Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Ultrasensitive detection of DNA and protein markers in cancer cells

Irina V. Smolina and Natalia E. Broude
Cancer Biology & Medicine September 2015, 12 (3) 143-149; DOI: https://doi.org/10.7497/j.issn.2095-3941.2015.0048
Irina V. Smolina
1Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Natalia E. Broude
1Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Mazutis L,
    2. Gilbert J,
    3. Ung WL,
    4. Weitz DA,
    5. Griffiths AD,
    6. Heyman JA.
    Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 2013;8:870–891.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Joensson HN,
    2. Samuels ML,
    3. Brouzes ER,
    4. Medkova M,
    5. Uhlén M,
    6. Link DR, et al.
    Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angew Chem Int Ed Engl 2009;48:2518–2521.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Agresti JJ,
    2. Antipov E,
    3. Abate AR,
    4. Ahn K,
    5. Rowat AC,
    6. Baret JC, et al.
    Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci U S A 2010;107:4004–4009.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Köster S,
    2. Angilè FE,
    3. Duan H,
    4. Agresti JJ,
    5. Wintner A,
    6. Schmitz C, et al.
    Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 2008;8:1110–1115.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Zhu Y,
    2. Fang Q.
    Analytical detection techniques for droplet microfluidics--a review. Anal Chim Acta 2013;787:24–35.
    OpenUrl
  6. 6.↵
    1. Guo MT,
    2. Rotem A,
    3. Heyman JA,
    4. Weitz DA.
    Droplet microfluidics for high-throughput biological assays. Lab Chip 2012;12:2146–2155.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Lizardi PM,
    2. Huang X,
    3. Zhu Z,
    4. Bray-Ward P,
    5. Thomas DC,
    6. Ward DC.
    Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 1998;19:225–232.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Melin J,
    2. Jarvius J,
    3. Göransson J,
    4. Nilsson M.
    Homogeneous amplified single-molecule detection: Characterization of key parameters. Anal Biochem 2007;368:230–238.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Hasty P,
    2. Montagna C.
    Chromosomal Rearrangements in Cancer: Detection and potential causal mechanisms. Mol Cell Oncol 2014;1.
  10. 10.↵
    1. Yaroslavsky AI,
    2. Smolina IV.
    Fluorescence imaging of single-copy DNA sequences within the human genome using PNA-directed padlock probe assembly. Chem Biol 2013;20:445–453.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Breitenstein M,
    2. Nielsen PE,
    3. Hölzel R,
    4. Bier FF.
    DNA-nanostructure-assembly by sequential spotting. J Nanobiotechnology 2011;9:54.
    OpenUrlPubMed
  12. 12.↵
    1. Singer A1,
    2. Wanunu M,
    3. Morrison W,
    4. Kuhn H,
    5. Frank-Kamenetskii M,
    6. Meller A.
    Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett 2010;10:738–742.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Egholm M,
    2. Christensen L,
    3. Dueholm KL,
    4. Buchardt O,
    5. Coull J,
    6. Nielsen PE.
    Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 1995;23:217–222.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Bukanov NO,
    2. Demidov VV,
    3. Nielsen PE,
    4. Frank-Kamenetskii MD.
    PD-loop: a complex of duplex DNA with an oligonucleotide. Proc Natl Acad Sci U S A 1998;95:5516–5520.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Demidov VV,
    2. Frank-Kamenetskii MD.
    Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends Biochem Sci 2004;29:62–71.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Smolina I,
    2. Lee C,
    3. Frank-Kamenetskii M.
    Detection of low-copy-number genomic DNA sequences in individual bacterial cells by using peptide nucleic acid-assisted rolling-circle amplification and fluorescence in situ hybridization. Appl Environ Microbiol 2007;73:2324–2328.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Smolina I,
    2. Miller NS,
    3. Frank-Kamenetskii MD.
    PNA-based microbial pathogen identification and resistance marker detection: An accurate, isothermal rapid assay based on genome-specific features. Artif DNA PNA XNA 2010;1:76–82.
    OpenUrlPubMed
  18. 18.↵
    1. Konry T,
    2. Lerner A,
    3. Yarmush ML,
    4. Smolina IV.
    Target DNA detection and quantitation on a single cell with single base resolution. Technology (Singap World Sci) 2013;1:88.
    OpenUrl
  19. 19.↵
    1. Mazouni C,
    2. Fina F,
    3. Romain S,
    4. Ouafik L,
    5. Bonnier P,
    6. Brandone JM, et al.
    Epstein-Barr virus as a marker of biological aggressiveness in breast cancer. Br J Cancer 2011;104:332–337.
    OpenUrlPubMed
  20. 20.↵
    1. Khanim F,
    2. Yao QY,
    3. Niedobitek G,
    4. Sihota S,
    5. Rickinson AB,
    6. Young LS.
    Analysis of Epstein-Barr virus gene polymorphisms in normal donors and in virus-associated tumors from different geographic locations. Blood 1996;88:3491–3501.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Cesarman E,
    2. Moore PS,
    3. Rao PH,
    4. Inghirami G,
    5. Knowles DM,
    6. Chang Y.
    In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 1995;86:2708–2714.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Yao QY,
    2. Croom-Carter DS,
    3. Tierney RJ,
    4. Habeshaw G,
    5. Wilde JT,
    6. Hill FG, et al.
    Epidemiology of infection with Epstein-Barr virus types 1 and 2: lessons from the study of a T-cell-immunocompromised hemophilic cohort. J Virol 1998;72:4352–4363.
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. Rowe M,
    2. Young LS,
    3. Crocker J,
    4. Stokes H,
    5. Henderson S,
    6. Rickinson AB.
    Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man. J Exp Med 1991;173:147–158.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Sample J,
    2. Young L,
    3. Martin B,
    4. Chatman T,
    5. Kieff E,
    6. Rickinson A, et al.
    Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol 1990;64:4084–4092.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Leth-Larsen R,
    2. Lund RR,
    3. Ditzel HJ.
    Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 2010;9:1369–1382.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Lund R,
    2. Leth-Larsen R,
    3. Jensen ON,
    4. Ditzel HJ.
    Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. J Proteome Res 2009;8:3078–3090.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Mavrangelos C,
    2. Swart B,
    3. Nobbs S,
    4. Nicholson IC,
    5. Macardle PJ,
    6. Zola H.
    Detection of low-abundance membrane markers by immunofluorescence-- a comparison of alternative high-sensitivity methods and reagents. J Immunol Methods 2004;289:169–178.
    OpenUrlPubMed
  28. 28.↵
    1. Kaplan D,
    2. Smith D.
    Enzymatic amplification staining for flow cytometric analysis of cell surface molecules. Cytometry 2000;40:81–85.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Konry T,
    2. Smolina I,
    3. Yarmush JM,
    4. Irimia D,
    5. Yarmush ML.
    Ultrasensitive detection of low-abundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform. Small 2011;7:395–400.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Nagrath S,
    2. Sequist LV,
    3. Maheswaran S,
    4. Bell DW,
    5. Irimia D,
    6. Ulkus L, et al.
    Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007;450:1235–1239.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 12 (3)
Cancer Biology & Medicine
Vol. 12, Issue 3
1 Sep 2015
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ultrasensitive detection of DNA and protein markers in cancer cells
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Ultrasensitive detection of DNA and protein markers in cancer cells
Irina V. Smolina, Natalia E. Broude
Cancer Biology & Medicine Sep 2015, 12 (3) 143-149; DOI: 10.7497/j.issn.2095-3941.2015.0048

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Ultrasensitive detection of DNA and protein markers in cancer cells
Irina V. Smolina, Natalia E. Broude
Cancer Biology & Medicine Sep 2015, 12 (3) 143-149; DOI: 10.7497/j.issn.2095-3941.2015.0048
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Genetic marker detection
    • Protein marker detection
    • Conclusion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The mechanisms and clinical significance of CD8+ T cell exhaustion in anti-tumor immunity
  • Senescent macrophages in cancer: roles in tumor progression and treatment opportunities
  • Advances in strategies to improve the immunotherapeutic efficacy of chimeric antigen receptor-T cell therapy for lymphoma
Show more Review

Similar Articles

Keywords

  • Microfluidic droplets
  • rolling circle amplification (RCA)
  • peptide nucleic acids (PNA)
  • cell-surface protein marker

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire