Vascular endothelial growth inhibitor (VEGI; TNFSF15) inhibits bone marrow-derived endothelial progenitor cell incorporation into Lewis lung carcinoma tumors

Angiogenesis. 2011 Mar;14(1):61-8. doi: 10.1007/s10456-010-9195-8. Epub 2010 Dec 28.

Abstract

Bone marrow (BM)-derived endothelial progenitor cells (EPC) have a critical role in tumor neovascularization. Vascular endothelial growth inhibitor (VEGI) is a member of the TNF superfamily (TNFSF15). We have shown that recombinant VEGI suppresses tumor angiogenesis by specifically eliminating proliferating endothelial cells (EC). We report here that treatment of tumor bearing mice with recombinant VEGI leads to a significantly decreased population of BM-derived EPC in the tumors. We transplanted whole bone marrow from green fluorescent protein (GFP) transgenic mice into C57BL/6 recipient mice, which were then inoculated with Lewis lung carcinoma (LLC) cells. Intraperitoneal injection of recombinant VEGI led to significant inhibition of tumor growth and decrease of vasculature density compared to vehicle-treated mice. Tumor implantation yielded a decrease of BM-derived EPC in the peripheral blood, while VEGI-treatment resulted in an initial delay of such decrease. Analysis of the whole bone marrow showed a decrease of Lin(-)-c-Kit(+)-Sca-1(+) hematopoietic stem cell (HSC) population in tumor bearing mice; however, VEGI-treatment caused a significant increase of this cell population. In addition, the number of BM-derived EPC in VEGI-treated tumors was notably less than that in the vehicle-treated group, and most of the apoptotic cells in the VEGI-treated tumors were of bone marrow origin. These findings indicate that VEGI inhibits BM-derived EPC mobilization and prevents their incorporation into LLC tumors by inducing apoptosis specifically of BM-derived cells, resulting in the inhibition of EPC-supported tumor vasculogenesis and tumor growth.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Bone Marrow Cells / cytology*
  • Bone Marrow Cells / drug effects
  • Carcinoma, Lewis Lung / blood supply
  • Carcinoma, Lewis Lung / drug therapy
  • Carcinoma, Lewis Lung / pathology*
  • Cell Proliferation / drug effects
  • Endothelial Cells / cytology*
  • Endothelial Cells / drug effects
  • Hematopoiesis / drug effects
  • Mice
  • Mice, Inbred C57BL
  • Neovascularization, Pathologic / drug therapy
  • Stem Cells / cytology*
  • Stem Cells / drug effects
  • Tumor Necrosis Factor Ligand Superfamily Member 15 / pharmacology*

Substances

  • Tumor Necrosis Factor Ligand Superfamily Member 15