Chen X,
    2. Pappo A,
    3. Dyer MA.
    Pediatric solid tumor genomics and developmental pliancy. Oncogene. 2015; 34: 5207–15.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Spier I,
    2. Drichel D,
    3. Kerick M,
    4. Kirfel J,
    5. Horpaopan S,
    6. Laner A, et al.
    Low-level APC mutational mosaicism is the underlying cause in a substantial fraction of unexplained colorectal adenomatous polyposis cases. J Med Genet. 2016; 53: 172–9.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Tyburczy ME,
    2. Dies KA,
    3. Glass J,
    4. Camposano S,
    5. Chekaluk Y,
    6. Thorner AR, et al.
    Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing. PLoS Genet. 2015; 11: e1005637.
  6. 6.↵
    1. Do H,
    2. Dobrovic A.
    Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem. 2015; 61: 64–71.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Hadd AG,
    2. Houghton J,
    3. Choudhary A,
    4. Sah S,
    5. Chen L,
    6. Marko AC, et al.
    Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J Mol Diagn. 2013; 15: 234–47.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Paez JG,
    2. Jänne PA,
    3. Lee JC,
    4. Tracy S,
    5. Greulich H,
    6. Gabriel S, et al.
    EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304: 1497–500.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Kwak EL,
    2. Bang YJ,
    3. Camidge DR,
    4. Shaw AT,
    5. Solomon B,
    6. Maki RG, et al.
    Anaplastic lymphoma kinase inhibition in Non-Small-Cell lung cancer. N Engl J Med. 2010; 363: 1693–703.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. An X,
    2. Tiwari AK,
    3. Sun Y,
    4. Ding PR,
    5. Ashby CR,
    6. Chen ZS.
    BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res. 2010; 34: 1255–68.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Wagle N,
    2. Berger MF,
    3. Davis MJ,
    4. Blumenstiel B,
    5. Defelice M,
    6. Pochanard P, et al.
    High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2012; 2: 82–93.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Cottrell CE,
    2. Al-Kateb H,
    3. Bredemeyer AJ,
    4. Duncavage EJ,
    5. Spencer DH,
    6. Abel HJ, et al.
    Validation of a next-generation sequencing assay for clinical molecular oncology. J Mol Diagn. 2014; 16: 89105.
    OpenUrl
  13. 13.↵
    1. Tafe LJ,
    2. Gorlov IP,
    3. De Abreu FB,
    4. Lefferts JA,
    5. Liu X,
    6. Pettus JR, et al.
    Implementation of a molecular tumor board: the impact on treatment decisions for 35 patients evaluated at Dartmouth- Hitchcock medical center. Oncologist. 2015; 20: 1011–8.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Alexandrov LB,
    2. Nik-Zainal S,
    3. Wedge DC,
    4. Aparicio SA,
    5. Behjati S,
    6. Biankin AV, et al.
    Signatures of mutational processes in human cancer. Nature. 2013; 500: 415–21.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Waddell N,
    2. Pajic M,
    3. Patch AM,
    4. Chang DK,
    5. Kassahn KS,
    6. Bailey P, et al.
    Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015; 518: 495–501.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Pleasance ED,
    2. Cheetham RK,
    3. Stephens PJ,
    4. Mcbride DJ,
    5. Humphray SJ,
    6. Greenman CD, et al.
    A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010; 463: 191–6.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Pleasance ED,
    2. Stephens PJ,
    3. O'meara S,
    4. Mcbride DJ,
    5. Meynert A,
    6. Jones D, et al.
    A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010; 463: 184–90.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Krishnan VG,
    2. Ebert PJ,
    3. Ting JC,
    4. Lim E,
    5. Wong SS,
    6. Teo AS, et al.
    Whole-genome sequencing of Asian lung cancers: second-hand smoke unlikely to be responsible for higher incidence of lung cancer among Asian never-smokers. Cancer Res. 2014; 74: 6071–81.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Butrynski JE,
    2. D'adamo DR,
    3. Hornick JL,
    4. Dal Cin P,
    5. Antonescu CR,
    6. Jhanwar SC, et al.
    Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010; 363: 1727–33.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Willyard C.
    'Basket studies' will hold intricate data for cancer drug approvals. Nat Med. 2013; 19: 655.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Patterson SE,
    2. Liu R,
    3. Statz CM,
    4. Durkin D,
    5. Lakshminarayana A,
    6. Mockus SM.
    The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies. Hum Genomics. 2016; 10: 4.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Gerlinger M,
    2. Rowan AJ,
    3. Horswell S,
    4. Larkin J,
    5. Endesfelder D,
    6. Gronroos E, et al.
    Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012; 366: 883–92.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Wood LD,
    2. Parsons DW,
    3. Jones S,
    4. Lin J,
    5. Sjöblom T,
    6. Leary RJ, et al.
    The genomic landscapes of human breast and colorectal cancers. Science. 2007; 318: 1108–13.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Briffa R,
    2. Um I,
    3. Faratian D,
    4. Zhou Y,
    5. Turnbull AK,
    6. Langdon SP, et al.
    Multi-Scale genomic, transcriptomic and proteomic analysis of colorectal cancer cell lines to identify novel biomarkers. PLoS One. 2015; 10: e0144708.
  25. 25.↵
    1. Janku F,
    2. Kaseb AO,
    3. Tsimberidou AM,
    4. Wolff RA,
    5. Kurzrock R.
    Identification of novel therapeutic targets in the PI3K/AKT/mTOR pathway in hepatocellular carcinoma using targeted next Generation sequencing. Oncotarget. 2014; 5: 3012–22.
    OpenUrl
  26. 26.↵
    1. Rangachari D,
    2. Vanderlaan PA,
    3. Le X,
    4. Folch E,
    5. Kent MS,
    6. Gangadharan SP, et al.
    Experience with targeted next generation sequencing for the care of lung cancer: insights into promises and limitations of genomic oncology in day-to-day practice. Cancer Treat Commun. 2015; 4: 174–81.
    OpenUrl
  27. 27.↵
    1. Ettinger DS,
    2. Akerley W,
    3. Borghaei H,
    4. Chang AC,
    5. Cheney RT,
    6. Chirieac LR, et al.
    Non-small cell lung cancer, version 2.2013. J Natl Compr Canc Netw. 2013; 11: 645–53; quiz 653.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. De Mattos-Arruda L,
    2. Weigelt B,
    3. Cortes J,
    4. Won HH,
    5. Ng CK,
    6. Nuciforo P, et al.
    Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann Oncol. 2014; 25: 1729–35.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.
    1. Thierry AR,
    2. Mouliere F,
    3. El Messaoudi S,
    4. Mollevi C,
    5. Lopez-Crapez E,
    6. Rolet F, et al.
    Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 2014; 20: 430–5.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Dawson SJ,
    2. Tsui DW,
    3. Murtaza M,
    4. Biggs H,
    5. Rueda OM,
    6. Chin SF, et al.
    Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013; 368: 1199–209.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.↵
    1. Nygaard AD,
    2. Garm Spindler KL,
    3. Pallisgaard N,
    4. Andersen RF,
    5. Jakobsen A.
    The prognostic value of KRAS mutated plasma DNA in advanced non-small cell lung cancer. Lung Cancer. 2013; 79: 312–7.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Bettegowda C,
    2. Sausen M,
    3. Leary RJ,
    4. Kinde I,
    5. Wang Y,
    6. Agrawal N, et al.
    Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014; 6: 224ra24.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Schumacher TN,
    2. Schreiber RD.
    Neoantigens in cancer immunotherapy. Science. 2015; 348: 69–74.
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. Snyder A,
    2. Makarov V,
    3. Merghoub T,
    4. Yuan J,
    5. Zaretsky JM,
    6. Desrichard A, et al.
    Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014; 371: 2189–99.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.↵
    1. Korbel JO,
    2. Urban AE,
    3. Affourtit JP,
    4. Godwin B,
    5. Grubert F,
    6. Simons JF, et al.
    Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007; 318: 420–6.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Frampton GM,
    2. Fichtenholtz A,
    3. Otto GA,
    4. Wang K,
    5. Downing SR,
    6. He J, et al.
    Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013; 31: 1023–31.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Catenacci DV,
    2. Amico AL,
    3. Nielsen SM,
    4. Geynisman DM,
    5. Rambo B,
    6. Carey GB, et al.
    Tumor genome analysis includes germline genome: are we ready for surprises? Int J Cancer. 2015; 36: 1559–67.
    OpenUrl
  38. 38.↵
    1. Friedman AA,
    2. Letai A,
    3. Fisher DE,
    4. Flaherty KT.
    Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer. 2015; 15: 747–56.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 13 (1)
Cancer Biology & Medicine
Vol. 13, Issue 1
1 Mar 2016
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Changing paradigm of cancer therapy: precision medicine by next-generation sequencing
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Changing paradigm of cancer therapy: precision medicine by next-generation sequencing
Yuan Xue, William R. Wilcox
Cancer Biology & Medicine Mar 2016, 13 (1) 12-18; DOI: 10.28092/j.issn.2095-3941.2016.0003

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Changing paradigm of cancer therapy: precision medicine by next-generation sequencing
Yuan Xue, William R. Wilcox
Cancer Biology & Medicine Mar 2016, 13 (1) 12-18; DOI: 10.28092/j.issn.2095-3941.2016.0003
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Technical perspectives of NGS in solid tumor tissue
    • The impact of NGS on precision cancer therapy
    • Limitations and concerns of NGS
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Application of next-generation sequencing technology to precision medicine in cancer: joint consensus of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology
  • Google Scholar

More in this TOC Section

  • The mechanisms and clinical significance of CD8+ T cell exhaustion in anti-tumor immunity
  • Senescent macrophages in cancer: roles in tumor progression and treatment opportunities
  • Advances in strategies to improve the immunotherapeutic efficacy of chimeric antigen receptor-T cell therapy for lymphoma
Show more Review

Similar Articles

Keywords

  • precision medicine
  • cancer therapy
  • next-generation sequencing
  • solid tumor

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire